归纳推理教案
- 格式:doc
- 大小:121.50 KB
- 文档页数:4
§1归纳与类比1.1 归纳推理学习目标核心素养1.了解归纳推理的含义,能利用归纳推理进行简单的推理.(重点)2.了解归纳推理在数学发展中的作用.(难点) 1.通过归纳推理概念的学习,体现了数学抽象的核心素养.2.通过归纳推理的应用的学习,体现了逻辑推理的核心素养.1.归纳推理的定义根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都有这种属性,这种推理方式称为归纳推理.2.归纳推理的特征归纳推理是由部分到整体,由个别到一般的推理.思考:由归纳推理得到的结论一定是正确的吗?[提示]不一定正确.因为归纳推理是由部分到整体、由个别到一般的推理,其结论还需要证明其正确性.1.下列关于归纳推理的说法错误的是( )①归纳推理是由一般到一般的推理过程;②归纳推理是一种由特殊到特殊的推理;③归纳推理得出的结论具有或然性,不一定正确;④归纳推理具有由具体到抽象的认识功能.A.①②B.②③C.①③ D.③④A[归纳推理是由特殊到一般的推理,故①②不正确,易知③④均正确,故选A.]2.若空间中n个不同的点两两距离都相等,则正整数n的取值( )A.至多等于3 B.至多等于4C.等于5 D.大于5B [n =2时,可以;n =3时,为正三角形,可以;n =4时,为正四面体,可以;n =5时,为四棱锥,侧面为正三角形,底面为菱形且对角线长与边长相等,不可能.]3.由集合{a 1},{a 1,a 2},{a 1,a 2,a 3},……的子集个数归纳出集合{a 1,a 2,a 3,…,a n }的子集个数为________.2n[集合{a 1}有两个子集和{a 1},集合{a 1,a 2}的子集有,{a 1},{a 2},{a 1,a 2}共4个子集,集合{a 1,a 2,a 3}有8个子集,由此可归纳出集合{a 1,a 2,a 3,…,a n }的子集个数为2n个.]数式中的归纳推理+b 10=( )A .28B .76C .123D .199(2)已知f(x)=x1-x ,设f 1(x)=f(x),f n (x)=f n -1(f n -1(x))(n>1,且n∈N +),则f 3(x)的表达式为________,猜想f n (x)(n∈N +)的表达式为________.思路探究:(1)记a n+b n=f(n),观察f(1),f(2),f(3),f(4),f(5)之间的关系,再归纳得出结论. (2)写出前几项发现规律,归纳猜想结果.(1)C (2)f 3(x)=x 1-4x f n (x)=x 1-2n -1x [(1)记a n +b n =f(n),则f(3)=f(1)+f(2)=1+3=4;f(4)=f(2)+f(3)=3+4=7;f(5)=f(3)+f(4)=11.通过观察不难发现f(n)=f(n -1)+f(n -2)(n∈N+,n≥3),则f(6)=f(4)+f(5)=18;f(7)=f(5)+f(6)=29;f(8)=f(6)+f(7)=47;f(9)=f(7)+f(8)=76;f(10)=f(8)+f(9)=123.所以a 10+b 10=123. (2)f 1(x)=f(x)=x1-x,f 2(x)=f 1(f 1(x))=x 1-x 1-x 1-x =x1-2x ,f 3(x)=f 2(f 2(x))=x 1-2x 1-2·x 1-2x=x1-4x,由f 1(x),f 2(x),f 3(x)的表达式,归纳f n (x)=x1-2n -1x.]已知等式或不等式进行归纳推理的方法1.要特别注意所给几个等式(或不等式)中项数和次数等方面的变化规律; 2.要特别注意所给几个等式(或不等式)中结构形式的特征; 3.提炼出等式(或不等式)的综合特点; 4.运用归纳推理得出一般结论.1.经计算发现下列不等式:2+18<210, 4.5+15.5<210,3+2+17-2<210,……根据以上不等式的规律,试写出一个对正实数a ,b 都成立的条件不等式:________.当a +b =20时,有a +b<210,a ,b∈R + [从上面几个不等式可知,左边被开方数的和均为20,故可以归纳为a +b =20时,a +b<210.]数列中的归纳推理【例2】 (1)在数列{a n }中,a 1=1,a n +1=-1a n +1,则a 2 019等于( )A .2B .-12C .-2D .1(2)古希腊人常用小石子在沙滩上摆成各种形状来研究数,如图:由于图中1,3,6,10这些数能够表示成三角形,故被称为三角形数,试结合组成三角形数的特点,归纳第n 个三角形数的石子个数.思路探究:(1)写出数列的前几项,再利用数列的周期性解答.(2)可根据图中点的分布规律归纳出三角形数的形成规律,如1=1,3=1+2,6=1+2+3;也可以直接分析三角形数与n 的对应关系,进而归纳出第n 个三角形数.C [(1)a 1=1,a 2=-12,a 3=-2,a 4=1,…,数列{a n }是周期为3的数列,2 019=673×3,∴a 2 019=a 3=-2.](2)[解] 法一:由1=1, 3=1+2, 6=1+2+3, 10=1+2+3+4,可归纳出第n 个三角形数为1+2+3+…+n =n (n +1)2.法二:观察项数与对应项的关系特点如下:项数 1 2 3 4 对应项1×222×323×424×52分析:各项的分母均为2,分子分别为相应项数与相应项数加1的积. 归纳:第n 个三角形数的石子数应为n (n +1)2.数列中的归纳推理在数列问题中,常常用到归纳推理猜测数列的通项公式或前n 项和. (1)通过已知条件求出数列的前几项或前几项和;(2)根据数列中的前几项或前几项和与对应序号之间的关系求解; (3)运用归纳推理写出数列的通项公式或前n 项和公式.2.已知数列{a n }满足a 1=1,a n +1=2a n +1(n =1,2,3,…). (1)求a 2,a 3,a 4,a 5; (2)归纳猜想通项公式a n . [解] (1)当n =1时,知a 1=1, 由a n +1=2a n +1, 得a 2=3,a 3=7,a 4=15,a 5=31.(2)由a 1=1=21-1,a 2=3=22-1,a 3=7=23-1,a 4=15=24-1,a 5=31=25-1, 可归纳猜想出a n =2n-1(n∈N +).几何图形中的归纳推理1.某商场橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第1堆只有一层,就一个球;第2,3,4,…堆最底层(第一层)分别按如图所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球,以f(n)表示第n 堆的乒乓球总数,试求f(1),f(2),f(3),f(4)的值.[提示] 观察图形可知,f(1)=1,f(2)=4,f(3)=10,f(4)=20. 2.上述问题中,试用n 表示出f(n)的表达式.[提示] 由题意可得:下一堆的个数是上一堆个数加下一堆第一层的个数,即f(2)=f(1)+3;f(3)=f(2)+6;f(4)=f(3)+10;…;f(n)=f(n -1)+n (n +1)2.将以上(n -1)个式子相加可得 f(n)=f(1)+3+6+10+…+n (n +1)2=12[(12+22+…+n 2)+(1+2+3+…+n)] =12⎣⎢⎡⎦⎥⎤16n (n +1)(2n +1)+n (n +1)2=n (n +1)(n +2)6.【例3】 有两种花色的正六边形地面砖,按如图的规律拼成若干个图案,则第6个图案中有菱形纹的正六边形的个数是( )A .26B .31C .32D .36思路探究:解答本题可先通过观察、分析找到规律,再利用归纳得到结论. B [法一:有菱形纹的正六边形个数如下表:图案 123 … 个数6 1116…由表可以看出有菱形纹的正六边形的个数依次组成一个以6为首项,以5为公差的等差数列,所以第6个图案中有菱形纹的正六边形的个数是6+5×(6-1)=31.法二:由图案的排列规律可知,除第一块无纹正六边形需6个有纹正六边形围绕(图案1)外,每增加一块无纹正六边形,只需增加5块菱形纹正六边形(每两块相邻的无纹正六边形之间有一块“公共”的菱形纹正六边形),故第6个图案中有菱形纹的正六边形的个数为:6+5×(6-1)=31.]在题干不变的条件下,第6个图案中周围的边有多少条? [解] 各个图形周围的边的条数如下表:图案123…边条数18 26 34 …由表可知,周围边的条数依次组成一个以18为首项,8为公差的等差数列,解得第6个图形周围的边的条数为18+8×(6-1)=58条.归纳推理在图形中的应用策略通过一组平面或空间图形的变化规律,研究其一般性结论,通常需形状问题数字化,展现数字之间的规律、特征,然后进行归纳推理.解答该类问题的一般策略是:3.根据图中线段的排列规则,试猜想第8个图形中线段的条数为________.509 [分别求出前4个图形中线段的数目,发现规律,得出猜想.图形①到④中线段的条数分别为1,5,13,29,因为1=22-3,5=23-3,13=24-3,29=25-3,因此可猜想第8个图形中线段的条数应为28+1-3=509.]1.归纳推理是由部分到整体、由个别到一般的推理.(1)由归纳推理得到的结论带有猜测的性质,所以“前提真而结论假”的情况是有可能发生的,结论是否正确,需要经过理论证明或实践检验,因此,归纳推理不能作为数学证明的工具.(2)一般地,如果归纳的个别情况越多,越具有代表性,那么推广的一般性命题就越可能为真.(3)归纳推理能够发现新事实,获得新结论,是科学发现的重要手段.通过归纳推理得到的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题.2.归纳推理的思维过程大致是:实验、观察→概括、推广→猜测一般性结论.该过程包括两个步骤: (1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表述的一般性命题(猜想).1.判断(正确的打“√”,错误的打“×”)(1)统计学中,从总体中抽取样本,然后用样本估计总体,这种估计属于归纳推理. (2)由个别到一般的推理称为归纳推理. ( ) (3)由归纳推理所得到的结论一定是正确的. ( )[答案] (1)√ (2)√ (3)× 2.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n 个“金鱼”图需要火柴棒的根数为( ) A .6n -2 B .8n -2 C .6n +2D .8n +2C [a 1=8,a 2=14,a 3=20,猜想a n =6n +2.]3.已知12=16×1×2×3,12+22=16×2×3×5,12+22+32=16×3×4×7,12+22+34+42=16×4×5×9,则12+22+…+n 2=________.(其中n∈N *).16n(n +1)(2n +1) [根据题意归纳出12+22+…+n 2=16n(n +1)(2n +1),下面给出证明:(k +1)3-k 3=3k 2+3k +1,则23-13=3×12+3×1+1,33-23=3×22+3×2+1,……,(n +1)3-n 3=3n 2+3n +1,累加得(n +1)3-13=3(12+22+…+n 2)+3(1+2+…+n)+n ,整理得12+22+…+n 2=16n(n +1)(2n +1).]4.有以下三个不等式:(12+42)(92+52)≥(1×9+4×5)2, (62+82)(22+122)≥(6×2+8×12)2, (202+102)(1022+72)≥(20×102+10×7)2.请你观察这三个不等式,猜想出一个一般性的结论,并证明你的结论. [解] 结论为:(a 2+b 2)(c 2+d 2)≥(ac+bd)2.证明:(a 2+b 2)(c 2+d 2)-(ac +bd)2=a 2c 2+a 2d 2+b 2c 2+b 2d 2-(a 2c 2+b 2d 2+2abcd) =a 2d 2+b 2c 2-2abcd =(ad -bc)2≥0.所以(a2+b2)(c2+d2)≥(ac+bd)2.1.2 类比推理学 习 目 标核 心 素 养1.通过具体实例理解类比推理的意义.(重点) 2.会用类比推理对具体问题作出判断.(难点)1.通过类比推理的意义的学习,体现了数学抽象的核心素养.2.通过应用类比推理对具体问题判断的学习,体现了逻辑推理的核心素养.1.类比推理由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征,我们把这种推理过程称为类比推理.类比推理是两类事物特征之间的推理. 2.合情推理合情推理是根据实验和实践的结果、个人的经验和直觉、已有的事实和正确的结论(定义、公理、定理等),推测出某些结果的推理方式.合情推理的结果不一定正确.思考:合情推理的结果为什么不一定正确?[提示] 合情推理是由特殊到一般的推理,简单地说就是直接看出来的,没有通过证明,只归纳了一部分,属于不完全归纳,所以不一定正确.1.下面使用类比推理恰当的是( )A .“若a·3=b·3,则a =b ”类比推出“若a·0=b·0,则a =b”B .“(a+b)c =ac +bc”类比推出“(a·b)c=ac·bc”C .“(a+b)c =ac +bc”类比推出“a +b c =a c +bc (c≠0)”D .“(ab)n=a n b n”类比推出“(a+b)n=a n+b n” C [由实数运算的知识易得C 项正确.] 2.下列推理是合情推理的是( ) (1)由圆的性质类比出球的有关性质;(2)由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°; (3)a≥b,b≥c,则a≥c;(4)三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸n 边形内角和是(n -2)×180°.A .(1)(2)B .(1)(3)(4)C .(1)(2)(4)D .(2)(4)C [(1)为类比推理,(2)(4)为归纳推理,(3)不是合情推理,故选C.]3.类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列性质,你认为比较恰当的是________.(填序号)①各棱长相等,同一顶点上的任两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等; ③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等.①②③ [正四面体的面(或棱)可与正三角形的边类比,正四面体的相邻两面成的二面角(或共顶点的两棱的夹角)可与正三角形相邻两边的夹角类比,故①②③都对.]类比推理在数列中的应用【例1】 在公比为4的等比数列{b n }中,若T n 是数列{b n }的前n 项积,则有T 20T 10,T 30T 20,T 40T 30也成等比数列,且公比为4100.类比上述结论,相应地在公差为3的等差数列{a n }中,若S n 是{a n }的前n 项和.试写出相应的结论,判断该结论是否正确,并加以证明.思路探究:结合已知等比数列的特征可类比等差数列每隔10项和的有关性质.[解] 数列S 20-S 10,S 30-S 20,S 40-S 30也是等差数列,且公差为300.该结论是正确的.证明如下: ∵等差数列{a n }的公差d =3, ∴(S 30-S 20)-(S 20-S 10)=(a 21+a 22+…+a 30)-(a 11+a 12+…+a 20)同理可得:(S 40-S 30)-(S 30-S 20)=300,所以数列S 20-S 10,S 30-S 20,S 40-S 30是等差数列,且公差为300.1.本例是由等比类比等差,你能由等差类比出等比结论吗?完成下题:设等差数列{a n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论有:设等比数列{b n }的前n 项积为T n (T n ≠0),则T 4,_______,_______,T 16T 12成等比数列.T 8T 4 T 12T 8[等差数列类比于等比数列时,和类比于积,减法类比于除法,可得类比结论为:设等比数列{b n }的前n 项积为T n ,则T 4,T 8T 4,T 12T 8,T 16T 12成等比数列.]2.在本例条件不变的情况下,你能写出一个更为一般的结论吗?(不用论证)[解] 对于任意k∈N +,都有数列S 2k -S k ,S 3k -S 2k ,S 4k -S 3k 是等差数列,且公差为k 2d.1.在等比数列与等差数列的类比推理中,要注意等差与等比、加与乘、减与除、乘法与乘方的类比特点.2.类比推理的思维过程观察、比较→联想、类推→猜测新的结论.即在两类不同事物之间进行对比,找出若干相同或相似之处后,推测这两类事物在其他方面的相同或相似之处.1.在等差数列{a n }中,如果m ,n ,p ,r∈N +,且m +n +p =3r ,那么必有a m +a n +a p =3a r ,类比该结论,写出在等比数列{b n }中类似的结论,并用数列知识加以证明.[解] 类似结论如下:在等比数列{b n }中,如果m ,n ,p ,r∈N +,且m +n +p =3r ,那么必有b m b n b p=b 3r .证明如下:设等比数列{b n }的公比为q ,则b m =b 1q m -1,b n =b 1q n -1,b p =b 1qp -1,b r =b 1qr -1,于是b m b n b p =b 1qm -1·b 1qn -1·b 1q p -1=b 31qm +n +p -3=b 31q3r -3=(b 1qr -1)3=b 3r ,故结论成立.类比推理在几何中的应用【例2】 如图所示,在平面上,设h a ,h b ,h c 分别是△ABC 三条边上的高,P 为△ABC 内任意一点,P 到相应三边的距离分别为p a ,p b ,p c ,可以得到结论p a h a +p b h b +p ch c=1.证明此结论,通过类比写出在空间中的类似结论,并加以证明.思路探究:三角形类比四面体,三角形的边类比四面体的面,三角形边上的高类比四面体以某一面为底面的高.[解] p a h a =12BC·p a12BC·h a =S △PBCS △ABC,同理,p b h b =S △P AC S △ABC ,p c h c =S △PABS △ABC .∵S △PBC +S △PAC +S △PAB =S △ABC ,∴p a h a +p b h b +p c h c =S △PBC +S △PAC +S △PAB S △ABC=1. 类比上述结论得出以下结论:如图所示,在四面体ABCD 中,设h a ,h b ,h c ,h d 分别是该四面体的四个顶点到对面的距离,P 为该四面体内任意一点,P 到相应四个面的距离分别为p a ,p b ,p c ,p d ,可以得到结论p a h a +p b h b +p c h c +p dh d=1.证明:p a h a =13S △BCD ·p a13S △BCD ·h a =V PBCDV ABCD,同理,p b h b =V PACD V ABCD ,p c h c =V PABD V ABCD ,p d h d =V PABCV ABCD .∵V PBCD +V PACD +V PABD +V PABC =V ABCD , ∴p a h a +p b h b +p c h c +p d h d =V PBCD +V PACD +V PABD +V PABCV ABCD=1.1.在本例中,若△ABC 的边长分别为a ,b ,c ,其对角分别为A ,B ,C ,那么由a =b·cos C+c·cos B 可类比四面体的什么性质?[解] 在如图所示的四面体中,S 1,S 2,S 3,S 分别表示△PAB,△PBC,△PCA,△ABC 的面积,α,β,γ依次表示平面PAB ,平面PBC ,平面PCA 与底面ABC 所成二面角的大小.猜想S =S 1·cos α+S 2·cos β+S 3·cos γ.2.在本例中,若r 为三角形的内切圆半径,则S △=12(a +b +c)r ,请类比出四面体的有关相似性质.[解] 四面体的体积为V =13(S 1+S 2+S 3+S 4)r(r 为四面体内切球的半径,S 1,S 2,S 3,S 4为四面体的四个面的面积.1.平面图形与空间图形类比平面图形 点 线 边长 面积 线线角 三角形 空间图形线面面积体积二面角四面体2.类比推理的一般步骤(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质推测另一类事物的性质,得出一个明确的结论.类比推理在其他问题中的应用1.鲁班发明锯子的思维过程为:带齿的草叶能割破行人的腿,“锯子”能“锯”开木材,它们在功能上是类似的.因此,它们在形状上也应该类似,“锯子”应该是齿形的.你认为该过程为归纳推理还是类比推理?[提示] 类比推理.2.已知以下过程可以求1+2+3+…+n 的和.因为(n +1)2-n 2=2n +1, n 2-(n -1)2=2(n -1)+1, ……22-12=2×1+1,有(n +1)2-1=2(1+2+…+n)+n , 所以1+2+3+…+n =n 2+2n -n 2=n (n +1)2.类比以上过程试求12+22+32+…+n 2的和. [提示] 因为(n +1)3-n 3=3n 2+3n +1, n 3-(n -1)3=3(n -1)2+3(n -1)+1, ……23-13=3×12+3×1+1,有(n +1)3-1=3(12+22+…+n 2)+3(1+2+3+…+n)+n , 所以12+22+…+n 2=13⎝ ⎛⎭⎪⎫n 3+3n 2+3n -3n 2+5n 2=2n 3+3n 2+n 6=n (n +1)(2n +1)6.【例3】 已知椭圆具有性质:若M ,N 是椭圆C 上关于原点对称的两个点,点P 是椭圆上任意一点,当直线PM ,PN 的斜率k PM ,k PN 都存在时,那么k PM 与k PN 之积是与点P 的位置无关的定值,试写出双曲线x2a 2-y2b2=1(a>0,b>0)具有类似特征的性质,并加以证明. 思路探究:双曲线与椭圆类比→椭圆中的结论 →双曲线中的相应结论→理论证明[解] 类似性质:若M ,N 为双曲线x 2a 2-y2b 2=1(a>0,b>0)上关于原点对称的两个点,点P 是双曲线上任意一点,当直线PM ,PN 的斜率k PM ,k PN 都存在时,那么k PM 与k PN 之积是与点P 的位置无关的定值.证明如下:设点M ,P 的坐标分别为(m ,n),(x ,y),则 N(-m ,-n).因为点M(m ,n)是双曲线上的点, 所以n 2=b 2a 2m 2-b 2.同理y 2=b 2a2x 2-b 2,则k PM ·k PN =y -n x -m ·y +n x +m =y 2-n 2x 2-m 2=b 2a 2·x 2-m 2x 2-m 2=b2a2(定值).1.两类事物能进行类比推理的关键是两类对象在某些方面具备相似特征.2.进行类比推理时,首先,找出两类对象之间可以确切表达的相似特征.然后,用一类对象的已知特征去推测另一类对象的特征,从而得到一个猜想.2.我们知道: 12=1,22=(1+1)2=12+2×1+1, 32=(2+1)2=22+2×2+1, 42=(3+1)2=32+2×3+1, ……n 2=(n -1)2+2(n -1)+1,将以上各式的左右两边分别相加,整理得n 2=2×[1+2+3+…+(n -1)]+n , 所以1+2+3+…+(n -1)=n (n -1)2.类比上述推理方法写出求12+22+32+…+n 2的表达式的过程. [解] 已知: 13=1,23=(1+1)3=13+3×12+3×1+1, 33=(2+1)3=23+3×22+3×2+1, 43=(3+1)3=33+3×32+3×3+1, ……n 3=(n -1)3+3(n -1)2+3(n -1)+1, 将以上各式的左右两边分别相加,得(13+23+…+n 3)=[13+23+…+(n -1)3]+3[12+22+…+(n -1)2]+3[1+2+…+(n -1)]+n , 整理得n 3=3(12+22+…+n 2)-3n 2+3[1+2+…+(n -1)]+n , 将1+2+3+…+(n -1)=n (n -1)2代入整理可得12+22+…+n 2=2n 3+3n 2+n 6,即12+22+…+n 2=n (2n +1)(n +1)6.1.类比推理的特点(1)类比推理是从人们已经掌握的事物的特征,推测被研究的事物的特征,所以类比推理的结果具有猜测性,不一定可靠.(2)类比推理以旧的知识作基础,推测新的结果,具有发现的功能,因此类比在数学发现中具有重要作用,但必须明确,类比并不等于论证.2.类比推理与归纳推理的比较 归纳推理类比类推相同点 根据已有的事实,经过观察、分析、比较、联想,提出猜想,都属于归纳推理不 同 点特点 由部分到整体,由个别到一般 由特殊到特殊推理过程 从一类事物中的部分事物具有的属性,猜测该类事物都具有这种属性两类对象具有类似的特征,根据其中一类对象的特征猜测另一类对象具有相应的类似特征1.下列说法正确的是( )A .由合情推理得出的结论一定是正确的B .合情推理必须有前提有结论C .合情推理不能猜想D .合情推理得出的结论不能判断正误B [根据合情推理可知,合情推理必须有前提有结论.]2.已知扇形的弧长为l ,半径为r ,类比三角形的面积公式S =底×高2,可知扇形面积公式为( )A.r22 B.l 22 C.lr 2D .无法确定C [扇形的弧长对应三角形的底,扇形的半径对应三角形的高,因此可得扇形面积公式S =lr2.]3.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.1∶8 [由平面和空间的知识,可知面积之比与边长之比成平方关系,在空间中体积之比与棱长之比成立方关系,故若两个正四面体的棱长的比为1∶2,则它们的体积之比为1∶8.]4.在计算“1×2+2×3+…+n(n +1)”时,有如下方法:先改写第k 项:k(k +1)=13[k(k +1)(k +2)-(k -1)k·(k+1)],由此得1×2=13(1×2×3-0×1×2),2×3=13(2×3×4-1×2×3),……n(n +1)=13[n(n +1)(n +2)-(n -1)n(n +1)],相加得1×2+2×3+…+n(n +1)=13n(n +1)(n +2).类比上述方法,请你计算“1×3+2×4+…+n(n +2)”,将其结果写成关于n 的一次因式的积的形式.[解] 1×3=16×(1×2×9-0×1×7),2×4=16×(2×3×11-1×2×9),3×5=16×(3×4×13-2×3×11),……n(n +2)=16[n(n +1)(2n +7)-(n -1)n(2n +5)],各式相加,得1×3+2×4+3×5+…+n(n +2)=16n(n +1)(2n +7).。
实验与归纳推理课型:新授课课时:一课时年级:七年级一、教材分析《实验与归纳推理》,是浙教版七年级下册第五章《分式》后的阅读材料,属于拓展和选学内容。
本节课的主要内容是直线分圆实验,以此为载体,呈现实验和归纳推理的全过程.本节课的学习,对学生面临复杂问题时策略的形成以及学生归纳能力的培养都起着重要作用.二、教学目标知识技能:运用实验与归纳推理解决生活中的问题,掌握用表格整理数据,进行有序观察;过程方法:经历实验方案的形成和操作过程,感受验证的必要性,渗透化归思想;问题解决:培养从生活中抽象出数学问题的能力,经历从简单到复杂解决问题的过程,培养和发展通过观察数的特征,对数进行拆分得到猜想的能力;情感态度:经历实验过程中思维的冲突,感受数学思考过程中的合理性和严谨性. 建立积极的面对未知生活的良好心态.三、教学重难点四、教法学法教法:这节课主要将“启发思考”与“动手操作”相结合进行教学.围绕本节课内容,引导学生经历从动手实验直观感知,到观察数据形成猜想,最后验证归纳出规律的过程,学生积极参与,培养提出问题、分析问题、解决问题的能力.学法:让每一个学生积极参与课堂,在一个个思维冲突中推动知识的建构,通过“自主探究”、“合作交流”等方式,由“学会”变成“会学”和“乐学”,主动经历数学知识形成的过程.五、教学过程环节一情境引入,激发兴趣1.引入:同学们,你们看过《奔跑吧,兄弟》吗?其中有一集是嘉宾穿越红外线网。
红外线网把空间分得越细,游戏难度肯定越高吧?那么,怎样会最细呢?【设计意图】从学生喜闻乐见的综艺节目入手,勾起学生兴趣,点燃课堂气氛.2.抽象出数学问题:为了研究这个问题,我们先从简单的平面入手,如果把这扇门看成一个圆,假设这里有10条红外线,即10条直线,平面被分得最细就是分得的块数最多,那么我们的问题就是:10条直线最多能将圆分成几块?【设计意图】将生活问题转化为数学问题,渗透建模思想,同时学生明确本节课要解决的问题,带着目的开始研究。
归纳推理教学目标:1.知识与技能目标:理解归纳推理的原理,并能运用解决一些简单的问题。
2.过程与方法目标:通过自主、合作与探究实现“一切以学生为中心”的理念。
3.情感、态度与价值观:感受数学的人文价值,提高学生的学习兴趣,使其体会到数学学习的美感。
教学重点:归纳推理的原理教学难点:归纳推理的具体应用。
教法学法:自主、合作探究教学教学准备:多媒体电脑、课件、空间多面体模型等教学过程:1.创设情景:1.情景㈠:苹果落地的故事,正是基于这个发现,牛顿大胆地猜想,然后小心求证,终于发现了伟大的“万有引力定理”思考:整个过程对你有什么启发?教师:“科学离不开生活,离不开观察,也离不开猜想和证明”。
2.情景㈡:陈景润和他在“歌德巴赫猜想”证明中的伟大成就:任何一个大于4的偶数都可以写成两个奇素数之和。
如:6=3+3,8=3+5,10=5+5, 12=5+7,14=7+7, 16=5+11,…,1000=29+971,1002=139+863,……2.探求研究:探究1.学生根据自备的多面体进行观察,统计多面体的面数、顶点数和棱数;(学生实验与教师课件演示结合)探究2.观察、猜想它们之间是否有稳定的数量关系?探究3.整理所得结论,并尝试证明;若得证,则改写成定理,否则修改猜想,进一步尝试证明。
教师指导,合作交流,归纳:22V V V =棱柱棱台棱锥=-,32E E E =棱柱棱台棱锥=,1F F F 棱柱棱台棱锥==+,F+V-E=2等等,其中“F+V-E=2”为“欧拉公式”。
3.概念讲解结合情景问题和探究过程所得,教师引导学生完成归纳推理的概念及分析。
定义:根据一类事物的部分事物具有某种属性,推断该类事物的每一个都具有这种属性的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).说明:⑴归纳推理的作用:发现新事实,获得新结论;(2)归纳推理的一般步骤:试验、观察→概括、推广→猜测一般性结论→证明;⑶归纳推理的结论不一定成立。
知识图谱归纳推理教案设计教案标题:知识图谱归纳推理教案设计教学目标:1. 学生能够理解知识图谱的概念和作用。
2. 学生能够使用知识图谱进行归纳推理,提取关键信息并建立知识之间的联系。
3. 学生能够应用知识图谱解决实际问题。
教学重点:1. 知识图谱的构建和应用。
2. 归纳推理的基本方法和技巧。
教学难点:1. 学生能够运用知识图谱进行深层次的归纳推理。
2. 学生能够将归纳推理应用于实际问题解决。
教学准备:1. 教师准备:电脑、投影仪、教学课件、学生练习题。
2. 学生准备:笔记本、铅笔、教材。
教学过程:引入:1. 教师通过展示一张知识图谱的图片或示例,引导学生讨论并提出对知识图谱的理解和认识。
2. 教师解释知识图谱的定义和作用,强调知识图谱在归纳推理中的重要性。
知识讲解:1. 教师介绍知识图谱的构建方法和步骤,包括主题选择、关键词提取、知识节点连接等。
2. 教师通过示例演示如何构建一个简单的知识图谱,并解释其中的思路和技巧。
归纳推理练习:1. 教师提供一段文本或一组信息,要求学生使用知识图谱的方法进行归纳推理,提取关键信息并建立知识之间的联系。
2. 学生个人或小组合作完成练习,教师适时给予指导和帮助。
实际问题解决:1. 教师提供一个实际问题或情境,要求学生运用知识图谱和归纳推理的方法解决问题。
2. 学生个人或小组合作完成问题解决,教师引导学生讨论和分享解决思路和结果。
总结:1. 教师总结本节课的教学内容和学习要点,强调知识图谱和归纳推理的重要性。
2. 学生回顾本节课的学习内容,并提出问题和疑惑。
3. 教师解答学生的问题,并鼓励学生继续探索和应用知识图谱和归纳推理的方法。
拓展活动:1. 学生自主选择一个感兴趣的主题,利用知识图谱的方法进行深入研究和归纳推理,并展示自己的成果。
2. 学生可以尝试使用在线知识图谱工具或软件进行知识图谱的构建和应用。
教学反思:1. 教师对本节课的教学进行总结和反思,评估学生的学习情况和效果。
第三课时 归纳推理、类比推理习课一、教学目标 1.知识与技能:(1)学会运用归纳、类比推理解决数学问题; (2)归纳、类比推理在高考中的应用。
2.方法与过程:通过最近几年高考试题和模拟试题中的推理问题,具体了解归纳、类比推理的思想。
3.情感态度与价值观:通过归纳、类比推理的学习,使学生具有合情推理的意思和思想。
二、教学重点:合情推理的应用。
教学难点:类比推理在递推数列中的应用。
三、教学方法:探析归纳,讲练结合 四、教学过程 (一)、例题探析例题1. (类比推理在几何中应用,2007年广东1模) 如图4所示,面积为S 的平面凸四边形的第i 条边的边长 记为(1,2,3,4),i a i =此四边形内任一点P 到第i 条边的距离记为(1,2,3,4)i h i =,若4312412,()1234i i a a a a Sk ih k ======∑则.类比以上性质,体积为V 三棱锥的第i 个面的面积记为(1,2,3,4)i S i =,此三棱锥内任一点Q 到第i 个面的距离记为(1,2,3,4)i H i =,若431241,()( )1234i i S S S S K iH ======∑则A.4V K B. 3V K C. 2V K D. VK练习1:(类比推理在几何中应用,2005年广东试卷第14题) 由图(1)有面积关系: PA B PAB S PA PB S PA PB ''∆∆''⋅=⋅,则由(2) 有体积关系:.P A B C P ABC V V '''--=练习2:(类比推理在几何中应用)如图(1),在平行四边形ABCD 中,有)(22222AD AB BD AC +=+,那么,如图(2)在平图(2)图(1)行六面体中1111D C B A ABCD -中,有=+++21212121DB CA BD AC .例题2、(1)1个点分线段为2段,2个点分线段为3段,3个点分线段为4段,则n 个点分线段___________段(归纳推理)(2) (2005年广东试卷第14题)设平面内有n 条直线)3(≥n ,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用)(n f 表示这n 条直线交点的个数,则)4(f =____________;当4>n 时,=)(n f .(用n 表示) (3) (把题(1)“类比”到平面,得到线分平面问题)(注意递推数列的应用) 一个平面用n 条直线去划分,最多能被分成几块?变1:平面内有n 个圆两两相交,且没有三个或三个以上的圆相交于同点,最多能把平面分多少块?变2:平面内有n 条抛物线,其中每两条都相交于两点,并且每三条都不相交于同一点,最多能把平面分多少块?(4)2006年广东试卷第16题:在德国不来梅举行的第48届世乒赛期间,某商店橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第1堆只有1层,就一个球;第2,3,4,堆最底层(第一层)分别按图4所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球,以()f n 表示第n 堆的乒乓球总数,则(3)_____f =;()_____f n =(答案用n表示).例题3、探求凸多面体的面数F 、顶点数V 和棱数E 之间的关系…ABCD图(1)D 1C 1B 1A 1DCBA图(2)B 杆子上金属片全部移到A 杆子上。
一、教学目标1. 知识与技能:(1)理解归纳推理的概念,掌握归纳推理的基本方法。
(2)能够运用归纳推理的方法解决实际问题。
2. 过程与方法:(1)通过观察、分析、比较等活动,培养学生的观察能力和分析能力。
(2)通过小组合作,培养学生的团队协作能力和沟通能力。
3. 情感态度与价值观:(1)激发学生对归纳推理的兴趣,培养他们的逻辑思维能力。
(2)引导学生树立科学的态度,提高他们的综合素质。
二、教学重点与难点1. 教学重点:(1)理解归纳推理的概念。
(2)掌握归纳推理的基本方法。
2. 教学难点:(1)运用归纳推理的方法解决实际问题。
(2)培养学生的逻辑思维能力。
三、教学过程1. 导入新课(1)通过生活中的实例,引导学生思考归纳推理的概念。
(2)提出问题:什么是归纳推理?归纳推理有什么特点?2. 理解归纳推理的概念(1)讲解归纳推理的定义、基本方法。
(2)通过实例分析,让学生理解归纳推理的运用。
3. 掌握归纳推理的基本方法(1)引导学生分析归纳推理的步骤,包括观察、分析、比较等。
(2)通过小组合作,让学生尝试运用归纳推理的方法解决实际问题。
4. 运用归纳推理解决实际问题(1)提出问题:如何运用归纳推理的方法解决实际问题?(2)让学生结合所学知识,运用归纳推理的方法解决实际问题。
5. 总结与反思(1)引导学生总结归纳推理的概念、基本方法。
(2)让学生反思自己在学习过程中的收获和不足。
四、教学评价1. 课堂表现:观察学生在课堂上的参与度、合作能力、表达能力等。
2. 作业完成情况:检查学生对归纳推理概念、基本方法的掌握程度。
3. 实际问题解决能力:评估学生运用归纳推理解决实际问题的能力。
五、教学资源1. 教学课件2. 归纳推理实例3. 小组合作学习资料六、教学反思1. 教师在教学过程中,要注意引导学生积极参与、思考,培养学生的逻辑思维能力。
2. 注重培养学生的团队合作能力,提高他们的沟通能力。
3. 根据学生的学习情况,及时调整教学策略,提高教学质量。
第二章推理与证明2.1.1 归纳推理一、教学目标1.核心素养通过对归纳推理的学习,使学生能够进行简单的归纳推理,培养学生的逻辑思维能力.2.学习目标(1)通过生活与数学实例使学生初步理解什么是归纳推理.(2)通过例题的讲解与练习的训练,使学生初步掌握归纳推理的方法与技巧,加强学生对归纳推理的理性认识.(3)通过本节课的学习,使学生能在今后的学习及日常生活中有意识地使用它们,以培养言之有理,论证有据的习惯.3.学习重点了解归纳推理的含义,能利用归纳进行简单的推理.4.学习难点用归纳进行推理并作出猜想.二、教学设计(一)课前设计1.预习任务任务1预习教材P22—P29思考:什么是推理?任务2什么是归纳推理?归纳推理有何特点?以前遇到过这类推理吗?2.预习自测1.下列关于归纳推理的说法中错误的是()A.归纳推理是由一般到一般的一种推理过程B.归纳推理是一种由特殊到一般的推理过程C.归纳推理得出的结论具有偶然性,不一定正确D.归纳推理具有由具体到抽象的认识功能解:A2.下图为一串白黑相间排列的珠子,按这种规律往下排列起来,那么第36颗珠子的颜色是()○○○●●○○○●●○○○●●○○……A.白色B.黑色C.白色可能性大D.黑色可能性大解:A3.由数列1,10,100,1000,…猜测该数列的第n项可能是()A.10nB.10n-1C.10n+1D.11n解:B4.观察图形规律,在其右下角的空格内画上合适的图形为()解:A观察可发现规律:①每行、每列中,方、圆、三角三种形状均各出现一次,②每行、每列有两个阴影一个空白,应为黑色矩形.答案为A.5.在平面直角坐标系内,方程xa+yb=1表示在x轴,y轴上的截距分别为a和b的直线,拓展到空间,在x轴,y轴,z轴上的截距分别为a,b,c(abc≠0)的平面方程为()A.xa+yb+zc=1B.xab+ybc+zca=1C.xyab+yzbc+zxca=1D.ax+by+cz=1 答案:A解析:从方程xa+yb=1的结构形式来看,空间直角坐标系中,平面方程的形式应该是xa+yb+zc=1.答案为A (二)课堂设计 1.知识回顾(1) 哥德巴赫猜想:观察4=2+2, 6=3+3, 8=5+3, 10=5+5, 12=5+7, 12=7+7, 16=13+3, 18=11+7, 20=13+7, ……, 50=13+37, ……, 100=3+97,猜测:任一偶数(除去2,它本身是一素数)可以表示成两个素数之和. 1742年写信提出,欧拉及以后的数学家无人能解,成为数学史上举世闻名的猜想. 1973年,我国数学家陈景润,证明了充分大的偶数可表示为一个素数与至多两个素数乘积之和,数学上把它称为“1+2”.(2) 费马猜想:法国业余数学家之王—费马(1601-1665)在1640年通过对020213F =+=,121215F =+=,2222117F =+=,32321257F =+=,4242165537F =+=的观察,发现其结果都是素数,于是提出猜想:对所有的自然数n ,任何形如221nn F =+的数都是素数. 后来瑞士数学家欧拉,发现5252142949672976416700417F =+==⨯不是素数,推翻费马猜想.(3) 四色猜想:1852年,毕业于英国伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色.”,四色猜想成了世界数学界关注的问题.1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用1200个小时,作了100亿逻辑判断,完成证明. 2.问题探究问题探究一 什么是推理?推理是人们思维活动的过程,是根据一个或几个已知的判断来确定一个新的判断的思维过程.(1)由铜、铁、铝、金、银能导电,能归纳出什么结论? 所有的金属都能导电.(2)由直角三角形、等腰三角形、等边三角形内角和180度,能归纳出什么结论? 所有的三角形内角和180度.(3)观察等式:2221342,13593,13579164+==++==++++==,能得出怎样的结论? 问题探究二 归纳推理的含义 ●活动一 什么是归纳推理?由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概栝出一般结论的推理,称为归纳推理(简称归纳).1 2 3 4 5 6 7 8 9 10●活动二 归纳推理的特点 由部分到整体,由特殊到一般 ●活动三 归纳推理的作用①发现新事实,获得新结论;②提供解决问题的思路和方向. ●活动四 如何进行归纳推理一般步骤:首先,通过观察特例发现某些相似性(特例的共性或一般规律);然后,把这种相似性推广为一个明确表述的一般命题(猜想);最后,对所得出的一般性的命题进行检验.问题探究三 利用归纳推理可以解决哪些问题? ● 活动一 运用归纳推理解决数列的问题例1 已知数列{a n }的前n 项和为S n ,a 1=23 ,且S n +1S n +2=a n (n ≥2),计算S 1,S 2,S 3,S 4,并猜想S n 的表达式.【知识点:归纳推理,数列的通项公式,猜想与证明;数学思想:特殊到一般】 详解 当n =1时,S 1=a 1=-23;当n =2时,1S 2=-2-S 1=-43,所以S 2=-34;当n =3时,1S 3=-2-S 2=-54,所以S 3=-45;当n =4时,1S 4=-2-S 3=-65,所以S 4=-56.猜想:S n =-n +1n +2,n ∈N *.点拔:归纳推理的一般步骤:归纳推理的思维过程大致是:实验、观察→概括、推广→猜测一般性结论.该过程包括两个步骤:(1)通过观察个别对象发现某些相同性质;(2)从已知的相同性质中推出一个明确表述的一般性命题(猜想). ●活动二 运用归纳推理解决图表的问题例2.将全体正整数排成一个三角形数阵:按照以上排列的规律,求第n 行(n ≥3)从左向右数第3个数.【知识点:归纳推理,数列的通项公式,猜想与证明;数学思想:特殊到一般】 详解:前(n -1)行共有正整数[1+2+…+(n -1)]个,即n 2-n2个,因此第n 行第3个数是全体正整数中第⎝ ⎛⎭⎪⎫n 2-n 2+3个,即为n 2-n +62. 例3.(1)有两种花色的正六边形地面砖,按下图的规律拼成若干个图案,则第六个图案中有菱形纹的正六边形的个数是( )A.26B.31C.32D.36(2)把1,3,6,10,15,21,…这些数叫做三角形数,这是因为个数等于这些数目的点可以分别排成一个正三角形(如图),试求第七个三角形数是________.【知识点:归纳推理,数列的通项公式,猜想与证明】 详解: (1)选B 法一:有菱形纹的正六边形个数如下表:图案 1 2 3 … 个数61116…由表可以看出有菱形纹的正六边形的个数依次组成一个以6为首项,以5为公差的等差数列,所以第六个图案中有菱形纹的正六边形的个数是6+5×(6-1)=31.法二:由图案的排列规律可知,除第一块无纹正六边形需6个有纹正六边形围绕(图案1)外,每增加一块无纹正六边形,只需增加5块菱形纹正六边形(每两块相邻的无纹正六边形之间有一块“公共”的菱形纹正六边形),故第六个图案中有菱形纹的正六边形的个数为:6+5×(6-1)=31.故选B.(2)第七个三角形数为1+2+3+4+5+6+7=28. 答案为:(1)B (2)28点拔:解决图形中归纳推理的方法解决与图形有关的归纳推理问题常从以下两个方面着手: (1)从图形的数量规律入手,找到数值变化与数量的关系.(2)从图形的结构变化规律入手,找到图形的结构每发生一次变化后,与上一次比较,数值发生了怎样的变化.●活动二 运用归纳推理解决函数与数列相结合的问题 例4 设2()41,f n n n n N +=++∈,(1),(2),(3),(4),...,(10)f f f f f 计算的值,同时作出归纳推理,并用n =40验证猜想是否正确.【知识点:归纳推理,数列的通项公式,数列的函数概念及表示法,猜想与证明】 详解:2(1)114143,f =++= 2(2)224147,f =++= 2(3)334153,f =++= 2(4)414161,f =++= 2(5)554171,f =++= 2(6)664183,f =++= 2(7)774197,f =++= 2(8)8841113,f =++= 2(9)9941131,f =++= 2(10)101041151,f =++= 43,47,53,61,71,83,97,113,131,151都是质数. 当n 取任何正整数时,2()41f n n n =++的值都是质数.因为当n =40时,2(40)4040414141,f =++=⨯所以f (40)是合数.因此,上面由归纳推理的得到的猜想不正确.点拔:1.①统计学中,从总体中抽取样本,然后用样本估计总体,是否属归纳推理? ②归纳推理有何作用? (发现新事实,获得新结论,是做出科学发现的重要手段) ③归纳推理的结果是否正确?(不一定)2.所谓归纳推理,就是根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,叫做归纳推理(简称归纳).归纳是从特殊到一般的过程,它属于合情推理.3.课堂总结 【知识梳理】归纳法是对观察、实验和调查所得的个别事实,概括出一般原理的一种思维方式和推理形式,其主要环节是归纳推理.归纳推理可以分为三种方式:完全归纳法,简单枚举法,判明因果联系的归纳法. 【难点突破】归纳法的主要作用在于:1、科学试验的指导方法:为了寻找因果关系而利用归纳法安排可重复性的试验.2、整理经验材料的方法:归纳法从材料中找出普遍性或共性,从而总结出定律和公式.归纳法的优点在于判明因果联系,然后以因果规律作为逻辑推理的客观依据,并且以观察、试验和调查为手段,所以结论一般是可靠的.归纳法也有其局限性,它只涉及线性的,简单的和确定性的因果联系,而对非线性因果联系,双向因果联系以及随机性因果联系等复杂的问题,归纳法就显得无能为力了.归纳法是一种或然性推理方法,不可能做到完全归纳,总有许多对象没有包含在内,因此,结论不一定可靠.4.随堂检测1.n个连续自然数按规律排列如下:根据规律,从2010到2012,箭头的方向依次是()A.↓→B.→↑C.↑→D.→↓【知识点:归纳推理,猜想与证明】解:C观察特例的规律知:位置相同的数字是以4为公差的等差数列,由11到1012可知从2010到2012为↑→.故答案为C.2.已知数列{a n}中,a1=1,当n≥2时,a n=2a n-1+1,依次计算a2,a3,a4后,猜想a n的一个表达式为()A.n2-1B.n2-2n+2C.2n-1D.2n-1+1【知识点:归纳推理,数列的通项公式,猜想与证明;数学思想:特殊到一般】解:C∵a1=1,a n=2a n-1+1,∴a2=2×1+1=3,a3=2×3+1=7,a4=2×7+1=15,归纳猜想知a n=2n-1,即答案为C.3.观察下列各等式:22-4+66-4=2,55-4+33-4=2,77-4+11-4=2,1010-4+-2-2-4=2,依照以上各式成立的规律,得到一般性的等式为( ) 【知识点:归纳推理,猜想与证明;数学思想:特殊到一般】 A.n n -4+8-n (8-n)-4=2 B.n +1(n +1)-4+(n +1)+5(n +1)-4=2C.n n -4+n +4(n +4)-4=2 D.n +1(n +1)-4+n +5(n +5)-4=2解:A 观察等式知,左边分子之和等于8,分母之和等于0,右边都是2,只有选项A 适合.答案为A4.顺次计算数列:1,1+2+1,1+2+3+2+1,1+2+3+4+3+2+1,…的前4项的值,由此猜测:n a =1+2+3+…+(n -1)+n +(n -1)+…+3+2+1的结果为________. 【知识点:归纳推理,数列的通项公式,猜想与证明;数学思想:特殊到一般】 解:2n a 1=1=12,a 2=1+2+1=4=22, a 3=1+2+3+2+1=9=32, a 4=1+2+3+4+3+2+1=16=42,…………………………………………………………, 由此可以猜想a n =n 2. 答案:n 25.由三角形的内角和是180°,凸四边形的内角和是360°=2×180°,凸五边形的内角和是540°=3×180°,归纳出结论:______________________________________________________. 【知识点:归纳推理,猜想与证明;数学思想:特殊到一般】 解 凸n 边形的内角和是(n -2)×180°(n ≥3) (三)课后作业 基础型 自主突破 1.观察下列等式:231111222⨯=-⨯; 2231411112223232⨯+⨯=-⨯⨯⨯; 2333141511112223234242⨯+⨯+⨯=-⨯⨯⨯⨯;……………………………………………由以上等式推测到一个一般结论为________________________________. 【知识点:归纳推理,数列的通项公式,猜想与证明;数学思想:特殊到一般】 解:233141512111122232342(1)242n nn n n +⨯+⨯+⨯+⋯+⨯=-⨯⨯⨯⨯+⨯ 2.观察①223sin 6cos 36sin 6cos364︒+︒+︒︒=; ②223sin 10cos 40sin10cos 404︒+︒+︒︒=;③223sin 43cos 73sin 43cos 734︒+︒+︒︒=;以上等式的结构特点可提出一个猜想的等式为_________________________. 【知识点:归纳推理,数列的通项公式,猜想与证明;数学思想:特殊到一般】 解:223sin cos (30)sin cos(30)4αααα+︒++︒+=3.观察下列等式:1a b +=;223a b +=;334a b +=;447a b +=;5511a b +=;…;则88a b += .【知识点:归纳推理】解:47 1+3=4,3+4=7,4+7=11,7+11=18,11+18=29,18+29=474.图中的三角形称为希尔宾斯基三角形,在如图所示的四个三角形中,着色三角形的个数依次构成数列的前四项,依此着色方案继续对三角形着色,请猜想着色三角形的个数的通项公式_______.【知识点:归纳推理,数列的通项公式,猜想与证明;数学思想:特殊到一般】 解:13n - 前4个数依次为01233,3,3,3,猜想即可 能力型 师生共研 5. 观察下列等式:22π2π4(sin )(sin )12333--+=⨯⨯;2222π2π3π4π4(sin )(sin )(sin )(sin )2355553----+++=⨯⨯;2222π2π3π6π4(sin )(sin )(sin )(sin )3477773----+++⋅⋅⋅+=⨯⨯;2222π2π3π8π4(sin )(sin )(sin )(sin )4599993----+++⋅⋅⋅+=⨯⨯;………………………………………………… 照此规律:2222π2π3π2π(sin)(sin )(sin )(sin )21212121n n n n n ----+++⋅⋅⋅+=++++ . 【知识点:归纳推理,数列的通项公式,猜想与证明;数学思想:特殊到一般】 解:4(1)3n n +6.古希腊毕达哥拉斯学派的数学家研究过各种“多边形数”.如三角形数1,3,6,10,…,第n 个三角形数为()2111222n n n n +=+.记第n 个k 边形数为(),N n k ()3k ≥.以下列出了部分k 边形数中第n 个数的表达式: 三角形数:()211,322N n n n =+; 正方形数:()2,4N n n =; 五边形数:()231,522N n n n =-; 六边形数:()2,62N n n n =-; ……………………………………可以推测(),N n k 的表达式,由此计算()10,24N =_________.【知识点:归纳推理,数列的通项公式,数列的函数概念及表示法,猜想与证明;数学思想:特殊到一般】 解:1000()22113243,32222N n n n n n --=+=+, ()224244,422N n n n n --==+,()22315245,52222N n n n n n --=-=+()226246,6222N n n n n n --=-=+由此归纳推理可得()224,22k kN n k n n --=+()224242410,241010100022N --=⨯+⨯= 7.埃及数学中有一个独特现象:除23用一个单独的符号表示以外,其它分数都可以写成若干个单分数和的形式.例如2115315=+,可以这样理解:假定有两个面包,要平均分给5个人,如果每人12不够,每人13,余13,再将这分成5份,每人得115,这样每人分得11315+.形如2(5,7,9,11n n =⋯)的分数的分解:2115315=+,2117428=+,. 2119545=+,… 按此规律,211= ; 2n= (5,7,9,11n =⋯) . 【知识点:归纳推理,数列的通项公式,猜想与证明;数学思想:特殊到一般】 解:()11111166622n n n ++++;(1)假定有两个面包,要平均分给11个人,每人15不够,每人16,则余16,再将这16分成11份,每人得166,这样每人分得11666+,故21111666=+;(2)假定有两个面包,要平均分给n 个人,每人112n -不够,每人分112n +,则余112n +,再将这112n +分成n 份,则每人得1(1)2n n +,这样每人分得()111122n n n +++,因此本题的答案是:()11111166622n n n ++++;8.如图:点列{}{},n n A B 分别在某锐角的两边上,且*1122,,n n n n n n A A A A A A n ++++=≠∈N ,*1122,,n n n n n n B B B B B B n ++++=≠∈N .(P ≠Q 表示点P 与Q 不重合)若n n n d A B =,n S 为1n n n A B B +△的面积,则 A.{}n S 是等差数列 B.{}2n S 是等差数列 C.{}n d 是等差数列 D.{}2n d 是等差数列【知识点:归纳推理,猜想与证明;数学思想:特殊到一般】 解:An S 表示点n A 到对面直线的距离(设为n h )乘以1n n B B +长度一半,即112n n n n S h B B +=,由题目中条件可知1n n B B +的长度为定值,那么我们需要知道n h 的关系式,过1A 作垂直得到初始距离1h ,那么1,n A A 和两个垂足构成了等腰梯形,那么11tan n n n h h A A θ+=+⋅,其中θ为两条线的夹角,即为定值,那么1111(tan )2n n n n S h A A B B θ+=+⋅,111111(tan )2n n n n S h A A B B θ+++=+⋅,作差后:1111(tan )2n n n n n n S S A A B B θ+++-=⋅,都为定值,所以1n n S S +-为定值.故选A.9.平面内两条直线最多有1个交点,3条直线两两相交最多有3个交点,4条直线两两相交最多有6个交点,…,n 条直线两两相交最多有_________个交点.【知识点:归纳推理,数列的通项公式,猜想与证明;数学思想:特殊到一般】 解:(1)2n n + 两条直线最多有1212⨯=个交点,3条直线两两相交最多有2332⨯=个交点,4条直线两两相交最多有3462⨯=个交点,…,n 条直线两两相交最多有(1)2n n +个交点 10.设数列{}n a 的前项n 和是n S ,数列{}n S 的前n 项之积是n T ,且1n n S T +=,则数列1n a ⎧⎫⎨⎬⎩⎭中最接近2019的项是( )【知识点:归纳推理,猜想与证明;数学思想:特殊到一般】 A.第43项 B.第44项 C.第45项D.第46项解:B 当1n =时,111S T +=,即112S =;当2n =时,222121S T S S S +=+=,即223S =;当3n =时,3331231S T S S S S +=+=,即334S =;…………………………猜想1n nS n =+.所以1111(1)n n n n n a S S n n n n --=-=-=++,1(1)nn n a =+,数列1n a ⎧⎫⎨⎬⎩⎭中最接近2019的项是 44144451980a =⨯= 探究型 多维突破11.设a n 是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1·a n =0(n ≥1,n ∈N ),试归纳出这个数列的一个通项公式.【知识点:归纳推理,数列的通项公式,数列的函数概念及表示法;数学思想:推理论证】解:当n =1时,a 1=1,且2a 22-a 21+a 2·a 1=0, 即2a 22+a 2-1=0解得a 2=12;当n =2时,由3a 23-2(12)2+12a 3=0,即6a 23+a 3-1=0,解得a 3=13,…由此猜想:a n =1n .12.已知:sin 230°+sin 290°+sin 2150°=32,sin 25°+sin 265°+sin 2125°=32,通过观察上述等式的规律,请写出一般性的命题:________________=32(*),并给出(*)式的证明. 【知识点:归纳推理,猜想与证明;数学思想:特殊到一般】 解:一般式为:sin 2α+sin 2(α+60°)+sin 2(α+120°)=32.证明如下:左边=1-cos2α2+1-cos(2α+120°)2+1-cos(2α+240°)2=32-12[cos2α+cos(2α+120°)+cos(2α+240°)]=32-12(cos2α+cos2αcos120°-sin2αsin120°+cos2αcos240°-sin2αsin240°) =32-12⎝ ⎛⎭⎪⎫cos2α-12cos2α-32sin2α-12cos2α+32sin2α=32=右边,所以sin 2α+sin 2(α+60°)+sin 2(α+120°)=32成立.13.已知数列{a n }的第1项a 1=1,且a n +1=a n1+a n (n =1,2,…),试归纳出这个数列的通项公式.【知识点:归纳推理,数列的通项公式,数列的函数概念及表示法,猜想与证明;数学思想:特殊到一般】 解:当n =1时,a 1=1 当n =2时,a 2=11+1=12;当n =3时,a 3=121+12=13;当n =4时,a 4=131+13=14.观察可得,数列的前4项都等于相应序号的倒数,由此猜想,这个数列的通项公式为:a n =1n (n =1,2,…). (四)自助餐1.数列23716,,,,57x ⋯,,中的x 等于( ) A.28 B.27 C.33 D.32【知识点:归纳推理,猜想与证明】解:D 2223211,7342,16793-==-==-==,∴2164x -=,32x =2.黑白两种颜色的正六形地面砖块按如图的规律拼成若干个图案,则第五个图案中有白色地面砖( )块.A.21B.21C.22D.23【知识点:归纳推理,猜想与证明】解:C 白色地面砖的数量依次为6,10,14,18,223.已知21111()12f n n n n n=+++⋯+++则( ) A.()f n 中共有n 项,当2n =时,11(2)23f =+B.()f n 中共有1n +项,当2n =时,111(2)234f =++C.()f n 中共有2n n -项,当2n =时,11(2)23f =+D.()f n 中共有21n n -+项,当2n =时,111(2)234f =++【知识点:归纳推理,数列的通项公式,数列的函数概念及表示法,猜想与证明;数学思想:特殊到一般】 解:D4.观察下列几个三角恒等式:①tan10tan 20tan 20tan 60tan 60tan101︒︒+︒︒+︒︒=; ②()()tan5tan100tan100tan 15tan 15tan51︒︒+︒-︒+-︒︒=; ③tan13tan 35tan 35tan 42tan 42tan131︒︒+︒︒+︒︒=一般地,若tan ,tan ,tan αβγ都有意义,你从这三个恒等式中猜想得到的一个结论为____________________________________ .【知识点:归纳推理,猜想与证明;数学思想:特殊到一般】 解:90tan tan tan tan tan tan 1αβγαββγγα++=︒++=当时,5.已知数列:12132143211121231234⋯,,,,,,,,,,,依它的前10项的规律推出这个数列的第2019项是________. 解:623根据前10 项的规律可以知道,分子按1;2,1;3,2,1;4,3,2,1,…,的规律排列.分母按1;1,2;1,2,3;1,2,3,4;…,的规律排列,出这个数列的第2019项出现在第64组中第3个数,即为623. 【知识点:归纳推理,猜想与证明】6.若凸k 边形的内角和为()f k ,则凸1k +边形的内角和(1)f k +*(3,)k k N ≥∈等于( )A.()2f k π+B.()f k π+C.3()2f k π+D.()2f k π+【知识点:归纳推理,递推数列,数列的函数概念及表示法,猜想与证明;数学思想:特殊到一般】解:B 凸1k +边形的内角和比凸k 边形的内角和多出一个三角形的内角和,又三角形的内角和为π,故(1)()f k f k π+=+.7.已知a 1=1,a n +1>a n ,且(a n +1-a n )2-2(a n +1+a n )+1=0,计算a 2,a 3,猜想a n =________. 解:n 2 计算得a 2=4,a 3=9,所以猜想a n =n 2.答案为n 2 8. 用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n 个“金鱼”图需要火柴的根数为( ) A.6n -2 B.8n -2 C.6n +2 D.8n +2【知识点:归纳推理,数列的通项公式,猜想与证明;数学思想:特殊到一般】解:C 从①②③可以看出,从图②开始每个图中的火柴棒都比前一个图中的火柴棒多6根,故火柴棒数成等差数列,第一个图中火柴棒为8根,故可归纳出第n 个“金鱼”图需火柴棒的根数为6n +2.答案为C9.观察下列各式:1=12 ,2+3+4=32,,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…可以得出的一般结论 ( )A.n +(n +1)+(n +2)+…+(3n -2)=n 2B.n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2C.n +(n +1)+(n +2)+…+(3n -1)=n 2D.n +(n +1)+(n +2)+…+(3n -1)=(2n -1)2【知识点:归纳推理,数列的通项公式;数学思想:特殊到一般】解:B 观察各等式的构成规律可以发现,各等式的左边是2n -1(n ∈N *)项的和,其首项为n ,右边是项数的平方,故第n 个等式首项为n ,共有2n -1项,右边是(2n -1)2, 即n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2. 答案为B10.在△ABC 中,不等式1A +1B +1C ≥9π成立,在四边形中不等式1A +1B +1C +1D ≥162π成立,在五边形中1A +1B +1C +1D +1E ≥253π成立,猜想在n 边形A 1A 2…A n 中有不等式:________成立. 【知识点:归纳推理,猜想与证明;数学思想:特殊到一般】解:1A 1+1A 2+1A 3+…+1A n ≥n 2(n -2)π 不等式的左边是n 个内角倒数的和,右边分子是n 2,分母是(n -2)π,故在n 边形A 1A 2…A n 中有不等式1A 1+1A 2+1A 3+…+1A n ≥n 2(n -2)π成立.答案为1A 1+1A2+1A 3+…+1A n ≥n 2(n -2)π11.在平面几何里有射影定理:设△ABC 的两边AB ⊥AC ,D 是A 点在BC 上的射影,则AB 2=BD ·B C.拓展到空间,在四面体A -BCD 中,DA ⊥平面ABC ,点O 是A 在平面BCD 内的射影,类比平面三角形射影定理,△ABC 、△BOC 、△BDC 三者面积之间关系为________. 【知识点:归纳推理,猜想与证明】解:S 2△ABC =S △OBC ·S △DBC 将直角三角形的一条直角边长类比到有一侧棱AD 与一侧面ABC 垂直的四棱锥的侧面ABC 的面积,将此直角边AB 在斜边上的射影及斜边的长,类比到△ABC 在底面的射影△OBC 及底面△BCD 的面积可得S 2△ABC =S △OBC ·S △DB C .答案为S 2△ABC =S △OBC ·S △DBC12.把1,3,6,10,15,21,…这些数叫做三角形数,这是因为这些数目的点可以排成一个正三角形(如下图),则第七个三角形数是( )A.27B.28C.29D.30【知识点:归纳推理,猜想与证明】解:B 后面的三角形数依次在前面的基础上顺次加上2,3,4,5,…,故第七个三角形数为21+7=28.答案:B13.(2015·陕西文)观察下列等式 1-12=121-12+13-14=13+141-12+13-14+15-16=14+15+16 …………………………………… 据此规律,第n 个等式可为________.【知识点:归纳推理,数列的通项公式,猜想与证明;数学思想:特殊到一般】 解:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n . 等式左侧规律明显,右侧是后几个自然数的倒数和,再注意到左右两侧项数关系求得. 答案:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n . 14.已知数列{a n }的前n 项和为S n ,a 1=1且S n -1+1S n+2=0(n ≥2),计算S 1、S 2、S 3、S 4,并猜想S n 的表达式.【知识点:归纳推理,数列的通项公式,猜想与证明;数学思想:特殊到一般】 解:当n =1时,S 1=a 1=1;当n =2时,1S 2=-2-S 1=-3,∴S 2=-13;当n =3时,1S 3=-2-S 2=-53;∴S 3=-35;当n =4时,1S 4=-2-S 3=-75,∴S 4=-57.猜想:S n =-2n -32n -1(n ∈N *).15.若a 1、a 2∈R +,则有不等式a 21+a 222≥⎝⎛⎭⎪⎫a 1+a 222成立,此不等式能推广吗?请你至少写出两个不同类型的推广.【知识点:归纳推理,猜想与证明】解:本例可以从a 1、a 2的个数以及指数上进行推广.第一类型:a 21+a 22+a 233≥(a 1+a 2+a 33)2,a 21+a 22+a 23+a 244≥(a 1+a 2+a 3+a 44)2,…,a 21+a 22+…+a 2n n ≥(a 1+a 2+…+a n n)2;第二类型:a 31+a 322≥(a 1+a 22)3,a 41+a 422≥(a 1+a 22)4,…,a n1+a n 22≥(a 1+a 22)n ;第三类型:a 31+a 32+a 333≥(a 1+a 2+a 33)3,…,a m 1+a m 2+……+a mnn ≥(a 1+a 2+…+a n n)m .上述a 1、a 2、…、a n ∈R +,m 、n ∈N *.16.(1)如图所示为四个平面图形,数一数,每个平面图形各有多少个顶点?多少条边?它们将平面分成了多少个区域?顶点数边数 区域数 a b c d(2)观察上表,推断一个平面图形的顶点数、边数、区域数之间有什么关系?(3)现已知某个平面图形有1006个顶点,且围成了1006个区域,试根据以上关系确定这个平面图形有多少条边?【知识点:归纳推理,数列的通项公式,猜想与证明】 解:(1)各平面图形的顶点数、边数、区域数分别为:顶点数 边数 区域数 a 3 3 2 b 8 12 6 c 6 9 5 d10157(2)观察:3+2-3=2;8+6-12=2;6+5-9=2;10+7-15=2.通过观察发现,它们的顶点数V,边数E,区域数F之间的关系为V+F-E=2.(3)由已知V=1006,F=1006,代入(2)中关系式,得E=2010.故这个平面图形有2010条边.。
广东省高中数学青年教师说课比赛评委用稿“归纳推理”教案一、教学目标:1. 让学生理解归纳推理的定义和特点;2. 培养学生运用归纳推理解决实际问题的能力;3. 提高学生分析、归纳、推理的能力,培养逻辑思维。
二、教学内容:1. 归纳推理的定义和分类;2. 归纳推理的方法和步骤;3. 典型例题解析和练习。
三、教学重难点:1. 归纳推理的定义和特点;2. 运用归纳推理方法解决实际问题;3. 分析、归纳、推理能力的培养。
四、教学方法:1. 采用问题驱动法,引导学生主动探究;2. 利用案例分析,让学生体验归纳推理的过程;3. 运用小组合作学习,培养学生的团队精神和交流能力。
五、教学过程:1. 导入新课:通过生活中的实例,引发学生对归纳推理的兴趣;2. 知识讲解:讲解归纳推理的定义、分类、方法和步骤;3. 例题解析:分析典型例题,引导学生掌握归纳推理的应用;4. 练习巩固:学生独立完成练习题,检验对归纳推理的理解;5. 总结反思:让学生谈谈对本节课归纳推理的认识和收获。
教案篇幅有限,仅提供了五个章节的内容。
您可以根据实际需要,继续编写后续章节。
希望这个教案能对您的说课比赛有所帮助!祝您比赛成功!六、教学评价:1. 通过课堂提问、练习答题等方式,评估学生对归纳推理概念的理解程度;2. 观察学生在小组合作中的表现,评价其团队协作和交流能力;3. 分析学生的练习成果,评估其运用归纳推理解决实际问题的能力。
七、教学拓展:1. 邀请数学专家进行专题讲座,深入讲解归纳推理在数学研究中的应用;2. 组织学生参加数学竞赛,提高其逻辑思维和归纳推理能力;3. 开展数学研究性学习,让学生尝试运用归纳推理解决更复杂的问题。
八、教学资源:1. 课件、教案和练习题;2. 数学教材和相关参考书;3. 网络资源,如数学博客、论坛等。
九、教学时间:1. 授课时间:1课时(45分钟);2. 练习时间:课余自主练习。
十、教学反思:1. 反思教学过程中学生的参与度,调整教学策略,提高课堂互动;2. 关注学生的学习效果,针对性地进行辅导,提高教学质量;3. 不断丰富自己的专业知识,提高自身的教育教学水平。
幼儿归纳与演绎推理能力培养教案引言:归纳与演绎是逻辑思维中重要的推理方式,能够培养幼儿的思维能力和解决问题的能力。
本教案旨在通过针对性的活动和训练,帮助幼儿培养归纳与演绎推理能力,提高他们的思维逻辑性和创造力。
一、归纳推理能力培养归纳推理是基于观察和实际情况,从具体的事物或事件中总结出共同特征和规律。
1. 观察与描述:组织幼儿进行观察与描述的活动,通过观察不同形状、颜色、大小等特征的物体,并激发幼儿用自己的语言描述出物体的共同特征。
2. 分类游戏:组织幼儿进行分类游戏,给出一些具体的事物或物体,让幼儿将其按照某种特征进行分类。
例如,给出几种水果,让幼儿将其分为酸味和甜味两类,培养幼儿的分类思维和归纳总结能力。
3. 找规律游戏:组织幼儿进行找规律游戏,给出一些数字或形状的序列,让幼儿观察并找出规律。
例如,给出1、3、5、7,让幼儿找出其中的规律是每个数字都比前一个数字大2,培养幼儿的规律发现和归纳总结能力。
二、演绎推理能力培养演绎推理是从已知的前提出发,通过逻辑关系得出结论。
1. 推理游戏:组织幼儿进行推理游戏,给出一些描述性的情境或故事,让幼儿基于已知条件进行推理和判断。
例如,给出一段描述小明家周围环境的内容,并提问“小明家门口一定有什么?”引导幼儿根据已知信息进行演绎推理。
2. 逻辑思维训练:进行一些逻辑思维训练活动,例如给出一些逻辑图案,让幼儿填充其中的空缺部分;或者给出一些逻辑问题,让幼儿进行思考和解答。
这些活动可以培养幼儿的逻辑思维和演绎推理能力。
3. 故事推理:讲述一些具有逻辑推理思维的故事,引导幼儿进行故事推理。
例如,讲述一个有关动物的故事,引导幼儿根据已知条件进行推理,判断故事的结局或下一步发展。
结语:通过以上的归纳与演绎推理能力培养活动,可以帮助幼儿发展和提高他们的思维能力和逻辑推理能力。
这些能力对于幼儿的综合发展和解决问题的能力具有重要的意义。
教师应通过具体的活动和训练,积极引导和培养幼儿的归纳与演绎推理能力,使其能够运用到实际生活和学习中。
归纳推理及其方法教案一、教学目标1.了解归纳推理的定义和基本方法;2.掌握归纳推理的三种方法:完全归纳法、不完全归纳法和反证法;3.能够运用所学知识,解决实际问题。
二、教学内容1. 归纳推理的定义和基本方法;2. 归纳推理的三种方法:完全归纳法、不完全归纳法和反证法;3. 实例分析。
三、教学重难点1. 掌握归纳推理的基本概念及其应用;2. 理解不同的归纳推理方法,能够灵活运用。
四、教学过程一、引入老师介绍“小明每次考试都是第一名”这个事实,询问同学们对于这个事实有什么看法。
引导同学们思考这个事实背后隐藏着什么规律或者原因。
通过引入,让同学们了解到需要通过观察现象去发现规律,并且从中得出结论。
二、讲授1. 归纳推理的定义和基本方法。
(1)定义:从具体事例中总结出普遍性规律,以此类推到其他情况。
(2)基本方法:观察现象,发现规律,归纳出结论。
2. 归纳推理的三种方法。
(1)完全归纳法:通过对于所有情况的证明来证明一个命题的真实性。
具体步骤为:①证明当n=1时命题成立;②假设当n=k时命题成立,证明当n=k+1时命题也成立;③根据数学归纳原理,可得结论:对于任意正整数n,命题都成立。
(2)不完全归纳法:通过对于一部分情况的证明来推广到所有情况。
具体步骤为:①找到一些特殊情况,并证明这些特殊情况下命题成立;②假设当n=k时命题成立,并找到一个与k有关的性质P(k+1),使得当P(k+1)成立时,命题在n=k+1时也成立;③根据归纳原理可得结论:对于所有满足性质P(k+1)的正整数k,命题都成立。
(3)反证法:通过假设反面来推导出矛盾,从而推断出原先假设的正确性。
具体步骤为:①假设所要证明的结论不成立;②从假设中推导出一个矛盾的结论;③由此推断出原先假设的正确性。
3. 实例分析。
三、练习老师出示几个例子,让同学们运用归纳推理方法来解决问题。
例如:已知1+2+3+...+n=n(n+1)/2,求1+3+5+...+(2n-1)的和。
归纳推理
教学目标:
1.知识与技能目标:理解归纳推理的原理,并能运用解决一些简单的问题。
2.过程与方法目标:通过自主、合作与探究实现“一切以学生为中心”的理念。
3.情感、态度与价值观:感受数学的人文价值,提高学生的学习兴趣,使其体会到数学学习的美感。
教学重点:归纳推理的原理
教学难点:归纳推理的具体应用。
教法学法:自主、合作探究教学
教学准备:多媒体电脑、课件、空间多面体模型等
教学过程:
1.创设情景:
1.情景㈠:苹果落地的故事,正是基于这个发现,牛顿大胆地猜想,然后小心求证,终于发现了伟大的“万有引力定理”
思考:整个过程对你有什么启发?
教师:“科学离不开生活,离不开观察,也离不开猜想和证明”。
2.情景㈡:陈景润和他在“歌德巴赫猜想”证明中的伟大成就:任何一个大于4的偶数都可以写成两个奇素数之和。
如:6=3+3,8=3+5,10=5+5, 12=5+7,14=7+7, 16=5+11,…,1000=29+971,1002=139+863,……
2.探求研究:
探究1.学生根据自备的多面体进行观察,统计多面体的面数、顶点数和棱数;(学生实验与教师课件演示结合)
探究2.观察、猜想它们之间是否有稳定的数量关系?
探究3.整理所得结论,并尝试证明;若得证,则改写成定理,否则修改猜想,进一步尝试证明。
教师指导,合作交流,归纳:22V V V =棱柱棱台棱锥=-,3
2
E E E =棱柱棱台棱锥=,
1F F F 棱柱棱台棱锥==+,F+V-E=2等等,其中“F+V-E=2”为“欧拉公式”。
3.概念讲解
结合情景问题和探究过程所得,教师引导学生完成归纳推理的概念及分析。
定义:根据一类事物的部分事物具有某种属性,推断该类事物的每一个都具有这种属性的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).
说明:⑴归纳推理的作用:发现新事实,获得新结论;(2)归纳推理的一般步骤:试验、观察→概括、推广→猜测一般性结论→证明;⑶归纳推理的结论不一定成立。
4.例题解析
例1:在数列{}n a 中,()*1121,,2
n
n n a a a n N a +==
∈+猜想这个数列的通项公式? 解析:先由学生计算:234521222
,,,32456
a a a a =====
归纳:*2
()1
n a n N n =∈+
说明(学生完成):⑴有整数和分数时,往往将整数化为分数;⑵当分子分母都在变化时,往往统一分子(或分母),再寻找另一部分的变化规律.
例2、(拓展)问:如果面积是一定的,什么样的平面图形周长最小?试猜测结论。
教师:设定任务一:常见多边形面积一定时,计算其周长;
任务二:归纳、猜想一般性结论。
5.分层练习:
1.由“铜、铁、铝、金等金属能导电”,你能归纳出什么结论? 2.观察下列式子,归纳结论:
32111==,332129(12)+==+,333212336(123)++==++
333321234100(1234)+++==+++………………
问:3333123?n ++++=
3.右图中5个图形及相应点的个数 的变化规律,试猜测第n 个图形中有 点; 4.已知数列{}n a 中,
*111,()1n
n n
a a a n N a +==
∈+且,试归纳这个数列的通项公式。
答案:1.金属导电;2.33332123(123)n n +++
+=+++⋅⋅⋅+;
3.21n n -- ; 4.*1
()n a n N n
=
∈. 6.课时小结(师生共同) 1什么是归纳推理?
2归纳推理的一般步骤:试验、观察→概括、推广→猜测一般性结论→证明。
布置作业:习题3-1 P 57 1, 2
(补充):{}1.n n n n n n a n S a S na a =-已知的前项和与满足:,试归纳出其通项公式 拓展延伸:
1.工匠鲁班类比带齿的草叶和蝗虫的牙齿,发明了锯;
2.科学家对火星进行研究,发现火星与地球有许多类似的特征:
(2) (3) (4)
(5)
(1) 面积
一定时,圆的周长最小
⑴火星也绕太阳运行,绕轴自转的行星;⑵有大气层,在一年中也有季节变更;
⑶火星上大部分时间的温度适合地球上某些已知生物的生存等等;
科学家猜想;火星上也可能有生命存在。
说明:以上两练习使用的是类比推理。
目的是知识上承上启下,把本节知识延伸,既拓宽了学生视野,也为下一节“类比推理”的教学作了铺垫。
教后反思:
⑴要实现数学新知识的建构学习,教师要创设适当的情境,情境应符合实际.包括生活场景的实际,数学教学内容的实际,学生知识状况的实际,学生思维发展的实际等等。
⑵学生通过“经历”,“体会”,“感受”,最后形成概念的过程学习,充分体现了以学生为本的现代教育观;同时练习和作业的分层设计尽量满足多样化的学习需求做到因材施教,促进全体的参与。
附:板书设计。