考研数学:线性代数知识点汇总
- 格式:doc
- 大小:33.00 KB
- 文档页数:6
吉林省考研数学复习资料线性代数重点知识点总结线性代数是数学中的一个分支,广泛应用于科学和工程领域。
在吉林省考研数学考试中,线性代数是一个重要的考点。
下面将对线性代数的一些重点知识点进行总结,以帮助考生复习备考。
1. 向量和矩阵向量是线性代数中最基本的概念之一。
向量可以表示为一组有序的数,常用字母表示,如a,b,c。
向量有多种运算,包括加法、减法和数乘等。
矩阵是由数按一定规则排列成的矩形阵列。
矩阵也有加法、减法和数乘等运算,矩阵之间还有乘法运算。
常见的矩阵包括单位矩阵、对角矩阵和方阵等。
2. 线性方程组线性方程组是线性代数中的一个重要内容。
线性方程组可以表示为多个线性方程组成的方程组。
线性方程组有三种基本操作:互换两个方程的次序、用非零常数乘以一个方程、用一个方程的倍数加到另一个方程上。
解线性方程组的方法主要有高斯消元法和矩阵求逆法。
高斯消元法通过对增广矩阵进行一系列行变换,将方程组转化为简化的阶梯形方程组。
矩阵求逆法通过求解增广矩阵的逆矩阵来得到方程组的解。
3. 向量空间和子空间向量空间是数域上的一组向量的集合,满足加法和数乘的封闭性、加法和数乘的结合律、存在零向量和负向量、数乘的分配律等性质。
子空间是向量空间的一个子集,本身也是向量空间。
子空间必须满足加法和数乘的封闭性,以及包含零向量等要求。
4. 线性相关与线性无关一组向量中,如果存在一个向量可以由其他向量线性表示,则称这组向量线性相关;如果不存在这样的情况,则称这组向量线性无关。
线性相关的向量组会存在一些冗余信息,可以通过高斯消元法等方法进行简化。
线性无关的向量组具有更好的性质和应用。
5. 矩阵的特征值与特征向量特征值与特征向量是矩阵的重要性质。
矩阵A的特征值是使得A 减去特征值倍单位矩阵后的矩阵A'奇异的所有特征向量。
矩阵的特征值和特征向量可以用于分析矩阵的性质和应用于线性系统的解与稳定性等问题。
6. 线性变换和矩阵的相似性线性变换是一种保持向量空间运算的映射关系。
考研数学线性代数重点整理一、矢量空间矢量空间是线性代数的基础概念,它描述了一组对象(称为矢量)的性质及其之间的运算规则。
以下是矢量空间的一些重要性质和定义:1. 定义:矢量空间是满足以下8个条件的集合V,其中两个运算(加法和乘法)满足特定的性质。
2. 加法:对于任意的矢量u和v,它们的和u+v也是V中的一个矢量。
3. 加法交换律:对于任意的矢量u和v,有u+v = v+u。
4. 加法结合律:对于任意的矢量u、v和w,有(u+v)+w = u+(v+w)。
5. 加法单位元:存在一个称为零矢量的特殊矢量0,对于任意的矢量v,有v+0 = 0+v = v。
6. 加法逆元:对于任意的矢量v,存在一个称为负矢量的特殊矢量-u,使得v+(-u) = (-u)+v = 0。
7. 乘法定义:对于任意的矢量v和实数c,cv也是V中的一个矢量。
8. 乘法分配律:对于任意的矢量v和实数c和d,有c(dv) = (cd)v。
9. 乘法单位元:对于任意的矢量v,有1v = v。
二、矩阵与线性方程组矩阵是线性代数中另一个重要的概念,它可以用来表示线性方程组和线性变换。
以下是与矩阵和线性方程组相关的一些重要内容:1. 矩阵定义:将数按矩形排列成的矩形数表称为矩阵,其中行数和列数分别称为矩阵的行数和列数。
2. 矩阵运算:矩阵之间可以进行加法和乘法的运算,具体规则如下:- 矩阵加法:对应位置元素相加。
- 矩阵乘法:设A是一个m×n矩阵,B是一个n×p矩阵,那么它们的乘积AB是一个m×p矩阵,乘法规则为A的行乘以B的列。
3. 线性方程组:线性方程组是一组线性方程的集合,矩阵可以用来表示和求解线性方程组。
对于一个m×n矩阵A、一个n×1矩阵X和一个m×1矩阵B,线性方程组可以表示为AX=B。
4. 线性方程组的解:根据矩阵的性质,可以通过高斯消元法、矩阵求逆等方法求解线性方程组。
线性代数考研知识点总结线性代数是数学的一个重要分支,它研究向量空间及其上的线性变换。
在计算机科学、物理学、工程学等领域中,线性代数都有着广泛的应用。
在考研中,线性代数是一个必考的科目,以下是线性代数考研的一些重要知识点总结。
1. 向量空间:向量空间是线性代数的基础概念,它包括一组向量和一些满足特定条件的运算规则。
向量空间中的向量可以进行加法和数乘运算,满足交换律、结合律和分配律。
2. 向量的线性相关性和线性无关性:如果向量可以通过线性组合表示为另一组向量的形式,那么这组向量就是线性相关的;如果向量不满足线性相关的条件,那么它们就是线性无关的。
3. 矩阵:矩阵是线性代数中的另一个重要概念,它是一个由数字排列成的矩形阵列。
矩阵可以用于表示线性变换、解线性方程组等。
常见的矩阵类型有方阵、对称矩阵、对角矩阵、单位矩阵等。
4. 行列式:行列式是一个用于刻画矩阵性质的重要工具。
行列式可以用来计算线性变换的缩放因子,判断矩阵是否可逆,以及计算矩阵的逆等。
5. 矩阵的相似和对角化:两个矩阵A和B,如果存在一个非奇异矩阵P,使得PAP^(-1)=B,那么矩阵A和B就是相似的。
相似的矩阵有着相同的特征值和特征向量。
对角化是指将一个矩阵通过相似变换变成对角矩阵的过程。
6. 线性变换:线性变换是指一个向量空间到另一个向量空间的映射,它满足线性性质。
线性变换可以用矩阵表示,相应的矩阵称为线性变换的矩阵表示。
线性变换可以进行合成、求逆等操作。
7. 内积空间:内积空间是一个带有内积运算的向量空间。
内积运算满足对称性、线性性、正定性等性质。
内积空间可以用来定义向量的长度、夹角、正交性等概念。
8. 特征值和特征向量:对于一个线性变换,如果存在一个非零向量使得线性变换作用在该向量上等于该向量的某个常数倍,那么这个常数就是该线性变换的特征值,而对应的非零向量就是特征向量。
特征值和特征向量可以用来分析矩阵的性质,求解线性方程组等。
9. 奇异值分解:奇异值分解是矩阵分解的一种常用方法,它将一个矩阵分解为三个矩阵的乘积,其中一个矩阵是正交矩阵,另两个矩阵是对角矩阵。
福建省考研数学复习资料线性代数重点知识点总结线性代数是数学中的一门重要分支,也是考研数学中的重点内容之一。
在福建省考研数学复习中,线性代数也是需要我们着重复习和掌握的知识点。
本文将对福建省考研数学中线性代数的重点知识点进行总结。
希望这些总结对于考生的复习有所帮助。
1. 向量空间向量空间是线性代数中的基本概念,它是由一组向量和两种运算构成的。
考生需要了解向量空间的定义和性质,同时掌握向量空间的几个基本例子。
2. 矩阵与行列式矩阵与行列式是线性代数中的重要工具,它们在线性代数中得到了广泛的应用。
考生需要熟练掌握矩阵的基本运算,包括矩阵的加法、数乘和乘法,同时需要了解矩阵的逆、转置和行列式的计算方法。
3. 线性变换线性变换是线性代数中的核心概念,它是一种特殊的函数。
考生需要掌握线性变换的定义和性质,了解线性变换的矩阵表示和基变换,同时需要熟悉线性变换的一些基本例子,如平移、旋转和缩放。
4. 特征值与特征向量特征值与特征向量是矩阵论中的重要概念,它们在线性代数中具有广泛的应用。
考生需要了解特征值与特征向量的定义和性质,掌握求解特征值和特征向量的方法,同时需要了解对角化和相似矩阵的概念。
5. 线性方程组线性方程组是线性代数中的一种基本问题,它有着重要的应用。
考生需要了解线性方程组的定义、性质和求解方法,同时需要掌握线性方程组的矩阵形式和高斯消元法。
6. 内积空间与正交性内积空间是线性代数中的重要概念,它是向量空间的一种扩展。
考生需要了解内积空间的定义和性质,掌握内积的计算方法和内积空间的几个基本例子,同时需要熟悉正交向量组和正交矩阵的概念和性质。
7. 最小二乘法最小二乘法是线性代数中的一种重要方法,它在数值计算和曲线拟合中得到了广泛的应用。
考生需要了解最小二乘法的思想和基本原理,掌握最小二乘问题的求解方法和最小二乘拟合的应用。
总之,线性代数是福建省考研数学复习中的一门重点内容,对于考生来说掌握线性代数的基本概念、性质和方法非常重要。
天津市考研数学复习资料线性代数重点知识点整理线性代数是数学中的重要分支,也是天津市考研数学中的一门重要课程。
下面将整理一些线性代数的重点知识点,供大家参考复习。
1. 线性方程组线性方程组是线性代数的基础,其中最常见的形式是n元一次齐次线性方程组和非齐次线性方程组。
在解线性方程组时,可以通过高斯消元法、矩阵求逆法等方法求解,同时也需要对线性方程组的解空间进行分析。
2. 矩阵与向量矩阵与向量是线性代数中的重要概念。
矩阵可以表示为m行n列的矩形数组,可以进行矩阵的加法、减法、数乘、矩阵乘法等运算。
向量是一种特殊的矩阵,是一个有序数组,可以表示为n行1列或1行n列的矩阵。
矩阵与向量的运算有着重要的应用,如线性方程组的矩阵表示、线性变换的矩阵表示等。
3. 矩阵的特征值与特征向量矩阵的特征值与特征向量是线性代数中的重要概念。
通过求解矩阵的特征方程,可以得到矩阵的特征值。
而矩阵的特征向量则是对应于特征值的非零向量。
特征值和特征向量在线性代数中有着广泛的应用,如对角化、相似矩阵的性质等。
4. 线性变换与矩阵的相似性线性变换是线性代数中的重要内容,它是指保持向量加法和数乘运算的函数。
矩阵的相似性是线性代数中的一个重要关系,两个矩阵相似意味着它们表示了相同的线性变换。
矩阵的相似性对于矩阵的特征值、特征向量等性质有着重要的影响。
5. 线性空间与线性相关性线性空间是线性代数中的一个基本概念,它是由向量组成的集合,并满足向量的加法和数乘运算的封闭性。
线性相关性是线性代数中的一个重要概念,它描述了向量之间的依赖关系。
通过研究向量的线性相关性,可以得到诸如线性方程组的解空间、向量组的秩等重要知识。
6. 内积空间与正交性内积空间是线性代数中的一个重要概念,它是一个带有内积运算的线性空间。
内积空间中可以定义向量的长度、角度等概念,并且可以通过正交性来描述向量之间的垂直关系。
正交向量组、正交矩阵等概念在线性代数中具有广泛的应用,如最小二乘法、正交变换等。
考研线代知识点总结摘要:一、考研线性代数知识点概述二、矩阵与线性方程组三、向量空间与线性变换四、特征值与特征向量五、二次型与矩阵的对称性六、复习与拓展建议正文:一、考研线性代数知识点概述考研线性代数作为数学一门重要学科,主要包括矩阵、线性方程组、向量空间、线性变换、特征值与特征向量、二次型与矩阵的对称性等内容。
这些知识点在考研数学中占有很大比重,因此,对于线性代数的掌握程度直接影响到考研成绩。
本文将对这些知识点进行总结,以帮助考生更好地复习和掌握线性代数。
二、矩阵与线性方程组1.矩阵的运算:加法、减法、数乘、矩阵乘法、逆矩阵、行列式等。
2.线性方程组的解法:高斯消元法、克莱姆法则、齐次线性方程组、非齐次线性方程组等。
3.矩阵的秩、行阶梯形式、简化阶梯形式等。
三、向量空间与线性变换1.向量空间的概念、基、维数、向量模等。
2.线性变换的概念、性质、矩阵表示、不变量等。
四、特征值与特征向量1.特征值、特征向量的概念及求解方法。
2.矩阵的对角化、相似矩阵等。
五、二次型与矩阵的对称性1.二次型的概念、标准型、正定二次型、负定二次型、半正定二次型、半负定二次型等。
2.矩阵的对称性:对称矩阵、反对称矩阵、正交矩阵、对称分量等。
六、复习与拓展建议1.熟练掌握考研线性代数大纲要求的知识点,做到深入理解、熟练应用。
2.针对自己的薄弱环节进行有针对性的练习,提高解题能力。
3.学习线性代数相关的拓展知识,如奇异值分解、广义逆矩阵、线性空间论等。
4.注重理论联系实际,熟练运用线性代数知识解决实际问题。
总之,考研线性代数知识点繁多,要想在考试中取得好成绩,就需要扎实掌握这些知识点,并不断提高自己的解题能力。
天津市考研数学线性代数重点知识总结线性代数是数学的一个重要分支,也是考研数学的一门重要课程。
对于考研数学线性代数的学习,我们需要掌握一些重点知识。
本文将对天津市考研数学线性代数的重点知识进行总结和讲解。
一、向量空间和线性变换1. 向量空间的定义及性质向量空间是线性代数中最基本的概念之一。
向量空间的定义包括十条性质,分别是封闭性、结合律、零向量、相反元、标量乘法、分配律、单位向量、范数、内积和正交。
掌握这些定义及性质,对于理解向量空间的本质和性质具有重要意义。
2. 线性变换的定义及性质线性变换是指在向量空间中进行的一种特殊的变换方式。
线性变换具有保持加法和标量乘法结构的性质,即线性变换满足线性性质。
线性变换的定义包括保持加法和标量乘法两个性质,同时还有线性变换的矩阵表示、复合和逆变换等重要性质需要掌握。
二、矩阵和行列式1. 矩阵的定义及基本运算矩阵是线性代数中另一个重要的概念,是一个矩形的数表。
矩阵的基本运算包括矩阵的加法、数乘和乘法等。
此外,矩阵的转置、乘法的结合律和分配律等性质也是需要掌握的重点。
2. 行列式的定义及性质行列式是一种用于描述矩阵的重要工具。
行列式的定义包括两种形式,一种是二阶行列式的定义,另一种是n阶行列式的定义。
行列式具有很多性质,如行列式的转置、乘法、行交换和性质不变性等。
掌握行列式的定义及性质对于矩阵的运算及线性方程组的求解非常重要。
三、线性方程组1. 线性方程组的基本概念线性方程组是线性代数中一个重要的研究对象。
线性方程组的基本概念包括齐次线性方程组和非齐次线性方程组的定义及性质。
齐次线性方程组的解空间是一个向量空间,而非齐次线性方程组的解空间则是一个平行于齐次线性方程组解空间的平面。
2. 线性方程组的求解方法线性方程组的求解包括高斯消元法、矩阵的行变换及矩阵的逆等方法。
高斯消元法是线性方程组求解的一种常用方法,它通过矩阵的行变换将线性方程组转化为简化行阶梯形矩阵,然后利用简化行阶梯形矩阵求解线性方程组。
考研数学线性代数知识点总结线性代数是考研数学中的重要组成部分,对于很多考生来说,它具有一定的难度。
但只要掌握了关键的知识点和方法,就能在考试中取得较好的成绩。
以下是对考研数学线性代数的知识点总结。
一、行列式行列式是线性代数中的基本概念之一。
1、二阶和三阶行列式的计算方法要熟练掌握,通过对角线法则可以轻松计算。
2、 n 阶行列式的定义和性质需要理解清楚。
例如,行列式的某一行(列)元素乘以同一数后,加到另一行(列)的对应元素上,行列式的值不变。
3、行列式按行(列)展开定理也是重点,它可以将高阶行列式转化为低阶行列式来计算。
二、矩阵矩阵是线性代数的核心内容。
1、矩阵的运算,包括加法、数乘、乘法以及矩阵的转置。
要特别注意矩阵乘法的规则和不满足交换律的特点。
2、逆矩阵的概念和求法至关重要。
判断矩阵是否可逆,以及通过伴随矩阵或初等变换来求逆矩阵。
3、矩阵的秩是一个关键概念,它反映了矩阵中线性无关的行(列)向量的个数。
4、分块矩阵的运算和应用也需要掌握,它可以简化一些复杂矩阵的计算。
三、向量向量是线性代数中的重要工具。
1、向量组的线性相关性是常见考点。
判断向量组是线性相关还是线性无关,以及理解相关和无关的性质。
2、向量组的秩与极大线性无关组要弄清楚它们的概念和求法。
3、向量空间的基、维数和坐标等概念也需要了解。
四、线性方程组线性方程组是线性代数的重点应用。
1、线性方程组有解的判定条件,通过系数矩阵的秩和增广矩阵的秩来判断。
2、齐次线性方程组基础解系的求法,要熟练掌握通过初等行变换将系数矩阵化为行最简形。
3、非齐次线性方程组的通解结构,由一个特解加上齐次线性方程组的通解组成。
五、矩阵的特征值和特征向量这部分内容在考研中经常出现。
1、特征值和特征向量的定义和计算方法,通过求解特征方程来得到特征值,再代入方程求解特征向量。
2、相似矩阵的概念和性质,相似矩阵具有相同的特征值。
3、矩阵可对角化的条件,以及如何将矩阵对角化。
反对称矩阵 A = A 。
0 0 0 0 1 0 3 0 (A ) * 0 03 0 01 0 0* * *对称矩阵 A = A 。
考研数学知识点-线性代数第一讲 基本知识二.矩阵和向量1.线性运算与转置① A + B = B + A② (A + B ) + C = A + (B + C )③ c (A + B ) = cA + cB (c + d )A = cA + dA④ c (dA ) = (cd )A⑤ cA = 0 ™ c = 0 或 A = 0 。
向量组的线性组合〈 1 ,〈 2 ,⊄ ,〈 s ,T 三.矩阵的初等变换,阶梯形矩阵 ♣初等行变换 初等变换分 ♦ ♥初等列变换 三类初等行变换 ①交换两行的上下位置 A B ②用非零常数 c 乘某一行。
③把一行的倍数加到另一行上(倍加变换) 阶梯形矩阵 转置 c 1〈 1 + c 2〈 2 + ⊄ + c s 〈 s 。
A 的转置 A T (或 A 2 )4 1 0 1 0 2 0 0 25 2 0 0 1 2 1 4 3 T T= A①如果有零行,则都在下面。
②各非零行的第一个非 0 元素的列号自上而下严格 (A ± B )T = A T ± B T单调上升。
或各行左边连续出现的 0 的个数自上而下严格单调 (cA )T = c (A T )。
上升,直到全为 0 。
台角:各非零行第一个非 0 元素所在位置。
简单阶梯形矩阵: 3. n 阶矩阵3.台角位置的元素都为 1 n 行、 n 列的矩阵。
对角线,其上元素的行标、列标相等 a 11 , a 22 ,⊄对角矩阵 0 * 00 0 *4.台角正上方的元素都为 0。
每个矩阵都可用初等行变换化为阶梯形矩阵和简单 阶梯形矩阵。
如果 A 是一个 n 阶矩阵 A 是阶梯形矩阵 ® A 是上三角矩阵,反之不一定, 数量矩阵 0 3 0 = 3E0 0 3单位矩阵 0 1 0 E 或I0 0 1如 0 0 1 0 1 0 是上三角,但非阶梯形 0 0 1 四.线性方程组的矩阵消元法 用同解变换化简方程再求解 上(下)三角矩阵 0 * *0 0 *T 1 三种同解变换: ①交换两个方程的上下位置。
线性代数总结知识点线性代数是数学的一个分支,主要研究向量、向量空间(也称为线性空间)、线性变换以及线性方程组的理论。
它是现代数学的基础工具之一,广泛应用于物理学、工程学、计算机科学、经济学和社会科学等领域。
以下是线性代数的一些核心知识点总结:1. 向量与向量运算- 向量的定义:向量可以是有序的数字列表,用于表示空间中的点或方向。
- 向量加法:两个向量对应分量相加得到新的向量。
- 标量乘法:一个向量与一个标量相乘,每个分量都乘以该标量。
- 向量的数量积(点积):两个向量的对应分量乘积之和,用于计算向量的长度或投影。
- 向量的向量积(叉积):仅适用于三维空间,结果是一个向量,表示两个向量平面的法向。
2. 矩阵- 矩阵的定义:一个由数字排列成的矩形阵列。
- 矩阵加法和减法:对应元素相加或相减。
- 矩阵乘法:第一个矩阵的列数必须等于第二个矩阵的行数,结果矩阵的每个元素是两个矩阵对应行列的乘积之和。
- 矩阵的转置:将矩阵的行变成列,列变成行。
- 单位矩阵:对角线上全是1,其余位置全是0的方阵。
- 零矩阵:所有元素都是0的矩阵。
3. 线性相关与线性无关- 线性相关:如果一组向量中的任何一个可以通过其他向量的线性组合来表示,则这组向量是线性相关的。
- 线性无关:如果只有所有向量的零组合才能表示为零向量,则这组向量是线性无关的。
4. 向量空间(线性空间)- 定义:一组向量,它们在向量加法和标量乘法下是封闭的。
- 子空间:向量空间的子集,它自身也是一个向量空间。
- 维数:向量空间的基(一组线性无关向量)的大小。
- 基和坐标:向量空间的一组基可以用来表示空间中任何向量的坐标。
5. 线性变换- 定义:保持向量加法和标量乘法的函数。
- 线性变换可以用矩阵表示,矩阵的乘法对应线性变换的复合。
6. 特征值和特征向量- 特征值:对应于线性变换的标量,使得变换后的向量与原向量成比例。
- 特征向量:与特征值对应的非零向量,变换后的向量与原向量方向相同。
2019考研数学:线性代数知识点汇总
摘要:尽管考研数学的考查内容各个学校的侧重点不一样,但是都是在考研大纲里面的更改。
因此,了解好考研数学的每一个小知识点,才能全面掌握考研数学。
就帮大家整理了一些线性代数的知识点,分享给在数学上犯愁的同学们。
►【行列式】
1、行列式本质就是一个数
2、行列式概念、逆序数
考研:小题,无法联系其他知识点,当场解决。
3、二阶、三阶行列式具体性计算
考研:不会单独出题,常常结合伴随矩阵、可逆矩阵考察。
4、余子式和代数余子式
考研:代数余子式的正负是一个易错点,了解代数余子式才能学习行列式展开定理。
5、行列式展开定理
考研:核心知识点,必考!
6、行列式性质
考研:核心知识点,必考!小题为主。
7、行列式计算的几个题型
①、划三角(正三角、倒三角)
②、各项均加到第一列(行)
③、逐项相加
④、分块矩阵
⑤、找公因
这样做的目的,在行/列消出一个0,方便运用行列式展开定理。
考研:经常运用在找特征值中。
⑥数学归纳法
⑦范德蒙行列式
⑧代数余子式求和
⑨构造新的代数余子式
8、抽象型行列式(矩阵行列式)
①转置
②K倍
③可逆
③伴随
④题型丨A+B丨;丨A+B-1丨;丨A-1+B丨型
(这部分内容放在第二章,但属于第一章的内容)
考研:出小题概率非常大,抽象性行列式与行列式性质结合考察。
►【矩阵】
1、矩阵性质
考研:与伴随矩阵、可逆矩阵、初等矩阵结合考察。
2、数字型n阶矩阵运算
①方法一:秩是1
②方法二:含对角线上下三角为0的矩阵
③方法三:利用二项式定理,拆写成E+B型
④方法四:利用分块矩阵
⑤方法五:P-1AP=B;P-1APP-1AP=B2
方法五涉及相似对角化知识。
方法三涉及高中知识。
考研:常见在大题出现,是大题的第一问!看到数字型n阶矩阵运算,一定出自这5个方法。
(二战考上,如果本题不会做,你的问题出在只掌握这五种方法的某几种,所以你是失败在归纳总结上了)
3、伴随矩阵
考研:伴随矩阵常与其他知识考察,与行列式、转置、K倍、可逆、伴随的伴随结合考察。
4、二阶矩阵的伴随矩阵
法则:主对角线互换、副对角线填负号。
考研:如果让求某个二阶矩阵的可逆矩阵,难点转化成如何计算它的伴随矩阵。
5、可逆矩阵两种求法
考研:可逆矩阵可与行列式、转置、K倍、伴随矩阵、可逆的可逆结合考察。
6、分块矩阵
考研:以小题出现
7、初等矩阵
考研:小题出现
8、正交矩阵、对称矩阵、反对称矩阵
考研:第二章先知道张什么模样,这部分内容在二次型、相似对角化考察。
9、秩(十个公式)
考研:把秩比作答题的第二种方法,在解决向量、方程组等相关知识点,可以用传统方法(解题速度慢),也可用秩,解题速度是传统方法的5倍!但是难懂。
►【向量】
1、几组定义(向量内积、向量的长度、单位化、正交)
考研:考单位化,但是如果想理解线性代数本质,向量内积、向量的长度要懂。
2、线性相关、无关的三大判别方法
⑴、利用行列式
⑵、向量个数>维度,必相关
⑶、利用秩
考研:小题出现,很少结合其他章节知识点。
3、线性相关无关证明题三种思路
⑴、利用定义法
⑵、用秩
⑶、反证法
考研:大题考点,这部分内容可以与线性方程组结合,也可以与特征值特征向量结合,也可以与秩结合。
至于如何结合,怎么结合,请自己归纳总结。
4、线性表出四大判别方法
⑴、利用行列式
⑵、利用秩
⑶、利用定义
⑷、利用方程组
考研:可小题、可大题,但是通是大题的某一问。
5、克拉默法则
考研:服务线性表出。
6、线性表出计算题三大思路
⑴、利用克拉默法则
⑵、构建方程组,抓0思想
⑶、与向量组结合考等价。
考研:大题考点!涉及部分方程组知识和初等行变换知识。
这部分内容涉及重要的数学思想:分类讨论!!!(大题爱考)
7、线性表出证明题四个理论
考研:大题小题都有,但是近几年小题居多。
8、极大线性无关组
考研:核心考点内容和2、3知识点一样,换汤不换药
9、等价向量组
考研:小题居多,很少与其它章节知识点结合。
►【线性方程组】
1、基础解系
(不懂就背下来,我当时考研到10月份才茅塞顿开。
)
2、齐次线性方程组与非齐次线性方程组
⑴、常规求解
⑵、解含参数的方程组
(这部分内容最难在于化简,矩阵基础要牢固!!)
⑶、利用解的三个性质
⑷、通过矩阵运算,构造方程组再求解
考研:大题核心考点,历年考题向量和方程组会出其中一道,而方程组的出题概率高于向量!原因如下
①、解题方法多。
②、能与矩阵相关知识联系结合。
3、公共解、同解两种题型
考研:重要考点题!
►【特征值与特征向量】
1、特征值相关概念与计算
考研:必考题,这里面难点不在于特征值相关知识,而在于求解行列式相关知识。
2、特殊特征值
⑴、上三角矩阵、下三角矩阵。
⑵、秩为1的矩阵
⑶、某个矩阵拆分后,利用⑴和⑵结合。
3、相似矩阵概念及性质
考研:不会单独出,但一定会结合其他题目
4、相似矩阵两种考题
如果P-1AP=B
⑴若A=aB(P-1a)=(P-1a)
⑵若Ba=aA(Pa)=(Pa)
考研:这部分内容是内容5的基础,但是如果单独出考题,不太可能。
5、对角矩阵的相似问题
核心内容:搭桥桥是。
考研:核心重点考点!
本内容需要分类讨论、需要基础解系相关知识、又可以联系特征值、特征向量,性质方面也可全面考察。
6、反对称矩阵
考研:小题
7、实对称矩阵以及正交矩阵
考研:也是重要考点,大部分知识和前面一样,唯一不同之处在于多一个史密斯正交化。
►【二次型】
1、二次型相关概念
内容和微分方程有异曲同工之妙,记忆的内容比较多,但比较简单。
考研:出小题,比如填写一个负惯性指数。
2、矩阵的等价、相似、合同
考研:出小题,一定不可能出大题的。
3、化二次型为标准型、正定问题
考研:核心重点考点,内容本身没什么难度,只是把前面所有的知识综合起来。
这里不用细说,如果前面的相关内容复习的非常好,这部分内容学习起来会轻松很多。