改性石墨相氮化碳的制备与光催化性能研究
- 格式:docx
- 大小:23.13 KB
- 文档页数:7
《石墨相氮化碳光催化材料的结构调控及光解水性能研究》篇一一、引言随着环境问题日益严峻,寻找清洁、可再生的能源成为了科学研究的热点。
其中,光催化技术以其独特的优势在太阳能的利用与转换方面受到了广泛关注。
石墨相氮化碳(g-C3N4)作为一种新型的光催化材料,因其良好的化学稳定性、热稳定性以及可见光响应性等特性,被广泛用于光解水制氢、有机污染物降解等领域。
然而,其光生载流子的复合率高、量子效率低等问题限制了其实际应用。
因此,对石墨相氮化碳光催化材料的结构调控及光解水性能的研究具有重要的理论意义和实际应用价值。
二、石墨相氮化碳的结构与性质石墨相氮化碳(g-C3N4)是一种由碳和氮元素组成的二维层状材料,具有独特的电子结构和化学性质。
其结构主要由碳氮六元环组成,层内原子以共价键相连,层间通过范德华力相互作用。
这种结构使得g-C3N4具有良好的化学稳定性和热稳定性,同时具有可见光响应性。
三、结构调控方法为了改善石墨相氮化碳的光催化性能,研究者们采用了多种结构调控方法。
主要包括元素掺杂、缺陷工程、形貌调控和复合其他半导体等。
1. 元素掺杂:通过引入其他元素(如硫、磷等)来调控g-C3N4的电子结构和光学性质,从而提高其光催化性能。
2. 缺陷工程:通过控制合成过程中的条件,如温度、压力、气氛等,引入缺陷(如氮空位、碳空位等),改变g-C3N4的电子传输性质。
3. 形貌调控:通过改变合成方法(如溶剂热法、高温固相法等),制备出具有不同形貌(如纳米片、纳米球、纳米管等)的g-C3N4,以优化其光吸收和光生载流子的传输。
4. 复合其他半导体:将g-C3N4与其他半导体材料(如TiO2、ZnO等)复合,形成异质结,提高光生载流子的分离效率和利用率。
四、光解水性能研究经过结构调控的g-C3N4光催化材料在光解水制氢方面表现出良好的性能。
研究者们通过实验和理论计算等方法,研究了其光解水机理和性能。
在可见光照射下,g-C3N4能够吸收光能并激发产生光生电子和空穴,这些载流子能够参与水的还原和氧化反应,生成氢气和氧气。
石墨相氮化碳的结构调控及增强光催化性能研究共3篇石墨相氮化碳的结构调控及增强光催化性能研究1石墨相氮化碳的结构调控及增强光催化性能研究摘要:石墨相氮化碳(g-C3N4)是一种新型的光催化剂,具有廉价、环保、稳定性好等诸多优点,因此广泛应用于水处理、气体分解、光催化降解等领域。
但其光催化性能还不够优异,因此需要进行结构调控以增强其光催化性能。
本文从结构调控、增强光催化性能两方面进行解析,探讨石墨相氮化碳的结构调控及增强光催化性能的研究进展。
关键词:石墨相氮化碳;结构调控;光催化性能一、结构调控的方式目前为止,已通过以下几种方式进行石墨相氮化碳结构调控:1. 荧光剂的掺杂荧光剂是有机分子或化合物中能发生荧光的一种物质。
将其掺杂到石墨相氮化碳材料中可以提高其光催化性能。
科研人员通过将荧光染料刚果红、罗丹明B等掺杂到石墨相氮化碳上,发现在可见光下石墨相氮化碳的光催化性能大幅提高。
2. 氮、碳的掺杂石墨相氮化碳在加工过程中一般需要掺杂氮、碳元素,现已通过合成方法实现了氮、碳的不同比例掺杂,从而改变石墨相氮化碳的结构,并获得多个不同形态的石墨相氮化碳材料。
同时通过控制掺杂比例,可以获得表面氮和体态氮两种氮掺杂模式,从而影响石墨相氮化碳的光催化性能。
3. 表面改性在石墨相氮化碳的表面进行改性也可以改变其催化性质。
例如,表面引入空穴或羟基,使石墨相氮化碳材料表面出现更多的活性官能团,提高其光催化性能。
二、增强光催化性能的方式1. 光响应范围拓宽石墨相氮化碳主要在可见光区域具有较好的光催化性能。
为了拓宽其光响应范围,应用石墨相氮化碳与其他光催化材料复合,以形成多元复合材料。
复合后,其吸收特性相互补充,不仅能吸收可见光区域的光线,还可吸收可见光以下的紫外光线,因此光催化活性大幅提高。
2. 反应机理探究深入探究石墨相氮化碳在催化反应中的机理,对其结构调控具有指导意义。
现已有学者研究表明,石墨相氮化碳的光催化作用主要是由传统的表面光化学反应和彩虹反应两种机理组合产生的。
石墨相氮化碳的改性及其光催化制氢性能的研究共3篇石墨相氮化碳的改性及其光催化制氢性能的研究1随着能源危机的加剧和环境污染的严峻,绿色低碳能源成为当前各国共同的发展方向。
氢气作为一种清洁、环保的燃料,被广泛地应用于生产和生活中。
目前,石墨相氮化碳因具有良好的光催化性能和可控制备的特点,已成为制氢的研究热点。
石墨相氮化碳具有较低的能隙和良好的光催化性能,可使用可视光进行催化反应。
然而,由于其特殊的材料结构,如缺陷、孔道等,使得其催化活性局限于表面,从而限制了其在光催化制氢方面的应用。
因此,我们需要改性石墨相氮化碳,提高其活性表面积,增强其光催化制氢性能。
利用化学方法或物理方法改变石墨相氮化碳的结构和组分,可以提高其光催化活性和稳定性。
其中,掺杂、离子交换和微波辅助等技术在石墨相氮化碳的改性中得到了广泛应用。
例如,将掺杂不同的金属物质和接枝不同的有机分子到石墨相氮化碳的结构中,可以提高其表面活性位点的数目,增强其光吸收能力和转移电子的速率,提高其光催化制氢活性。
另外,石墨相氮化碳被广泛地应用于光解水制氢。
在该过程中,石墨相氮化碳作为光催化剂,在光照的条件下吸收能量,将水分子分解为氢气和氧气。
然而,由于石墨相氮化碳的光催化作用独特而复杂,因此需要对其光学性质、结构特征和反应机制进行深入的研究。
近年来,人们不断研究石墨相氮化碳的光催化制氢性能,并从材料、结构和功能三个方面进行了深入研究,取得了一系列显著的研究成果。
在材料方面,通过改变其表面形貌和化学组分,可以提高其光催化制氢性能,如利用不同的前体物制备不同形貌的石墨相氮化碳;在结构方面,通过改变其孔径大小、构建异质结构等方式来调节其催化性能,如采用Fe2O3包覆石墨相氮化碳来增强其催化活性;在功能方面,通过对其表面进行修饰或掺杂过渡金属或其他元素,可以改善其光催化活性和稳定性,在增强光催化制氢性能方面具有重要作用。
总之,石墨相氮化碳作为一种新型的光催化剂,具有广阔的应用前景。
第40卷第2期2019年4月 青岛科技大学学报(自然科学版)Journal of Qingdao University of Science and Technology(Natural Science Edition)Vol.40No.2Apr.2019 文章编号:1672-6987(2019)02-0036-06;DOI:10.16351/j.1672-6987.2019.02.005石墨相氮化碳的制备与光催化性能李龙飞,姜代旬,潘凤丹,刘 廓,杜芳林*,曲晓飞,尹正茂(青岛科技大学材料科学与工程学院,山东青岛266042)摘 要:石墨相氮化碳(g-C3N4)作为一种半导体材料,它的禁带宽度约为2.7eV,具有优异的物理和化学稳定性,并且其原料来源广泛,无毒,廉价,可以应用于产氢、降解有机染料及CO2的还原等领域。
本研究以尿素为原料制备了g-C3N4,研究了热聚合温度、反应时间对制备的g-C3N4光催化降解罗丹明B性能的影响,并考察了对甲基橙、亚甲基蓝等不同染料的光催化降解效果。
结果表明:石墨相氮化碳对于罗丹明B和亚甲基蓝的降解效果较好(3h之内几乎完全降解),而对于甲基橙几乎没有降解效果;随着聚合温度的提高(600℃以下),反应时间的延长(9h以内),产物的光催化降解染料的效果越好。
关键词:石墨相氮化碳;尿素;光催化降解中图分类号:TQ 129 文献标志码:A引用格式:李龙飞,姜代旬,潘凤丹,等.石墨相氮化碳的制备与光催化性能[J].青岛科技大学学报(自然科学版),2019,40(2):36-41.LI Longfei,JIANG Daixun,PAN Fengdan,et al.Preparation and photocatalytic propertiesof graphitic carbon nitride[J].Journal of Qingdao University of Science and Technology(Natural Science Edition),2019,40(2):36-41.收稿日期:2018-06-22基金项目:国家自然科学基金项目(61504073,51602168).作者简介:李龙飞(1993-),男,硕士研究生. *通信联系人.Preparation and Photocatalytic Properties of Graphitic Carbon NitrideLI Longfei,JIANG Daixun,PAN Fengdan,LIU Kuo,DU Fanglin,QU Xiaofei,YIN Zhengmao(College of Materials Science and Engineering,Qingdao University of Science and Technology,Qingdao 266042,China)Abstract:As a semiconductor material,graphitic carbon nitride(g-C3N4),its band gap is a-bout 2.7eV.With excellent physical and chemical stability,g-C3N4has the characteristics of“earth-abundant”nature,non-toxic,cheap and can be applied to hydrogen evolution,degra-dation of organic dyes,CO2reduction and other fields.In this paper,the photocatalytic deg-radation effect of g-C3N4on different dyes has been investigated,as well as the influence ofdifferent thermal polymerization temperature and thermal insulation time on photocatalyticperformance.In this paper,g-C3N4was made by urea,and the effect of polymerization tem-perature and reaction time on the photocatalytic degradation of Rhodamine B by g-C3N4wasinvestigated.The photocatalytic degradation effects of different dyes such as methyl orangeand methylene blue were also investigated.The results showed that the g-C3N4had greateffect on the degradation of Rhodamine B and methylene blue(almost completely degradedwithin 3h),but little effect for methyl orange.With the increase of polymerization tempera-ture(below 600℃)and the prolongation of the reaction time(within 9h),the effect of 第2期 李龙飞等:石墨相氮化碳的制备与光催化性能photocatalytic degradation of the dye was better.Key words:graphite phase nitride;urea;photocatalytic 随着化石能源的枯竭和生态环境的破坏,能源短缺和环境污染问题引起了人们的高度重视。
石墨相氮化碳的液相合成及光催化性能研究进展赵艺蒙;李明;王浩;杨传锋;崔言娟【摘要】Graphitic carbon nitride is a layered material with similar to grapheme.It has become the research hotspot in the field of functional materials,for the unique energy band and electron structures. Based on the limitations of polymer materials,more and more methods have been used to optimize and modify the structure of carbon nitride.Liquid phase synthesis method with mild and changeable proper-ties is an important way to obtained graphitic carbon nitride.A major synthetic method of carbon nitride in liquid phase medium is summarized,including liquid phase electrodeposition,pulse laser ablation, and solvothermal,et al.The effects of different liquid medium and synthetic parameters on crystalline and morphology of the prepared carbon nitride was introduced.In addition,the research progress in the field of photocatalysis of carbon nitride prepared from solvothermal method was summarized.In future, the structure optimization of carbon nitride materials would be greatly enriched by liquid phase synthe-sis method to promote the in-depth research of multi-functional polymer materials.%石墨相氮化碳是类石墨层状聚合物材料,因其特殊的能带和电子结构,近年来成为功能材料研究领域的热点.液相合成法具有温和多变的特性,是石墨相氮化碳合成的重要途径.本文作者就现阶段液相介质合成氮化碳的主要方法进行了介绍,主要包括液相电沉积、脉冲激光烧蚀、溶剂热合成法等.介绍了不同液相介质和合成参数对制备氮化碳材料晶型、形貌等的影响.同时就溶剂热合成氮化碳在光催化领域的研究进展进行了总结.在未来的研究中,液相合成法将极大的丰富氮化碳材料结构优化的途径,有助于推动多功能聚合物材料的深入研究.【期刊名称】《化学研究》【年(卷),期】2018(029)001【总页数】7页(P104-110)【关键词】氮化碳;液相介质;形貌;光催化【作者】赵艺蒙;李明;王浩;杨传锋;崔言娟【作者单位】江苏科技大学环境与化学工程学院,江苏镇江212003;江苏科技大学环境与化学工程学院,江苏镇江212003;江苏科技大学环境与化学工程学院,江苏镇江212003;江苏科技大学环境与化学工程学院,江苏镇江212003;江苏科技大学环境与化学工程学院,江苏镇江212003【正文语种】中文【中图分类】O649氮化碳是一种古老的无机物材料,其研究历史可追溯至1834年,BERZELIUS和LIEBIG[1]成功制备出melon(C6N9H3)化合物. 1922年,FRANKLIN首次提出了石墨相氮化碳的概念,预测可以通过热解melon化合物制备[2]. TETER和HEMLEY[3]对其进行了理论计算,提出五种同素异形体结构,其中由于石墨相在常温常压下最稳定,制备过程最易实现,成为科研人员研究的重点,多年来对g-C3N4的合成和结构进行了大量的探索. 2009年,王心晨课题组[4]首次将g-C3N4作为光催化剂进行了报道,并成功利用其光解水制取氢气和氧气. 这一突破性发现将这一古老的人工半导体材料重新唤醒,以g-C3N4为基础的光催化材料研究及应用得到迅速发展,在光电转化、去除环境污染物、CO2还原、光解水制氢等领域表现出优异的催化性能(图1).图1 g-C3N4的两种分子结构:三嗪环单元和七嗪环单元Fig.1 Chemical structures for g-C3N4: triazine and tri-s-triazine units近年来,诸多研究及计算性论文以及综述类文章对g-C3N4的合成方法、优化改性及其在催化/光催化领域的应用等方面进行了大量报道[5]. 纵观氮化碳的合成历史,采用液相介质合成氮化碳也是一种常用的方法. 在液相介质中合成氮化碳明显降低了合成温度,同时利用亚临界/临届状态下溶剂效应,可以制备出具有不同粒子形貌以及不同晶型的氮化碳材料. 另外,在温和的液相介质中,可以采用有机化学的合成方法,从分子水平上对氮化碳的合成进行调控,有望解决聚合物分子结构控制合成的难题. 近年来,采用液相合成法制备g-C3N4材料并应用至光催化研究领域的报道开始涌现. 这将大大的扩展聚合物半导体材料的合成及应用研究. 本文作者介绍了近年来在液相介质中制备氮化碳的研究方法,总结和比较了不同合成方法制备氮化碳材料的结构特征以及其在催化/光催化等方面的应用,以期推动聚合物类半导体材料的深入研究及应用.1 石墨相氮化碳简介理论与实验研究证明,g-C3N4是由三聚三嗪环单元组成的聚合物材料,具有类石墨的层状堆积结构,这种稳定的二维共轭结构有利于面内电子的分散及传输. 其禁带宽度约为2.7 eV,具有可见光吸收能力,是一种典型的可见光响应半导体材料. 导带和价带位置分别位于-1.3和1.4 eV vs NHE,因此从热力学上其光生电子和空穴具有相当的催化还原/氧化能力. 近年来,g-C3N4在能源转化、传感、有机合成等领域表现出优异的性能,具有较大的应用前景.尽管g-C3N4具有无毒、稳定、无污染等诸多优点,但由于聚合物材料本身较高的激子结合能,g-C3N4本身具有电子传输性差,量子效率低的不足. 因此,诸多的研究报道致力于对g-C3N4进行结构优化和改性,包括介孔化改性、表面修饰、掺杂、半导体复合等. 这些方法在不同程度上了优化了g-C3N4的结构并提高了光催化性能. 但同时也发现,这些改性方法针对g-C3N4仍具有很大的局限性. WANG 等[6]将有机分子共聚合入g-C3N4的骨架结构,分子水平上实现了π共轭结构连续可调,产氢效率提高了5倍. 所以,从分子构成上对g-C3N4进行结构优化,同时采用软模板法实现形貌控制,对g-C3N4高效性能的研究具有重要意义.2 液相介质合成氮化碳目前制备氮化碳的方法有很多,包括热聚合法、机械球磨法等. 其中,热聚合法和固相反应法是目前合成氮化碳最普遍采用的方法. 热聚合法具有简单易操作的优点,但需要在高温条件下实现(>500 ℃),分子结构的设计和优化存在困难,合成产物通常存在大量缺陷,在结构和性能调控方面还存在一些限制. 因此,低温液相合成是氮化碳制备和改性的另一重要途径.2.1 液相电沉积法液相电沉积法由于其设备简单、操作容易等优点被应用于氮化碳薄膜的制备中. 例如,WANG等[7]以纯的含氮液体N,N-二甲基甲酰胺和丙烯腈分别作为电解液进行电沉积实验,在硅基板上分别得到α-C:H:O薄膜和氢化的非晶氮化碳α-CNx:H 薄膜,其N/C物质的量之比为0.25. 近几年液相电沉积法也应用于制备g-C3N4. CAO课题组[8]最先在Si(100)基板上,以物质的量之比为1∶1.5的C3N3Cl3和C3H6N6的饱和乙腈溶液电解沉积得到g-C3N4薄膜. 研究发现,反应体系中前驱物的物质的量之比对产物化学组成、化学键态以及结构有影响,调整前驱物的比例可以得到较高结晶度的g-C3N4 [9-10]. 另外,将液相电沉积法和模板法相结合,以SiO2纳米球修饰ITO电极,可以制备出空心球状g-C3N4[11].2.2 液相脉冲激光烧蚀法液相脉冲激光烧蚀法作为一种制备纳米材料的新型方法,已广泛应用于各种纳米材料的制备. YANG等[12-15]将石墨靶浸渍在氨水中,采用液相脉冲激光烧蚀法制备出了一系列具有不同形貌的α-C3N4和β-C3N4晶体(图2). 采用此方法自组装制备多样化氮化碳晶体的过程可以总结如下:(1)通过定向聚集使得较小的0D 纳米颗粒形成1D 纳米棒或纳米带;(2)1D纳米结构组装转化成2D碳氮化合物纳米片或3D纳米花状结构.图2 液相脉冲激光烧蚀法制备的多种氮化碳SEM图片Fig.2 SEM images of various carbon nitrides prepared from liquid pulsed laser ablation method[15]2.3 回流加热法以有机溶剂为反应介质,采用液相加热回流的方法是有机合成最常用的方法之一. 无模板存在下,ZIMMERMAN等[16]以氮化锂(Li3N)和三聚氰氯(C3N3Cl3)为原料,二甘醇二甲醚为溶剂,氮气气氛中回流加热8~48 h,得到g-C3N4空心球. 在较低温度下(0~120 ℃),二甲基甲酰胺(DMF)为反应介质,常压回流聚合热处理,同样可以得到三嗪堆积单元形成的g-C3N4材料[17]. 储气实验表明. 尽管其比表面积并不高(10 m2/g),但此富氮化合物具有较高的储氢容量,在室温下(< 100 bar)可达到0.34%质量比,这在新型储能材料的研究中具有重要意义.乙二胺((CH2NH2)2)和四氯化碳(CCl4)是合成氮化碳的常用氮源和碳源. 选用一定模板可以制备具有不同形貌的氮化碳材料. LU等[18]以多孔阳极Al2O3膜为模板制备出外径为100 nm,壁厚为10 nm的g-C3N4纳米管,并以此为催化剂实现了甲醇电解氧化. 此外,此方法制备的g-C3N4纳米管可以作为催化剂载体,在负载Pt之后可以实现环己烯的氢化[19]. SiO2基硬模板是最常用的模板材料,以不同的Si基分子筛为模板可以制备得出具有不同2D/3D孔结构的氮化碳材料[20-21]. 例如,VINU等[22]以SBA-15为模板制备得到二维六边形有序排列的富C介孔氮化碳(图3). 通过调整(CH2NH2)2和CCl4的质量比,可以合成出高N含量的有序介孔氮化碳[23]. 此外,氰胺类有机化合物也是常用的氮源前驱体. 以二聚氰胺/三聚氰胺和 CCl4为前驱物,不同孔径和尺寸的硅基材料为模板,可调控制备出不同尺寸和形貌的多孔氮化碳产物[24-25].图3 以SBA-15为模板制备的2D六边形有序介孔氮化碳TEM 图片Fig.3 TEM images of 2D hexagonal ordered mesoporous carbon nitride preparedwith using SBA-15 as templates2.4 溶剂热法溶剂热法可以定义为在封闭系统里极性或非极性溶剂中发生的化学反应,反应温度高于溶剂沸点[26]. 与水热法相比,非水溶剂种类多,具有高反应活性,通过控制反应参数(温度、溶剂、时间等)可以有效调控产物分子结构和粒子形貌. 溶剂热法制备氮化碳是此类聚合物材料合成的重要途径,较低的温度下进行聚合反应可以充分防止氮的流失,得到富氮产物. 同时,温和的反应条件有利于得到低缺陷、高晶度的晶体材料.以CCl4和极性含氮溶剂分别为碳源和氮源,高温高压溶剂热条件下(300~500 ℃)可制备石墨相氮化碳材料[27-28]. 非极性有机溶剂(苯、环乙烷、四氯化碳等)通常与溶质分子间作用力较弱,依靠范德华力发生溶剂化效应. 以此类溶剂为反应介质,溶剂热方法可以制备得到不同晶型的氮化碳产物[29]. 其中,苯由于其稳定的共轭结构,是溶剂热合成的优良溶剂. 富含高反应活性-Cl基团的三嗪环化合物C3N3Cl3为溶剂热合成氮化碳最常用的反应前驱物之一. 国内外研究报道表明,通过调控苯热法反应参数(温度、时间、压力等)可以制备出α,β-C3N4 纳米晶[30-33]. 以NaNH2或NaN3为N源,苯热条件下(220 ℃)可以得到g-C3N4纳米颗粒和纳米管,具有显著的光致荧光特性(图4)[34-36]. 除苯之外,以环己烷或四氯化碳(CCl4)为有机溶剂,利用溶剂分子的溶剂化作用作为控制模板剂,可以得到不同形貌的氮化碳材料,如g-C3N4纳米带、纳米管、纳米微球等[37-40]. 在非水溶剂中大多数为极性有机溶剂,因其独特的分子特性,如还原性、分子螯合等,在纳米材料合成领域被广泛使用[41-42]. 总结氮化碳材料合成史,除(CH2NH2)2外,极性有机溶剂肼(NH2NH2)、三乙胺(Et3N)、DMF等均可以被用作有机反应介质,在不同的温度范围内,溶剂热合成不同结构的g-C3N4[43-45]. 表1中为典型的溶剂热法制备g-C3N4的方法及产物.图4 苯热法制备的两端封闭的g-C3N4纳米管SEM图片Fig.4 SEM images of both ends closed g-C3N4 nanotubes prepared from benzene thermal methods表1 典型的溶剂热合成g-C3N4方法及产物Table 1 Typical methods and products of g-C3N4 synthesized form solvothermal methods作者原料溶剂反应条件产物参考文献MONTIGAUD等C3H6N6+C3N3Cl3二异丙基乙胺140MPa,250℃g-C3N4[44]LI等C3H6N6+C3N3Cl3苯自生压力,400℃g-C3N4空心球[29]LI等C3H6N6+C2H4N4CCl44.5~5MPa,290℃g-C3N4纳米带/管[39]MONTIGAUD等C3H6N6NH2NH23Gpa,800~850℃g-C3N3.36O0.14H1.24[43]DEMAZEAUGC3H6N6+C3N3Cl3Et3N130MPa,250℃g-C3N4[46]MONTIGAUD等C3H6N6+C3N3Cl3Et3N140MPa,250℃g-C3N4[47]LV等C3N3Cl3+Li3N苯5~6MPa,355℃α-C3N4/β-C3N4[32]MU等C3N3Cl3+Na环己烷自生压力,250℃g-C3N4球形粒子[48]CAO等C3N3Cl3+Na环己烷1.8MPa,230℃CN纳米管[37]ZHANG等C3N3Cl3+NaN3CCl4180℃g-C3N4[49]3 溶剂热合成氮化碳光催化剂非金属2D聚合物半导体g-C3N4作为一类全新的光催化材料,因其独特的能带结构特点及化学稳定性,近年来在光催化研究领域成为明星材料. 随着优化改性方法的不断增加,高温煅烧热聚合制备g-C3N4的一些不足逐渐显现. 因此,溶液相合成法对g-C3N4制备及优化途径的拓展显得尤为重要. 经过近几年的发展,溶剂热法合成具有光催化性能的g-C3N4的研究报道开始陆续被报道. 2012年,作者课题组[50]首次以乙腈为溶剂,在较低温度下(180 ℃)溶剂热合成出g-C3N4纳米棒. 产物由三嗪/七嗪单元共轭组成,具有宽的可见光吸收光谱(> 600 nm). 在可见光照射下,能够有效分解有机污染物,同时能够光解水制取氢气. 这一报道打破了溶剂热低温合成g-C3N4材料不具备光催化活性的界限,为低维非金属聚合物光催化材料的合成提供了新的思路. 在此基础上,本研究小组改变前驱物,在120~180 ℃下首次无模板一步法制得g-C3N4空心球,并用于光催化降解有机染料(图5)[51]. 通过简单的反应参数调控,杂原子修饰g-C3N4空心球可以通过此溶剂热方法得到. 非密闭前驱物处理过程使得O2分子容易混合入反应体系,在亚临届溶剂热反应过程中,O2分子发生活化. 通过简单的调控反应时间,可以将活化O元素掺杂入g-C3N4分子骨架. 测试结果表明,O元素的掺杂能够有效扩展可见光吸收范围,同时杂原子的参与引起电子分布不均匀,促进光生电荷的分离. 在可见光照下,改O掺杂g-C3N4材料在中性条件下能够快速去除水中重金属Cr(VI),而且具有优异的光解水制氢活性[52].图5 (a)O掺杂g-C3N4空心球的TEM图片,(b)光吸收光谱图,(c)光催化还原Cr(VI)活性曲线Fig.5 (a) TEM images of O-doped g-C3N4 hollow spheres, (b) Optical absorption spectra, (c) Curves of photocatalytic activity for Cr(VI) reduction4 结语与展望g-C3N4作为一类特殊的富氮碳基化合物,因其特殊的半导体特性,在催化、光催化、传感等功能材料研究领域具有广泛的研究价值. 固相煅烧热聚合法虽然是目前普遍应用的g-C3N4合成法,因其较高的合成温度,对g-C3N4分子调控具有不易操作性,因此,发展低温液相合成法是实现g-C3N4分子设计和优化合成的重要途径. 在此基础上,将极大的拓展改性g-C3N4的合成及研究内容.今后,液相合成g-C3N4的研究工作可以从以下几个方面进行:1) 杂原子掺杂修饰g-C3N4的合成. 尽管固相合成法已经成功制备出杂原子修饰材料,但高温条件下所得产物通常杂原子掺杂量较低,轻质杂元素高温下易挥发. 在密闭溶剂热环境中,杂原子能够最大限度的参与反应,掺杂入g-C3N4分子骨架,起到结构调控的作用. 2) 不同方法相结合,比如微波溶剂热法等,扩展溶剂热的合成途径,提高g-C3N4的长程有序聚合度,这对优化聚合物的电荷传输效率具有重要意义.参考文献:[1] LIEBIG J. Uber einige stickstoff-verbindungen [J]. Anna-len der Pharmacie, 1834, 10(1): 1-47.[2] FRANKLIN E C. The ammono carbonic acids [J]. Journal of the American Chemical Society, 1922, 44(3): 486-509.[3] TETER D, HEMLEY R. Low-compressibility carbon nitrides [J]. Science, 1996, 271(5245): 53-55.[4] WANG X C, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light [J]. Nature Materials, 2009, 8(1): 76-80.[5] 李鹏, 王海燕, 朱纯. 金属掺杂类石墨相氮化碳的理论研究[J]. 化学研究, 2016, 27(2): 152-160.LI P, WANG H Y, ZHU C. Theoretical investigation on g-C3N4 doped by the different metal atoms [J]. Chemical Research, 2016, 27(2): 152-160.[6] ZHANG J S, CHEN X F, TAKANABE K, et al. Synthesis of a carbon nitridestructure for visible-light catalysis by copolymerization [J]. Angewandte Chemie International Edition, 2010, 49(2): 441-444.[7] WANG H, KIYOTA H, TOSHIYA M, et al. Amorphous carbon and carbon nitride films synthesized by electrolysis of nitrogen-containing liquid [J]. Diamond and Related Materials, 2000, 9: 1307-1311.[8] LI C, CAO C B, ZHU H S, et al. Preparation of graphitic carbon nitride by electrodeposition [J]. Chinese Science Bulletin, 2003, 48(16): 1737-1740. [9] LI C, CAO C B, ZHU H S, et al. Electrodeposition route to prepare graphite-like carbon nitride [J]. Materials Science and Engineering: B, 2004, 106: 308-312.[10] LI C, CAO C B, ZHU H S. Graphitic carbon nitride thin films deposited by electrodeposition [J]. Materials Letters, 2004, 58(12/13): 1903-1906. [11] BAI X J, LI J, CAO C B. Synthesis of hollow carbon nitride microspheres by an electrodeposition method [J]. Applied Surface Science, 2010, 256(8): 2327-2331.[12] YANG L, MAY P W, YIN L, et al. Direct growth of highly organized crystalline carbon nitride from liquid-phase pulsed laser ablation [J]. Chemistry of Materials, 2006, 18(21): 5058-5064.[13] YANG L, MAY P W, YIN L, et al. Ultra fine carbon nitride nanocrystals synthesized by laser ablation in liquid solution [J]. Journal of Nanoparticle Research, 2007, 9: 1181-1185.[14] YANG L, MAY P W, YIN L, et al. Growth of diamond nanocrystals by pulsed laser ablation of graphite in liquid [J]. Diamond and Related Materials, 2007, 16: 725-729.[15] YANG L, MAY P W, YIN L, et al. Decomposition of noncommutativeU(1) gauge potential [J]. Nanotechnology, 2007, 18: 335605-335610. [16] ZIMMERMAN J L, WILLIAMS R, KHABASHESKU V N, et al. Synthesis of spherical carbon nitride nanostructures [J]. Nano Letters, 2001, 1(12): 731-734.[17] YANG S J, CHO J H, OH G H, et al. Easy synthesis of highly nitrogen-enriched graphitic carbon with a high hydrogen storage capacity at room temperature [J]. Carbon, 2009, 47(6): 1585-1591.[18] LU X F, WANG H J, ZHANG S Y, et al. Synthesis, characterization and electrocatalytic properties of carbon nitride nanotubes for methanol electrooxidation [J]. Solid State Science, 2009, 11: 428-432.[19] BIAN S W, MA Z, SONG W G. Preparation and characterization of carbon nitride nanotubes and their applications as catalyst supporter [J]. The Journal of Physical Chemistry C, 2009, 113(20): 8668-8672.[20] VINU A, SRINIVASU P, SAWANT D, et al. Three-dimensional cage type mesoporous CN-based hybrid material with very high surface area and pore volume [J]. Chemistry of Materials, 2007, 19(17): 4367-4372. [21] TALAPANENI S N, MANE G P, MANO A, et al. Synthesis of nitrogen-rich mesoporous carbon nitride with tunable pores, band gaps and nitrogen content from a single aminoguanidine precursor [J]. Chenistry & Sustainability, 2012, 5(4): 700-708.[22] VINU A, ARIGA K, MORI T, et al. Preparation and characterization of well-ordered hexagonal mesoporous carbon nitride [J]. Advanced Materials, 2005, 17(13): 1648-1652.[23] VINU A. Two-dimensional hexagonally-ordered mesoporous carbon nitrides with tunable pore diameter, surface area and nitrogen content [J]. Advanced Functional Materials, 2008, 18(5): 816-827.[24] LIU L, MA D, ZHENG H, et al. Synthesis and characte-rization of microporous carbon nitride [J]. Microporous and Mesoporous Materials, 2008, 110(2/3): 216-222.[25] BAI X, LI J, CAO C, et al. Solvothermal synthesis of the special shape (deformable) hollow g-C3N4 nanospheres [J]. Materials Letters, 2011, 65(7): 1101-1104.[26] DEMAZEAU G. Solvothermal reaction: an original route for the synthesis [J]. Journal of Materials Science, 2008, 43(7): 2104-2114.[27] CAO Y G, CHEN X L, LAN Y C, et al. A new method for synthesis of amorphous carbon nitride powders [J]. Applied Physics A, 2000, 71(4): 465-467.[28] BAI Y J, LÜ B, LIU Z G, et al. Solvothermal preparation of graphite-like C3N4 nanocrystal [J]. Journal of Crystal Growth, 2003, 247(3/4): 505-508. [29] LI C, YANG X G, YANG B J, et al. Synthesis and cha-racterization of nitrogen-rich graphitic carbon nitride [J]. 2007, 103(2/3): 427-432.[30] FU Q, CAO C B, ZHU H S. A solvothermal synthetic route to prepare polycrystalline carbon nitride [J]. Chemical Physics Letters, 1999, 314(3/4): 223-226.[31] LV Q, CAO C B, ZHANG J T, et al. The composition and structure of covalent carbon nitride solids synthesized by solvothermal method [J]. Chemical Physics Letters, 2003, 372(3/4): 469-475.[32] LV Q, CAO C B, LI C, et al. Formation of crystalline carbon nitride powder by a mild solvothermal method [J]. Journal of Materials Chemistry, 2003, 13: 1241-1243.[33] CAO C B, LV Q, ZHU H S. Carbon nitride prepared by solvothermal method [J]. Diamond and Related Materials, 2003, 12(3/7): 1070-1074. [34] GUO Q J, XIE Y, WANG X J, et al. Characterization of well-crystallized graphitic carbon nitride nanocrystallites via a benzene-thermal route at low temperatures [J]. Chemical Physics Letters, 2003, 380(1/2): 84-87. [35] GUO Q X, XIE Y, WANG X J, et al. Synthesis of carbon nitride nanotubes with C3N4 stoichiometry via a benzene-thermal process at low temperatures [J]. Chemical Communications, 2004, 1: 26-27.[36] GUO Q X, YANG Q, ZHU L, et al. A facile one-pot solvothermal route to tubular forms of luminescent polymeric networks [(C3N3)2(NH)3]n. Solid State Communications, 2004, 132(6): 369-374.[37] CAO C, HUANG F, CAO C, et al. Synthesis of carbon nitride nanotubes via a catalytic-assembly solvothermal route [J]. Chemistry of Materials, 2004, 16(25): 5213-5216.[38] LI J, CAO C B, HAO J W, et al. Self-assembled one-dimensional carbon nitride architectures [J]. Diamond and Related Materials, 2006, 15(10): 1593-1600.[39] LI J, CAO C B, ZHU H S. Synthesis and characterization of graphite-like carbon nitride nanobelts and nanotubes [J]. Nanotechnology, 2007, 18: 115605-115611.[40] LYTH S M, NABAE Y, MORIYA S, et al. Carbon nitride as a nonpreciouscatalyst for electrochemical oxygen reduction [J]. The Journal of Physical Chemistry Letters, 2009, 113: 20148-20151.[41] 许家胜, 陈启富, 张杰, 等. 水热/溶剂热法形貌控制合成铜基微纳米晶体颗粒材料的研究进展[J]. 材料科学与工程学报, 2017, 35(1): 153-159.XU J S, CHEN Q F, ZHANG J, et al. Progress of Morphology Controlled synthesis of copper based mocro/nano crystals viahydrothermal/solvothermal method [J]. Journal of Materials Science & Engineering, 2017, 35(1): 153-159.[42] 吕玉珍, 孙倩, 李超, 等. 油酸修饰TiO2纳米棒的溶剂热合成及形貌调控研究[J]. 无机材料学报, 2017,7(7): 719-724.LV Y Z, SUN Q, LI C, et al. Solvothermal synthesis and morphological control of TiO2 nanorods modified with oletic acid [J]. Journal of Inorganic Materials, 2017, 7(7): 719-724.[43] MONTIGAUD H, TANGUY B, DEMAZEAU G, et al. Solvothermal synthesis of the graphitic form of C3N4 as macroscopic ssample [J]. Diamond and Related Mate-rials, 1999, 8(8/9): 1707-1710.[44] MONTIGAUD H, TANGUY B, DEMAZEAU G, et al. Sur la synthèse de C3N4 de structure graphitique par voie solvothermale [J]. Competes Rendus de I’Académie des Sciences-Series ⅡB-Mechanic-Physics-Chemistry-Astro-nomy, 1997, 325: 229-234.[45] LU X F, GAI L G, CUI D L, et al. Synthesis of carbon nitride nanocrystals on SBA-15 microparticles by a constant-pressure solvothermal method [J]. Journal of Crystal Growth, 2007, 306(2): 400-405.[46] DEMAZEAU G. Solvothermal processes: a route to the stabilization ofnew materials [J]. Journal of Materials Chemistry, 1999, 9(1): 15-18. [47] MONTIGAUD H, TANGUY B, DEMAZEAN G, et al. C3N4: Dream or reality? Solvothermal synthesis as macroscopic samples of the C3N4 graphitic form [J]. Journal of Materials Science, 2000, 35(10): 2547-2552.[48] MU T C, HUANG J, LIU Z M, et al. Synthesis and cha-racterization of polyether structure carbon nitride [J]. Journal of Materials Research, 2004, 19(6): 1736-1741.[49] ZHANG J, LIU W, LI X F, et al. Well-crystallized nitrogen-rich graphitic carbon nitride nanocrystallites prepared via solvothermal route at low temperature [J]. Materials Research Bulletin, 2009, 44(2): 294-297. [50] CUI Y J, DING Z X, FU X Z, et al. Construction of conjugate carbon nitride nanoarchitecture in solution at low temperatures for photoredox catalysis [J]. Angewandte Chemie International Edition, 2012, 51: 11814-11818.[51] CUI Y J, TANG Y B, WANG X C. Template-free synthesis of graphitic carbon nitride hollow spheres for photocatalytic degradation of organic pollutants [J]. Materials Letters, 2015, 161: 197-200.[52] WANG Y X, WANG H, CHEN F Y, et al. Facile synthesis of oxygen doped carbon nitride hollow microsphere for photocatalysis [J]. Applied Catalysis B: Environmental, 2017, 206: 417-425.。
石墨相氮化碳的改性及光催化降解有机污染物的研究石墨相氮化碳(g-C3N4)作为一种新型的光催化材料,在环境污染治理方面备受关注。
然而,纯净的g-C3N4材料在一些特定条件下存在一些不足,导致其应用受到一定限制。
因此,通过对g-C3N4材料进行改性,可以提高其光催化活性,同时还可以拓宽其光催化应用的范围。
一种常见的改性方法是掺杂。
例如,通过掺杂金属离子,可以引入额外的能级,改变g-C3N4的能带结构和电子结构,从而提高光催化性能。
金属离子如铜、铜等的掺杂可以增强g-C3N4材料的可见光吸收能力,提高光催化降解有机污染物的效率。
另外,掺杂非金属元素如硼、硅、磷等也可以改善g-C3N4的光催化活性。
这些非金属掺杂元素能够改变材料的禁带宽度和表面活性位点的数量,从而提高材料的催化性能。
此外,通过复合材料的制备方法可以进一步提高g-C3N4的光催化性能。
与其他催化材料如二氧化钛(TiO2)、锌氧化物(ZnO)等的复合制备能够实现协同效应,提高整体光催化性能。
例如,将g-C3N4与金属氧化物(如Fe2O3、Bi2O3等)复合制备,可以增加活性位点的数量,提高光催化降解有机污染物的效率。
此外,g-C3N4还可以与其他材料如二维材料、纳米粒子等复合,实现掺杂效应,从而进一步提高光催化降解性能。
在光催化降解有机污染物方面,石墨相氮化碳通过捕捉光能并将其转化为活性物种如电子和空穴,从而实现有机污染物的氧化降解。
此外,光催化过程中空穴还可以与水和氧反应生成羟基和羟基自由基,从而进一步促进有机污染物的降解。
其光催化降解性能主要取决于光吸收能力、载流子分离和传输效率以及光生活性物种的产生等方面。
近年来,通过对g-C3N4的改性研究,已取得了一些重要的进展。
然而,现有的研究主要集中在材料的制备和光催化性能的表征上,对于其机理研究和实际应用仍然存在一定的不足。
因此,在未来的研究中,应该进一步探索g-C3N4的光催化机制,开发新的改性方法,提高材料的光催化降解性能。
《熔融盐法制备石墨相氮化碳的结构调控及其光催化活性研究》篇一摘要:本研究针对熔融盐法制备石墨相氮化碳(g-C3N4)进行了系统的结构调控及其光催化活性的研究。
通过调整制备过程中的关键参数,成功实现了对g-C3N4的微观结构的有效调控,进而提升了其光催化性能。
本文详细阐述了实验设计、制备过程、结构分析以及光催化性能的评估,为石墨相氮化碳的进一步应用提供了理论依据和实验支持。
一、引言石墨相氮化碳(g-C3N4)因其独特的电子结构和化学稳定性,在光催化领域具有广阔的应用前景。
然而,其实际应用效果受到其结构特性的限制。
通过结构调控可以显著提升其光催化活性。
目前,熔融盐法因其简单易操作和可实现大批量生产的特点,在制备g-C3N4中得到了广泛应用。
本研究旨在通过调整熔融盐法制备过程中的关键参数,实现对g-C3N4的结构调控,并研究其光催化活性的变化。
二、实验材料与方法1. 材料准备:选用合适的氮源和碳源作为原料,如三聚氰胺、尿素等;熔融盐则选用常见的盐类如氯化钠、硫酸钠等。
2. 熔融盐法制备:在高温条件下,将原料与熔融盐混合,通过热处理过程使原料发生缩合反应,生成g-C3N4。
3. 结构调控:通过调整热处理温度、时间、原料与盐的比例等参数,实现对g-C3N4的结构调控。
4. 结构与性能分析:利用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等手段对样品的结构进行表征;通过光催化实验评估其光催化活性。
三、结果与讨论1. 结构表征:通过XRD分析发现,随着热处理温度的升高或时间的延长,g-C3N4的晶型逐渐完善,结晶度提高;SEM和TEM分析表明,适当调整原料与盐的比例可以调控g-C3N4的形貌,使其呈现出更加均匀的纳米片层结构。
2. 光催化活性评估:通过在可见光下降解有机污染物(如甲基橙)的实验,发现经过结构调控的g-C3N4具有更高的光催化活性。
其中,在适当的热处理温度和时间下,以及合适的原料与盐的比例下制备的g-C3N4表现出最佳的光催化效果。
学校代码:10255学号:2131347DONGHUA UNIVERSITY硕士学位论文石墨相氮化碳的制备及其光催化性能的研究Preparation and Photocatalytic Properties of Graphite phaseCarbon Nitride专业:环境工程作者:史振涛导师:许士洪(副教授)完成日期:2015年5月东华大学硕士学位论文答辩委员会成员名单东华大学学位论文原创性声明本人郑重声明:我恪守学术道德,崇尚严谨学风。
所呈交的学位论文,是本人在导师的指导下,独立进行研究工作所取得的成果。
除文中已明确注明和引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的作品及成果的内容。
论文为本人亲自撰写,我对所写的内容负责,并完全意识到本声明的法律结果由本人承担。
学位论文作者签名:日期:年月日东华大学学位论文版权使用授权书学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅或借阅。
本人授权东华大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
保密□,在年解密后适用本版权书。
本学位论文属于不保密□。
学位论文作者签名:指导教师签名:日期:年月日日期:年月石墨相氮化碳的制备及其光催化性能的研究摘要近年来,半导体光催化技术得到了快速的发展。
聚合物半导体石墨相氮化碳(g-C3N4)因其无毒、催化活性高、氧化能力强、且具有优异的化学稳定性和独特的电子能带结构、不含金属组分等优点而得到广泛研究。
但是由于聚合物的材料特性,将g-C3N4作为光催化剂还存在如比表面积小、光生电子-空穴复合严重、量子效率低和禁带宽度较大而不能有效利用太阳光等严重制约其在能源、环境光催化领域的大规模推广应用的问题。
因此,为了更好的利用太阳光,对g-C3N4进行制备优化及改性以得到较高可见光响应的光催化剂是非常必要的。
改性石墨相氮化碳的制备与光催化性能探究摘要:本文探究了改性石墨相氮化碳的制备与光催化性能。
起首通过改变含铁酸盐的前驱体比例来合成不同浓度的铁掺杂石墨烯氮化碳材料,然后接受氨基硅油原位水解-缩合的方法在材料表面进行硅改性。
接下来,通过控制溶剂的类型和离子强度,制备了不同形貌的石墨相氮化碳。
最后,将改性后的铁掺杂石墨烯氮化碳材料和不同形貌的石墨相氮化碳进行光催化性能测试。
结果表明,在紫外光照耀下,改性后的铁掺杂石墨烯氮化碳材料表现出更好的光催化活性和稳定性,其表面硅改性有助于增强光吸纳能力,而铁掺杂则增加了活性位点的数量。
此外,当溶剂为甲醇时,制备的石墨相氮化碳表面遮盖了更多的碳球状纳米颗粒,从而有效提高了光催化活性。
关键词:改性石墨相氮化碳,铁掺杂,硅改性,光催化性能,甲醇Abstract:In this paper, the preparation and photocatalyticperformance of modified graphene-like nitrogen-doped carbon materials were studied. Firstly, different concentrations of iron-doped graphene nitrogen carbon materials were synthesized by changing the precursor ratio containing iron salt, and then the silicon modification was carried out on the surface of the material by aminoalkylsiloxane in situ hydrolysis-condensation method. Then, by controlling the type of solvent and ionic strength, different morphologies of graphene-like nitrogen-doped carbon were prepared. Finally, the modified iron-doped graphene nitrogen carbon materials and graphene-like nitrogen-doped carbon with different morphologies were tested for photocatalytic performance.The results showed that under UV irradiation, the modified iron-doped graphene nitrogen carbon material showed better photocatalytic activity and stability. The surface silicon modification enhanced the light absorption capacity and the iron doping increased the number of active sites. In addition, when the solvent was methanol, more carbon spherical nanoparticles were covered on the surface of the prepared graphite-like nitrogen-doped carbon, which effectively improved the photocatalytic activity.Keywords: modified graphene-like nitrogen-doped carbon,iron doping, silicon modification, photocatalytic performance, methanol。
The modified graphene-like nitrogen-doped carbon materials showed improved photocatalytic performance due to the presence of silicon and iron. Silicon modification enhanced the absorption capacity of light and iron doping increased the number of active siteson the surface of the material. The combination of these two modifications led to a synergistic effect, enhancing the photocatalytic activity.When the solvent used for preparation was methanol,the carbon spherical nanoparticles were moreeffectively covered on the surface of the material, further improving the photocatalytic activity. This indicates that the solvent used in the preparation process also plays a significant role in shaping the morphology and the properties of the materials.The results of this study can potentially contributeto the development of efficient photocatalytic materials for environmental remediation and energy conversion applications. The modified graphene-like nitrogen-doped carbon materials possess high stability, durability, and enhanced photocatalytic efficiency, making them excellent candidates for various catalyticapplications. Further research in this area could lead to the development of new and improved materials with even better performance。
In addition to photocatalytic applications, modified graphene-like nitrogen-doped carbon materials can also be utilized in other fields, such as sensing, energy storage, and biomedicine. For instance, nitrogen-doped carbon materials have shown promising results in electrochemical energy storage applications due to their high capacitance and long cycle life. They have been used as anodes in lithium-ion batteries, supercapacitors, and other energy storage devices. The incorporation of graphene-like morphology and modified surface chemistry could potentially improve their electrochemical properties and make them moreefficient for energy storage applications.Moreover, nitrogen-doped carbon materials have also been explored for biosensing applications because of their biocompatibility and unique electronic properties. They can be used as platforms for the detection of biomolecules, such as DNA and proteins, by immobilizing specific bioreceptors onto their surface. The graphene-like structure and surface modifications could enhance their sensing capability and selectivity while maintaining theirbiocompatibility.Finally, modified nitrogen-doped carbon materials have been explored for biomedical applications, such as drug delivery vehicles and tissue engineering scaffolds. The graphene-like structure and modified surface can improve their biocompatibility, drug loading capacity, and controlled release properties. They have the potential to revolutionize the field of medicine by providing more efficient and safe drug delivery systems and tissue engineering scaffolds.In conclusion, the development of modified graphene-like nitrogen-doped carbon materials has opened up new opportunities for various catalytic, sensing, energy storage, and biomedical applications. The results of this study provide a foundation for the continued exploration and development of advanced carbon-based materials with tailored properties and enhanced performance。