高三上学期期中考试 数学文科
- 格式:doc
- 大小:150.95 KB
- 文档页数:9
2022年秋期高中三年级期中质量评估数学试题(文)(答案在最后)注意事项:1.本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.考生做题时将答案答在答题卡的指定位置上,在本试卷上答题无效.2.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上.3.选择题答案使用2B 铅笔填涂,非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚.4.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.5.保持卷面清洁,不折叠、不破损.第I 卷选择题(共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合401x A x x ⎧⎫-=≤⎨⎬+⎩⎭,{}54B x x =-<<,则()R A B ⋂=ð()A.(](),14,-∞-+∞ B.()(),14,-∞-⋃+∞ C.()5,1-- D.(]5,1--【答案】D 【解析】【分析】解不等式得到集合A ,然后利用补集和交集的定义计算即可.【详解】由题意得集合{}14A x x =-<≤,{R 1A x x =≤-ð或}4x >,所以(){}R 51A B x x ⋂=-<≤-ð.故选:D.2.若2z i z i +=-=,则z =()A.1B.C.D.2【答案】C 【解析】【分析】设i z x y =+,,R x y ∈,由条件列方程求,x y ,再由复数的模的公式求z .【详解】设i z x y =+,,R x y ∈,因为2z i z i +=-=,2=2=,所以0y =,23x =,所以z ==,故选:C.3.已知()()()2lg5lg 10lg f x x x =⋅+,则()2f =()A.1B.2C.3D.4【答案】A 【解析】【分析】根据对数的运算性质及函数值的定义即可求解.【详解】因为()()()2lg5lg 10lg f x x x =⋅+,所以()()()()()()()22222lg5lg 20lg 2lg5lg 4lg 2l 5g5l g lg5lg g 2l 22f ⨯=⨯+++=⨯+=+⨯()()22lg 5lg 2lg101=+==.故选:A.4.已知数列{}n a 的前n 项和211n S n n =-.若710k a <<,则k =()A.9B.10C.11D.12【答案】B 【解析】【分析】先求得n a ,然后根据710k a <<求得k 的值.【详解】依题意211n S n n =-,当1n =时,110a =-;当2n ≥时,211n S n n =-,()()22111111312n S n n n n -=---=-+,两式相减得()2122n a n n =-≥,1a 也符合上式,所以212n a n =-,*N k ∈,由721210k <-<解得911k <<,所以10k =.故选:B5.若x ,y 满足3020x x y x y ≤⎧⎪+≥⎨⎪-+≥⎩则2x y -的最小值是()A.3-B.5- C.8 D.7-【答案】D 【解析】【分析】根据题意画出可行域,令2z x y =-,即1122y x z =-,所以平移斜率为12的直线,12z -相当于在y 轴上的截距,找到使y 轴上的截距最值时的点代入即可.【详解】由题知,画出满足题意的可行域如下所示,令2z x y =-,即1122y x z =-,12z -相当于直线1122y x z =-在y 轴上的截距,平移直线12y x =,当直线过A 点时,截距最大,z 最小,联立203x y x -+=⎧⎨=⎩,可得()A 3,5,故在A 点时取得最优解,代入2z x y =-,可得7z =-.故选:D.6.已知:()1,2a =r,b = a b - 的最大值是()A.B. C.+ D.-【答案】B 【解析】【分析】设向量a 与b的夹角为()0πθθ≤≤,由()1,2a =r 可得a =得a b -=.【详解】设向量a 与b的夹角为()0πθθ≤≤,由()1,2a =r ,得a == 所以a b -== ,因为0πθ≤≤,所以1cos θ1-#,即52520cos 45θ≤-≤≤≤所以a b -的最大值为.故选:B.7.函数()f x 的部分图像如图所示,则()f x 的解析式可能为()A.()1cos f x x x=+ B.()1sin f x x x =+C.()1cos f x x x=- D.()1sin f x x x=-【答案】D 【解析】【分析】由函数的奇偶性排除A ,C ,由函数在0x =处的变化趋势排除B ,得正确选项.【详解】由函数图像可知,函数()f x 为奇函数,对于A:()()()11cos cos f x x x f x x x-=-+=+≠---,()f x 不是奇函数排除A 选项;()()()11cos cos f x x x f x x x-=--=+≠--,()f x 不是奇函数排除C 选项;对于B ,当0x >,且x 趋近于0时,由图知()f x 趋近于-∞,但()10,sin 0x f x x x→=+>排除B ;故选:D.8.若π0,2α⎛⎫∈ ⎪⎝⎭,πcos 63α⎛⎫+= ⎪⎝⎭,则sin α=()A.6B.6- C.3D.36【答案】B 【解析】【分析】先由已知条件求出πsin 6α⎛⎫+⎪⎝⎭,然后由ππsin sin 66αα⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦化简计算可得答案.【详解】因为π0,2α⎛⎫∈ ⎪⎝⎭,所以ππ2π,663α⎛⎫+∈ ⎪⎝⎭,因为πcos 63α⎛⎫+= ⎪⎝⎭,所以πsin 63α⎛⎫+=== ⎪⎝⎭,所以ππsin sin 66αα⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦ππππsin cos cos sin6666αα⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭132326-=⨯-⨯=,故选:B9.在ABC 中,30C =︒,b =,c x =.若满足条件的ABC 有且只有一个,则x 的可能取值是()A.12B.32C.1D.【答案】D 【解析】【分析】利用正弦定理得到sin 2B x=,再分030B ︒<≤和30B ︒>两种情况讨论,结合正弦函数的性质求出x 的取值范围,即可判断.【详解】解:由正弦定理sin sin b c B C =,即sin sin 30x B ︒=,所以sin 2B x=,因为ABC 只有一解,若30B ︒>,则90B ︒=,若030B ︒<≤显然满足题意,所以10sin 2B <£或sin 1B =,所以1022x <≤或12x =,解得x ≥或2x =;故选:D10.若将函数()π2sin ,03f x x ωω⎛⎫=+> ⎪⎝⎭的图像向右平移14个周期后,与函数()()2cos 2g x x ϕ=+的图像重合,则ϕ的一个可能取值为()A.π3B.π3-C.2π3-D.4π3-【答案】C 【解析】【分析】根据三角函数图像平移规律得到平移后的解析式,再对()g x 的解析式变形处理,列出等式,即可判断.【详解】()π2sin ,03f x x ωω⎛⎫=+> ⎪⎝⎭,周期2πT ω=,函数()π2sin 3f x x ω⎛⎫=+⎪⎝⎭的图像向右平移14个周期后,得函数πππ2sin 2sin 236y x x ωωω⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎢⎝⎭⎝⎭⎣⎦的图像,而()()()ππ2cos 22sin 22sin 222g x x x x ϕϕϕ⎡⎤⎛⎫=+=++=++ ⎪⎢⎥⎣⎦⎝⎭,由题意π2,2π,Z π26k k ωϕ=+=-∈,Z 2,π32πk k ϕ∴=-∈,令32ππ2π3k ϕ=-=,得1Z 2k =∉,故A 错误;令32ππ23πk ϕ=-=-,得1Z 6=∉k ,故B 错误;令2π2π332πk ϕ=-=-,得0Z k =∈,故C 正确;令32π34π2πk ϕ=-=-,得1Z 3=-∉k ,故D 错误.故选:C.11.已知函数()πe (cos ),0,2π1,,02x x a x f x x x ⎧⎛⎫-∈ ⎪⎪⎪⎝⎭=⎨⎛⎤⎪--∈- ⎥⎪⎝⎦⎩在ππ,22⎛⎫- ⎪⎝⎭上单调递减,则实数a 的取值范围是()A.1a ≥B.3a ≥ C.2a ≥ D.12a ≤≤【答案】C 【解析】【分析】利用导数求解π0,2x ⎛⎫∈ ⎪⎝⎭时()f x 单调递减满足的条件,即可结合分段函数的性质求解.【详解】当π0,2x ⎛⎫∈ ⎪⎝⎭时,()e (cos )x f x x a =-,则()e (cos sin )0xf x x x a '=--≤所以πcos sin 4a x x x ⎛⎫≥-=+ ⎪⎝⎭恒成立,由于π0,2x ⎛⎫∈ ⎪⎝⎭,所以ππ3π,444x ⎛⎫+∈ ⎪⎝⎭()π1,14x ⎛⎫+∈- ⎪⎝⎭,因此1a ≥,要使()f x 在ππ,22⎛⎫- ⎪⎝⎭上单调递减,则需要()()01201e cos0a a f a ≥⎧⇒≥⎨=-≥-⎩,故选:C12.已知:22π1tan 8π1tan 8a -=+,2b =,4log 3c =,则()A.a b c <<B.a c b<< C.c<a<b D.c b a<<【答案】B 【解析】【分析】根据三角函数的公式求出22a =,然后借助指数函数的单调性得到2log 31.5232<=<=,即可得到a c <,构造函数()22xf x x =-,利用函数的单调性得到0>,整理后即可得到b c >.【详解】222222πππ1tan cos sin π888cos πππ421tan cos sin 888a --====++,2242log 3log 3log 3log 42c ===,∵2log 31.5232<=<=,2log 3<,则2log 322<,即a c <,设函数()22xf x x =-,则()2ln 22x f x '=-,∵()22412ln 22ln 4ln ln 0f '=-=-=<e e ,()21624ln 22ln 0f '=-=>e,且函数()f x '单调递增,∴()f x '只存在一个0x 使()00f x '=,且()01,2x ∈,当0x x <时,()0f x '<,()f x 在()0,x -∞单调递减,∴()102f f ⎛⎫>= ⎪ ⎪⎝⎭,即22log 30log 222>⇒>⇒>,即b c >,所以a c b <<.故选:B.【点睛】方法点睛:比较数值大小方法.(1)估值法:找出式子的取值区间,以此判断各个式子的大小关系;(2)构造函数法:当无法进行估值判断式子大小时,可通过构造函数,利用导数判断其单调性,从而判断式子大小.第Ⅱ卷非选择题(共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数()sin ,sin cos cos ,sin cos ,x x xf x x x x ≤⎧=⎨>⎩,则2023π3f ⎛⎫= ⎪⎝⎭__________.【答案】12##0.5【解析】【分析】根据2023π2023πsin cos 33⎛⎫⎛⎫>⎪ ⎝⎭⎝⎭可得解.【详解】2023ππsin πsin 674πsin 3332⎛⎫⎛⎫=+==⎪ ⎝⎭⎝⎭,2023ππ1cos πcos 674πcos 3332⎛⎫⎛⎫=+== ⎪ ⎝⎭⎝⎭,所以2023π2023πsin cos 33⎛⎫⎛⎫>⎪ ⎝⎭⎝⎭,可得202320231πcos π332⎛⎫==⎪⎝⎭f .故答案为:12.14.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c)cos c b A a -=,b =ABC 的外接圆面积为__________.【答案】9π【解析】【分析】在ABC)cos c b A a -=)sin sin cos sin C B A A -=利用π--C B A =消角可得cos 2B =,则角B可求,又b =,可利用正弦定理求ABC 的外接圆直径,ABC 的外接圆面积可求.【详解】 在ABC)cos c b A a -=,∴)sin sin cos sin C B A A -=,又π--C B A =,())sin sin cos sin B A B A A +-=,)sin cos cos sin sin cos sin B A B A B A A +-=,sin sin B A A =,又在ABC 中sin 0A >,∴2cos 2B =.又 在ABC ,0πB <<,∴π4B =,∴ABC的外接圆直径=6sin 22b B ==,∴ABC 的外接圆的面积为9π.故答案为:9π.15.若()e e 1xx f x =+,则()2e 11ef x +-<的解集是______________.【答案】()0,2【解析】【分析】根据题意求得()f x 为偶函数,且在()0,∞+上单调递增,结合()2e 11(1)ef f +==,把不等式转化为()1(1)f x f -<,得到11x -<,即可求解.【详解】由函数()e e 1xx f x =+,可得()()11e e e ex xx xf x f x ---=+=+=,所以()f x 为偶函数,当0x ≥时,可得()e e0x xf x -'=+>,所以函数()f x 在()0,∞+上单调递增,又由()2e 11(1)e f f +==,所以不等式()2e 11ef x +-<等价于()1(1)f x f -<,则满足11x -<,解得02x <<,即不等式的解集为()0,2.故答案为:()0,2.16.不等式()()222e 1a b a b m m -+--≥-对任意实数a ,b 恒成立,则实数m 的取值范围是___________.【答案】[1,2]-【解析】【分析】设(,e ),(1,)a P a Q b b +,则可得22PQ m m ≥-,而,P Q 分别在曲线()x f x e =和直线1y x =-上,将直线1y x =-平移恰好与曲线()x f x e =相切时,可求出PQ 的最小值,从而可解关于m 的不等式可得答案.【详解】由题意设(,e ),(1,)aP a Q b b +,则()()222e 1aPQ b a b =-+--,所以22PQ m m ≥-,因为,P Q 分别在曲线()x f x e =和直线1y x =-上,所以将直线1y x =-平移恰好与曲线()x f x e =相切时,切点到直线1y x =-的距离最小,此时PQ 最小,设切线为y x m =+,切点为00(,)x y ,则()x f x e =,得()e x f x '=,所以0e 1x =,得00x =,则01y =,所以PQ 的最小值为点(0,1)到直线1y x =-的距离d ,d ==,即PQ ,所以22m m ≥-,即220m m --≤,解得12m -≤≤,所以实数m 的取值范围是[1,2]-,故答案为:[1,2]-【点睛】关键点点睛:此题考查不等式恒成立问题,考查导数的几何意义,解题的关键是将问题转化为(,e ),(1,)a P a Q b b +,22PQ m m ≥-,进一步转化为曲线()x f x e =上的点和直线1y x =-的点的距离最小问题,考查数学转化思想,属于较难题.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.在ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c .AB AC ⋅=- ,ABC 的面积等于3.(1)求A ;(2)求222b c a +的最小值.【答案】(1)2π3A =(2)23【解析】【分析】(1)根据平面向量的数量积定义及三角形的面积公式可得tan A =,进而求解即可;(2)由(1)可得bc =,结合余弦定理可得222b c a +=-22221b c a a +=-,再根据基本不等式可得2222b c a bc +=-≥=2a ≥.【小问1详解】因为cos cos AB AC AB AC A bc A ⋅=⋅⋅=⋅=- 又1sin 32ABC S bc A ==△,两式相除得,tan A =又0πA <<,所以2π3A =.【小问2详解】由(1)知,cos bc A ⋅=-2π3A =,所以bc =,又2221cos 22b c a A bc +-==-,即222b c a +=-所以2222221b c a a a a+=--=,又因为2222b c a bc +=-=1423b c ==⨯时等号成立,所以2a ≥210a <≤,即214303a -≤-<,即2243113a≤-<,所以222b c a +的最小值为23.18.已知数列{}n a 和{}n b 满足:11a =,22a =,0n a >,)*N n b n =∈,且{}n b 是以2为公比的等比数列.(1)证明:24n n a a +=;(2)若2122n n n c a a -=+,求数列{}n c 的通项公式及其前n 项和n S .【答案】(1)证明见解析(2)154n n c -=⋅,()5413n n S =-【解析】【分析】(1)先求得n b ,然后根据递推关系证得24n n a a +=.(2)先求得n c ,然后结合等比数列前n 项和公式求得n S .【小问1详解】依题意,11a =,22a =,0n a >,)*N n b n =∈,1b ==,且{}n b 是以2为公比的等比数列,所以11222n n nb --==,所以1212122n n n n a a --+==,则21122n n n a a +++=,两式相除得224,4n n n na a a a ++==.【小问2详解】由(1)知数列{}2n a 和数列{}21n a -都是公比为4的等比数列,所以1211222221142,42n n n n n n a a a a -----=⋅==⋅=,22211212222254n n n n n n c a a ----=+=+⨯=⨯,1154,4n n n nc c c ++=⨯=,所以数列{}n c 是首项为5,公比为4的等比数列,所以()()514541143n n n S -==--.19.已知函数()222cos sin 3f x x x π⎛⎫=-+- ⎪⎝⎭.(1)求函数()y f x =的单调递增区间;(2)若函数()()02g x f x πϕϕ⎛⎫=+<<⎪⎝⎭的图像关于点,12π⎛⎫ ⎪⎝⎭中心对称,求()y g x =在,63ππ⎡⎤⎢⎥⎣⎦上的值域.【答案】(1)5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦,Z k ∈(2)11,24⎡⎤-⎢⎥⎣⎦【解析】【分析】(1)利用二倍角公式及和差角公式将函数化简,再根据正弦函数的性质计算可得;(2)首先表示出()g x ,根据对称性求出ϕ,即可得到()g x 的解析式,再根据x 的取值范围求出2x 的范围,最后根据正弦函数的性质计算可得;【小问1详解】解:()222cos sin 3f x x x π⎛⎫=-+- ⎪⎝⎭cos 211cos 23222x x π⎛⎫++ ⎪-⎝⎭=--22cos 2cos sin 2sin 11cos 233222x x x ππ-+-=--1cos 2211cos 222222x x x --+-=--13cos 2211cos 222222x x x --+-=--3cos 2sin 2144x x =++1cos 2sin 21222x x ⎛⎫=++ ⎪ ⎪⎝⎭sin 2123x π⎛⎫=++ ⎪⎝⎭,即()sin 2123f x x π⎛⎫=++ ⎪⎝⎭,令222,Z 232k x k k πππππ-≤+≤+∈,解得5,Z 1212k x k k ππππ-≤≤+∈,所以函数的单调递增区间为5,,Z 1212ππππ⎡⎤-+∈⎢⎥⎣⎦k k k .【小问2详解】解:因为()()()33sin 212212323g x f x x x ππϕϕϕ⎡⎤⎛⎫=+=+++=+++ ⎪⎢⎥⎣⎦⎝⎭,又()g x 的图像关于点,12π⎛⎫⎪⎝⎭中心对称,所以2,Z 3k k ππϕπ++=∈,解得21,Z 32k k πϕπ=-+∈,因为02πϕ<<,所以3πϕ=,所以()()sin 21sin 2122g x x x π=++=-+,当,63x ππ⎡⎤∈⎢⎥⎣⎦时22,33x ππ⎡⎤∈⎢⎥⎣⎦,所以sin 2,12x ⎤∈⎥⎣⎦,所以()11,24g x ⎡⎤∈-⎢⎥⎣⎦.20.已知函数()ln a f x x x x=+-,其中a ∈R .(1)当2a =时,求函数()f x 在点()()1,1f 处的切线方程;(2)如果对于任意()1,x ∈+∞,都有()2f x >,求实数a 的取值范围.【答案】(1)450x y --=(2)1a ≤-【解析】【分析】(1)先将2a =代入得到()f x 解析式,对()f x 求导可得切线的斜率,由()1f 得切点的坐标,利用点斜式得到切线方程;(2)将()f x 代入得到2ln 2a x x x x <+-,所以将对于任意()1,x ∈+∞都有()2f x >转化成了()2min ln 2<+-a x x x x ,构造函数()2ln 2g x x x x x =+-,对()g x 求导判断函数()g x 单调递增,从而得()()1g x g >,即得证.【小问1详解】当2a =时,由已知得()2ln =+-f x x x x ,故()2121=++'f x x x ,所以()11214f '=++=,又因为()21ln1111=+-=-f ,所以函数()f x 的图象在点()1,1-处的切线方程为()141+=-y x ,即450x y --=;【小问2详解】由()2f x >,()1,x ∈+∞,得2ln 2<-+a x x x x ,设函数()2ln 2g x x x x x =+-,()1,x ∈+∞,则()1ln 22ln 21g x x x x x x x'=+⋅+-=+-,因为()1,x ∈+∞,所以ln 0x >,210x ->,所以当()1,x ∈+∞时,()ln 210g x x x '=+->,故函数()g x 在()1,x ∈+∞上单调递增,所以当()1,x ∈+∞时,()()11ln11211g x g >=⨯+-⨯=-,因为对于任意()1,x ∈+∞,都有()2f x >成立,所以对于任意()1,x ∈+∞,都有()a g x <成立.所以1a ≤-.【点睛】思路点睛:本题利用导数的运算、利用导数求曲线的切线、利用导数判断函数的单调区间、利用导数求函数的最值等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.21.数列{}n a 中,n S 为{}n a 的前n 项和,24a =,()()*21n n S n a n +=∈N.(1)求证:数列{}n a 是等差数列,并求出其通项公式;(2)求证:数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和53n T <.【答案】(1)32n a n =-(2)证明见详解.【解析】【分析】(1)根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,作差得到1(2)(1)1(2)n n n a n a n --=--≥,从而得到12(3)(2)1(3)n n n a n a n ---=--≥,即可得到122(3)n n n a a a n --=+≥,从而得证,再求出公差,即可求出通项公式;(2)由(1)可得()1231n S n n =-,适当放大再利用裂项相消法求和即可.【小问1详解】数列{}n a 中,n S 为{}n a 的前n 项和,24a =,*2(1)(N )n n S n a n =+∈①,当1n =时,1121a a =+,解得11a =;当2n ≥时,112(1)(1)n n S n a --=-+②,①-②得1(2)(1)1(2)n n n a n a n --=--≥③,所以12(3)(2)1(3)n n n a n a n ---=--≥④,由③④得122(3)n n n a a a n --=+≥,所以数列{}n a 为等差数列,所以公差21413d a a =-=-=,所以13(1)32n a n n =+-=-.【小问2详解】由(1)可得()3212n n n S -+=,所以,所以()1231n S n n =-,当1n =时,11513S =<,当2n ≥时,()122121211(13133(1)31()3n S n n n n n n n n ==⋅<⋅=----,12111n nT S S S =++⋯+211211211131232331n n ⎛⎫⎛⎫⎛⎫<+-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ 525333n =-<,综上53n T <.22.已知()21e 12x f x x x =---.(1)讨论函数()f x 的单调性;(2)设()f x '是()f x 的导数.当[]1,1x ∈-时,记函数()f x 的最大值为M ,函数()f x '的最大值为N .求证:M N <.【答案】(1)()f x 在R 上单调递增(2)见解析【解析】【分析】(1)求导即可由导函数的正负求解原函数的单调性,(2)根据(1)的结论,分别求解M ,N ,即可作差求解大小.【小问1详解】函数()f x 的定义域为R ,()e 1xf x x '=--,令()()(),e 1xx f x x ϕϕ''==-,当()()0,0,x x x ϕϕ'>>单调递增,当()()0,0,x x x ϕϕ'<<单调递减,所以()(0)0x ϕϕ≥=,即()e 10x f x x ¢=--³故函数()f x 在R 上单调递增【小问2详解】由(1)知()f x 在[]1,1x ∈-时,单调递增,且()00f =,故()()[]()(],0,1,1,0f x x y f x f x x ⎧∈⎪==⎨-∈-⎪⎩,所以()(){}max 1,1M f f =-,由于()()115111e 3e 0e 22ef f --=---=--<,所以()()11f f -<,故()51e 2M f ==-,而()51e 2e 2N f M '≥=->-=,因此M N <。
丰城中学2022-2023学年上学期高三期中考试文科数学试卷本试卷总分值为150分考试时长为120分钟考试范围:集合、简易逻辑、函数与导数、三角函数、平面向量一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2N 23A x x x =∈+≤,{}2B x x =>-,则A B =A .{}21x x -<≤B .{}1C .{}0,1D .{}1,0,1-2.已知命题:p 对任意1x >,有ln 1x x x >-成立,则p ⌝为A .存在01x >,使000ln 1x x x >-成立B .存在01x >,使000ln 1x x x ≤-成立C .对任意01x ≤,有000ln 1x x x ≤-成立D .对任意01x >,有000ln 1x x x ≤-成立3.若60︒的圆心角所对的弦长为2,则这个圆心角所夹的扇形的面积为A .23πB .πC .43πD .2π4.下列命题中正确的是A .若a →、b →都是单位向量,则a →=b→B .若AB =DC,则A 、B 、C 、D 四点构成平行四边形C .若a →∥b →,且b →∥c →,则a →∥c→D .AB 与BA是两平行向量5.已知 1.20.2ln 2,log 0.1,2a b c -===,则A .a b c<<B .c b a<<C .a c b <<D .c a b<<6.把函数sin 4y x π⎛⎫=- ⎪⎝⎭图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,再把所得图象向右平移3π个单位长度,得到图象对应的解析式为A .sin 212x y π⎛⎫=-⎪⎝⎭B .5sin 212x y π⎛⎫=-⎪⎝⎭C .11sin 212y x π⎛⎫=-⎪⎝⎭D .5sin 212y x π⎛⎫=+ ⎪⎝⎭7.“[3,4)a ∈”是函数“1(2)2,2()2,2x a x x f x a x -⎧-+≤⎪=⎨⎪>⎩是定义在R 上的增函数”的A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件8.在ABC 中,4BC =,5AC =,10AC BC ⋅=,则AB =A.BC .5D9.已知O 是ABC 内部的一点,A ∠,B Ð,C ∠所对的边分别为3a =,2b =,4c =,若0sin sin sin =⋅+⋅+⋅OC C OB B OA A ,则AOB ∆与ABC ∆的面积之比为A .94B .31C .92D .9510.已知函数()2()lg 1f x x ax a =+--,给出下述论述,其中正确的是A .当0a =时,()f x 的定义域为(,2)(1,)-∞-+∞ ;B .()f x 一定有最小值;C .当2a =时,()f x 的单调增区间为(1,)-+∞;D .若()f x 在区间[2,)+∞上单调递增,则实数a 的取值范围是{}|3a a >-.11.已知()()21ln 02f x a x x a =+>若对于任意两个不等的正实数1x 、2x ,都有()()12122f x f x x x ->-恒成立,则a 的取值范围是A .[)1,+∞B .(]0,1C .(]0,3D .[)1,2e 12.已知函数()11,02lg ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩,若存在不相等的实数a ,b ,c ,d 满足()()()()f a f b f c f d ===,则+++a b c d 的取值范围为A .()0,+∞B .812,10⎛⎤- ⎥⎝⎦C .612,10⎛⎤- ⎥⎝⎦D .810,10⎛⎤⎥⎝⎦二、填空题(本大题共4小题,每小题5分,共20分.)13.已知函数2(1)g x x=-,且221[()]1x f g x x-=+,则(1)f =________.14.已知tan 2α=,则sin 24πα⎛⎫-= ⎪⎝⎭___________.15.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞.若要测量如图所示的蓝洞的口径,A B 两点间的距离,现在珊瑚群岛上取两点,C D ,测得30CD =米,135ADB ∠= ,15,120BDC DCA ACB ∠∠∠===(设定,,,A B C D 四点在同一平面上),则AB 两点的距离为___________米.16.已知正方形ABCD 的边长为2,对角线AC 、BD 相交于点O ,动点P 满足1OP =,若AP mAB nAD =+ ,其中m 、n ∈R .则2122m n ++的最大值为.三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(本大题共10分)已知m ∈R ,命题2000:,30p x x x m ∃∈-+R ;命题2:,290q x x mx ∀∈-+R .(1)若命题p 为假命题,求实数m 的取值范围;(2)若命题p q ∧为真命题,求实数m 的取值范围.18.(本大题共12分)已知1sin cos 5αα+=-.(1)求sin cos αα⋅的值;(2)若,2παπ⎛⎫∈ ⎪⎝⎭,求sin cos()απα+-的值.19.(本大题共12分)已知向量()2,a m =,()()1,6R b m m =--∈ .(1)若a b a b +=-,求实数m 的值;(2)若》《b a ,为钝角,求实数m 的取值范围.20.(本大题共12分)已知函数()22cos sin cos f x x x x a ωωω=++(0>ω,a ∈R ).且()f x 的最大值为1;其图像的相邻两条对称轴之间的距离为π2.求:(1)函数()f x 的解析式;(2)若将函数()f x 图像上的点纵坐标不变,横坐标变为原来的12,再向右平移π12个单位,得到函数()g x 的图像,若()g x 在区间[]0,m 上的最小值为()0g ,求m 的最大值.21.(本大题共12分)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,△ABC 的面积214S c =.(1)cos B b =-,求sinsin AB 的值;(2)求a b的取值范围.22.(本大题共12分)已知函数()()ln 0bf x a x x a =+≠.(1)当2b =时,若函数()f x 恰有一个零点,求实数a 的取值范围;(2)当0a b +=,0b >时,对任意121,,x x e e ⎡⎤∈⎢⎥⎣⎦,有()()122f x f x e -≤-成立,求实数b 的取值范围.丰城中学2022-2023学年上学期高三期中考试文科数学答案一、选择题(每小题5分,共60分)题号123456789101112答案CBADDBCBADAC11、不妨设120x x >>,可得()()121222f x f x x x ->-,可得()()112222f x x f x x ->-,令()()212ln 22g x f x x a x x x =-=+-,则()()12g x g x >,所以,函数()g x 在()0,∞+上为增函数,()20ag x x x'∴=+-≥对任意的0x >恒成立,所以,22a x x ≥-,当0x >时,()222111x x x -=--+≤,当且仅当1x =时,等号成立,所以,1a ≥.故选:B.12、由题设,将问题转化为y m =与|()|f x 的图象有四个交点,1,221,20|()|2lg ,01lg ,1xx xx f x x x x x ⎧--≤-⎪⎪⎪+-<≤=⎨⎪-<≤⎪⎪>⎩,则在(,2]-∞-上递减且值域为[0,)+∞;在(2,0]-上递增且值域为(0,1];在(0,1]上递减且值域为[0,)+∞,在(1,)+∞上递增且值域为(0,)+∞;|()|f x 的图象如下:所以01m <≤时,y m =与|()|f x 的图象有四个交点,不妨假设a b c d <<<,由图及函数性质知:142011010a b c d -≤<-<≤<≤<<≤,易知:4a b +=-,101(2,]10c d +∈,所以61(2,]10a b c d+++∈-.故选:C 二、填空题(每小题5分,共20分)13.114.721015.16.15、由题意可知在ADC 中,13515150ADC ADB BDC ∠=∠+∠=+= ,则1801501515DAC ∠=--= ,故30AD DC ==,在BDC 中,15120135DCB ACD ACB ∠=∠+∠=+= ,故1801351530DBC ∠=--= ,故由sin sin BD CDDCB DBC=∠∠,得230sin 21sin 2CD DCBBD DBC∠===∠在ADB △中,2222cos135AB AD BD AD BD =+-⋅⋅o 222302303045002=++⨯⨯=,故AB =.故答案为:16、以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立如下图所示的平面直角坐标系,则()0,0A 、()2,0B 、()0,2D 、()2,2C 、()1,1O ,()2,2AP mAB nAD m n =+=,即点()2,2P m n ,因为1OP = ,则点P 在以O 为圆心,半径为1的圆上,设点()1cos ,1sin P θθ++,则21cos 21sin m n θθ=+⎧⎨=+⎩,则212cos 223sin m t n θθ++==++,整理可得sin cos 23t t θθ-=-,()23t θϕ-=-,其中cos ϕ=,sin ϕ=所以,23t -≤281230t t -+≤t ≤≤因此,2122m n ++三、解答题:17.解:(1)由已知,命题2,30x R x x m ∀∈-+>为真命题,故∆<0,即9-4m <0,解得:m >94,所以实数m 的取值范围是9,4⎛⎫+∞ ⎪⎝⎭(2)由(1)知命题p 为真命题,则94m ≤;命题2:,290q x x mx ∀∈-+R 为真命题,则2Δ4360m =-≤,解得:33m -≤≤,由命题p q ∧为真命题,故p 真q 真,因为{}9334m m m m ⎧⎫≤⋂-≤≤=⎨⎬⎩⎭934m m ⎧⎫-≤≤⎨⎬⎩⎭,故实数m 的取值范围是93,4⎡⎤-⎢⎥⎣⎦.18.解:(1)∵1sin cos 5αα+=-,∴()21sin cos 25αα+=,即112sin cos 25αα+=,∴12sin cos 25αα=-;(2)∵()249sin cos 12sin cos 25αααα-=-=,又∵,2παπ⎛⎫∈ ⎪⎝⎭,∴sin 0α>,cos 0α<,则()7sin cos sin cos 5απααα+-=-=.19.解:(1)由a b a b +=- ,则0a b ⋅=即()2160a b m m ⋅=--=即410m -=,得14m =.(2)若,a b 为钝角,即00,180a b a b a b ⎧⋅<⎪⇔⋅<⎨≠︒⎪⎩且a b ∥即()2160a b m m ⋅=--<,得14m >,且a b∥则()1210m m ---≠得4m ≠且3m ≠-综上解得14m >且4m ≠.20.解:(1)()22cos sin cos f x x x x a ωωω=++cos 2212sin 216x x a x a πωωω⎛⎫=+++=+++ ⎝⎭,因为()f x 的最大值为1,()f x 的相邻两条对称轴之间的距离为π2所以211++=a ,22T ππω==,解得1ω=,2a =-,所以,()2sin 216f x x π⎛⎫=+- ⎪⎝⎭(2)根据题意得()2sin 416g x x π⎛⎫=-- ⎪⎝⎭,因为[]0,x m ∈,所以4,4666x m πππ⎡⎤-∈--⎢⎥⎣⎦,因为()g x 在区间[]0,m 上的最小值为()0g ,所以,74660m m ππ⎧-≤⎪⎨⎪>⎩,解得03m π<≤.所以,m 的最大值为3π.21.解:(1cos B b -cos sin C B A B =-,cos )sin C B B C B =+-,cos sin B C B =,因为sin 0B ≠1C =,即cos C =(0,π)C ∈得:π4C =;由214S c =得:211sin 24ab C c =,即2144ab c =2c =,由余弦定理可得:222222cos a ab C c b a b =+-=+-=,故22+=a b,则221a a b b+=,令at b=,则21t +=,解得1t =,由正弦定理得:sin sin A a B b=,故sin sin AB11;(2)由214S c =得:211sin 24ab C c =,即22sin ab C c =,由余弦定理可得:2222cos 2sin a ab C ab b C c =+-=,即22π2(sin cos )sin(4a b ab C C C +=+=+,故22π1sin()4a a C b b +=+,令a t b =,则2π1sin(4t C +=+2πsin()4C =+,由(0,π)C ∈得ππ54π,44C ⎛⎫+∈ ⎪⎝⎭,故π2sin()(,1]42C +∈-,故2212-<11t ≤≤,故ab的取值范围是1]+.22.解:(1)定义域为()0,∞+,当2b =时,22()2a x af x x x x+'=+=;当0a >时,()0f x '>,()f x 为增函数,取10a x e -=,120()1(e )0a f x -=-+<,(1)10f =>所以0()(1)0f x f ⋅<,故此时恰有一个零点;当0a <时,令()0f x '=,x =0x <<()0f x '<,所以()f x 在⎛ ⎝单调递减,x >()0f x '>,所以()f x 在⎫+∞⎪⎪⎭单调递增;要使函数恰有一个零点,需要ln 02af a ==,解得2a e =-,综上,实数a 的取值范围是2a e =-或0a >.(2)因为对任意121,x x e e ⎡⎤∈⎢⎥⎣⎦,有()()122f x f x e -≤-成立,且12max min ()()()()f x f x f x f x -≤-,所以max min ()2(e )f x f x -≤-.因为0a b +=,所以a b =-,所以()ln bf x b x x =-+,1(1)().b b b b x f x bx x x--'=-+=当01x <<时,()0f x '<,当1x >时,()0f x '>;所以函数在1[,1)e 上单调递减,在(1,]e 上单调递增,min ()(1)1,f x f ==因为1()b f b e e -=+与()b f e b e =-+,所以max 1()max (),(e),e f x f f ⎧⎫=⎨⎬⎩⎭令1()(e)()e e 2,eb bg b f f b -=-=--则当0b >时,()220b b g b e e -'=+->=,所以()g b 在()0,∞+上单调递增,故()(0)0g b g >=,所以1()()f e f e>,从而max ()e .bf x b =-+所以12b b e e -+-≤-,即10b e b e --+≤.令()e e 1(0)t t t t ϕ=--+>,则()e 1t t ϕ'=-.当0t >时,()0t ϕ'>,所以()t ϕ在()0,∞+上单调递增.又(1)0ϕ=,所以10b e b e --+≤,即()(1)b ϕϕ≤,解得1b ≤,所以b 的取值范围是(0,1].高三丰城中学2022—2023学年上学期高三年级期中考试文科数学·答题卡请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!姓名:__________________________准考证号:贴条形码区考生禁填:缺考标记违纪标记以上标志由监考人员用2B 铅笔填涂选择题填涂样例:正确填涂错误填涂[×][√][/]1.答题前,考生先将自己的姓名,准考证号填写清楚,并认真核准条形码上的姓名、准考证号,在规定位置贴好条形码。
2021-2022学年上学期期中考试高三数学(文科)试题考试时间:120分钟 分数:150分本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷(选择题)一.选择题(本大题共12小题,每小题5分,共60分)1. 已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则U C A =( )A.{1,3,5,6}B.{2,3,7}C.{2,4,7}D.{2,5,7}2. 131ii +- = ( )A. 1+2iB. -1+2iC. 1-2iD. -1-2i3. 已知实数x , y 满足约束条件100x y x y +≤⎧⎪≥⎨⎪≥⎩,则z=y-x 的最大值为 ( )A. 1B. 0C. -1D. -2 4. “p ⌝为假命题”是“p q ∧为真命题”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5. 如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积为( ) A. 32π B. 16π C. 12π D. 8π(5题图) (6题图)是否开始k=1,s=1k<5?输出s结束 k=k+1s=2s-k6. 执行如图所示的程序框图,输出的s 值为 ( ) A. -10 B. -3 C. 4 D. 57. 已知x 与y 之间的几组数据如表:x 0 1 2 3 y267则y 与x 的线性回归方程y b x a ∧∧∧=+必过点 ( )A. (1,2)B. (2,6)C. (315,24) D. (3,7)8. 下列函数中,在定义域内与函数3y x =的单调性与奇偶性都相同的是 ( )A. sin y x =B. 3y x x =-C. 2x y =D.2lg(1)y x x =++9. 对于使()f x N ≥成立的所有常数N 中,我们把N 的最大值叫作()f x 的下确界.若,a b ∈(0, +∞),且2a b +=,则133a b +的下确界为 ( ) A. 163 B. 83 C. 43 D. 2310.如图所示的数阵中,每行、每列的三个数均成等差数列.如果数阵中111213212223313233a a a a a a aa a ⎛⎫ ⎪ ⎪ ⎪⎝⎭所有数的和等于36,那么22a = ( )A. 8B. 4C. 2D. 111.三棱锥P-ABC 的侧棱PA 、PB 、PC 两两垂直,侧面面积分别是6,4,3,则三棱锥的体积是 ( )A. 4B. 6C. 8D.1012.函数()f x 的定义域为R ,f(0)=2,对x R ∀∈,有()()1f x f x '+>,则不等式()1x xe f x e >+ 的解集为 ( ) A. {}|0x x > B. {}|0x x < C. {}|11x x x <->或 D. {}|10x x x <->>或1第Ⅱ卷(非选择题)二.填空题(本大题共4小题,每小题5分,共计20分)13.已知-向量a 与b 的夹角为60°,且a =(-2,-6),10b =,则ab =14.已知数列{}n a 是等比数列,且1344,8a a a ==,则5a 的值为15.抛物线2(0)y ax a =<的焦点坐标为 16.将边长为2的等边∆ABC 沿x 轴正方向滚动,某时刻A 与坐标原点重合(如图),设顶点(,)A x y 的轨迹方程是y=f(x),关于函数y=f(x)有下列说法:①f(x)的值域为[0,2]; ②f(x)是周期函数且周期为6 ; ③()(4)(2015)f f f π<<;④滚动后,当顶点A 第一次落在x 轴上时,f(x)的图象与x 轴所围成的面积为833π+.其中正确命题的序号为三.解答题(本大题共6道题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题12分)在∆ABC 中,内角A,B,C 的对边分别为,,a b c .已知3cos 3cos c b C c B =+(I )求sin sin C A 的值 (II)若1cos ,233B b =-=,求∆ABC 的面积。
【高三】高三上学期数学期中文科试题(附答案)文汕头市金山中学第一学期期中考试高三文科数学试题卷本试题分第Ⅰ卷()和第Ⅱ卷(非)两部分,满分150分,时间120分钟.第Ⅰ卷(选择题共50分)一、选择题:(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知,则()A. B. C. D.2.设 , 那么“ ”是“ ”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件3.设数列的前n项和,则的值为 ( )A. 15 B. 16 C. 49 D.644.设是两条不同的直线, 是两个不同的平面,下列命题中正确的是()A.若 , , ,则 B.若 , , ,则C.若 , , ,则 D.若 , , ,则5.下列命题中正确的是()A. 的最小值是2B. 的最小值是2C. 的最大值是D. 的最小值是6.经过圆的圆心,且与直线垂直的直线方程是() A. B. C. D.7.已知 ,则的大小为 ( )A. B. C. D.8.设函,则满足的的取值范围是 ( )A.,2] B.[0,2] C. D.9.奇函数在上为减函数,且,则不等式的解集为()A. B. C. D.(3,)10.设函数 ( , 为自然对数的底数).若存在使成立,则的取值范围是()A. B. C. D.第Ⅱ卷(非选择题共100分)二、题:(本大题共4小题,每小题5分,共20分.)11.函数的定义域为___________12.若命题“ ”是真命题,则实数的取值范围为 .13.经过原点且与函数(为自然对数的底数)的图象相切的直线方程为14.定义“正对数”: ,现有四个命题:①若 ,则;②若 ,则③若 ,则④若 ,则其中的真命题有____________ (写出所有真命题的序号)三、解答题:(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.)15.(本小题满分12分)已知集合, .(Ⅰ)求集合和集合;(Ⅱ)若,求的取值范围。
高三数学第一学期期中考试(文科)考生须知:1. 全卷分试卷和答卷。
试卷2页,有三大题,答卷4页,共6页。
考试时间120分钟,满分150分。
2. 本卷的答案必须用钢笔或圆珠笔做在答卷的相应位置上,做在试卷上无效。
3. 请用钢笔或圆珠笔将班级、姓名、准考证号、座位号分别填写在答卷的相应位置上。
本卷命题教师:倪新华试 卷一、选择题:(本题共10小题,每小题5分,满分50分)1、设集合{}20M x x x x R =-<∈,,{}2N x x x R =<∈,,则 A .M N ⊂ B. M N M = C. M N M = D. M N R =2、不等式112x <的解集是 A .(,2)-∞ B .(2,)+∞ C .(0,2) D .(,0)-∞⋃(2,)+∞ 3、若不等式||1x m -<成立的充分非必要条件为1132x <<,则实数m 的取值范围是 A.41[,]32-B.14[,]23-C.1(,]2-∞-D.4[,)3+∞4、已知等差数列}{n a 的前n 项和为n S ,若45818,a a S =-=则A .18 B. 36 C. 54 D. 725、下列命题正确..的是 A .模为0的向量与任一向量平行 B .共线向量都相等C .单位向量都相等D .平行向量不一定是共线向量 6、要得到函数y=sin(2x -4π)的图象,只需将函数y=sin2x 的图象 A .向左平移8π个单位 B .向右平移8π个单位C .向左平移4π个单位D .向右平移4π个单位7、已知a =(4,2), b = (6,y)且 a ∥b ,则y 的值为A .2B .3C .4D .58、在数列{}n a 中,若111,23(1)n n a a a n +==+≥,则该数列的第9项为A .1020B .1021C .1022D .10239、已知平面上四个互异的点A 、B 、C 、D 满足:()()20AB AC AD BD CD -⋅--=, 则ABC ∆的形状是 A .等边三角形 B .斜三角形 C .直角三角形 D .等腰三角形10、关于函数))(32sin(4)(R x x x f ∈+=π,有下列命题①由π必是可得21210)()(x x x f x f -==的整数倍;②)(x f y =的表达式可改写为)62cos(4π-=x y ;③)(x f y =的图象关于点)0,6(π-对称;④)(x f y =的图象关于直线6π-=x 对称;其中正确..命题的序号是A .①②B .②③C .①③D .②④二、填空题(本题共4小题,每小题4分,共16分)11、函数()()()ln 1,1f x x x =->的反函数是 ▲12、若()221,2,0a b a b a ==-⋅=,则b a与的夹角为 ▲ .13、在德国不来梅举行的第48届世乒赛期间,某商店橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第1堆只有1层,就一个球;第2,3,4,堆最底层(第一层)分别按图4所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球,以()f n 表示第n 堆的乒乓球总数,则(5)f = ▲14、给出下列命题:① 存在实数x ,使得3sin cos 2x x +=; ② 在ABC ∆中,sin sin A B A B >⇔>;③ 在ABC ∆中,若30,2A a b ===,则角B 有唯一解45B =; ④ ABC ∆为直角三角形的充分不必要条件是0=⋅⑤ 存在夹角为60两个非零向量b a与,满足2a b a b=+-.其中正确..命题的序号为 ▲三、解答题(本大题共6小题,每小题14分,满分84分)…15、已知21()log 1xf x x+=- (1) 求()f x 的定义域; (2)求使()0f x >的x 的取值范围;16、已知函数,cos cos sin 3)(2m x x x x f ++=其中m 为实常数(1) 求)(x f 的最小正周期; (2) 写出)(x f 的单调递减..区间; (3) 设集合},36|{ππ≤≤-=x x A 已知当A x ∈时,)(x f 的最小值...为2,当A x ∈时,求)(x f 的最大值....17、 已知|a |=1,|b |=2,(1)若a //b ,求a ·b ;(2) 若a ,b 的夹角为135°,求|a +b |.18、已知等差数列{}n a ,11232,12a a a a =++=(1) 求数列{}n a 的通项公式;(2) 令2nn n b a =⋅,求数列{}n b 的前n 项和.19、学校食堂定期从粮店以每吨1500元的价格购买大米,每次购进大米需支付运输费100元。
2019届第一学期期中考试高三文科数学参考答案一.选择题(共12小题,每题5分)答案1.D 2.A 3C 4C 5 D 6D 7 B 8B 9B 10C 11B 12A 二. 填空题13. 答 14.答915.答-2 16.答104b 27≤<三、解答题17(12分)解:(1)在△ABC 中,A B C π++=所以coscos 22A C Bπ+-= sin 2B ==.所以2cos 12sin 2B B =- 13=. 322cos 1sin 2=-=B B 所以22cosBsinBtan ==B(2)因为3a =,b =,1cos 3B =,由余弦定理2222cos b a c ac B =+-, 得2210c c -+=. 解得1c =. 所以△ABC 的面积23221321sin 21s =⨯⨯⨯==B ac 18、(12分)2222)242()24(1062n n n n T n =-+=-++++= 19、(12分)试题解析:(1)证明:∵,∴,∵,∴.又∵底面,∴.∵,∴平面.平面∴⊂,平面PBC BC ⊥PBC 平面(2)三棱锥的体积与三棱锥的体积相等,而 .所以三棱锥的体积.20、(12分)试题解析:(1)设抽到不相邻两组数据为事件A ,因为从第5组数据中选取2组数据共有10种情况,每种情况是等可能出现的,其中抽到相邻两组数据的情况有4种,所以()431105P A =-=故选取的2组数据恰好是不相邻的2天数据的概率是35,(2)由数据,求得()()1111131212,2530262733x y =++==++=22213972,112513*********,111312434ni i i x y x y =⋅==⨯+⨯+⨯=++=∑23432x =,由公式得97797254344322b -==-,3a y bx =-=-,所以y 关于x 的线性回归方程这ˆ532y x =-(3)当10x =时, 5322,2222ˆ32yx =-=-<同样地,当8x =时, 58317,1712ˆ62y=⨯-=-<所以,该研究所得到的线性回归方程是可靠21、(12分)解:(1)因为()313f x x ax =-,()221g x bx b =+-,所以()2f x x a '=-,()2g x bx '=.因为曲线()x f y =与()x g y =在它们的交点()c ,1处有相同切线,所以()()11g f =,且()()11g f '='。
成都七中2022~2023学年度(上)高三年级半期考试数学试卷(文科)(试卷总分:150分,考试时间:120分钟)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集{}0,1,2,3,4,5,6U =,集合{}1,2,4A =,{}1,3,5B =,则()U A B = ð( )A. {}0,6 B. {}1,4 C. {}2,4 D. {}3,5【答案】C【解析】【分析】根据交集、补集的定义,即得解【详解】由题意,全集{}0,1,2,3,4,5,6U =,集合{}1,2,4A =,{}1,3,5B =,故{0,2,4,6}U B =ð则(){2,4}U A B =∩ð故选:C2. 复数43i 2i z -=+(其中i 为虚数单位)的虚部为( )A. 2- B. 1- C. 1 D. 2【答案】A【解析】【分析】根据复数除法的运算法则,求出复数z ,然后由虚部的定义即可求解.【详解】解:因为复数()()()()2243i 2i 43i 510i 12i 2i 2i 2i 21z ----====-++-+,所以复数z 的虚部为2-,故选:A .3. 青少年视力被社会普遍关注,为了解他们的视力状况,经统计得到图中右下角12名青少年的视力测量值()1,2,3,,12i a i =⋅⋅⋅(五分记录法)的茎叶图,其中茎表示个位数,叶表示十分位数.如果执行如图所示的算法程序,那么输出的结果是( )A. 4B. 5C. 6D. 7【答案】B【解析】【分析】依题意该程序框图是统计这12名青少年视力小于等于4.3人数,结合茎叶图判断可得;【详解】解:根据程序框图可知,该程序框图是统计这12名青少年视力小于等于4.3的人数,由茎叶图可知视力小于等于4.3的有5人,故选:B4. 抛物线()220y px p =≠上的一点()9,12P -到其焦点F 的距离PF 等于( )A. 17B. 15C. 13D. 11【答案】C【解析】【分析】由点的坐标求得参数p ,再由焦半径公式得结论.【详解】由题意2122(9)p =⨯-,解得8p =-,所以4(9)132P p PF x =--=--=,故选:C .5. 奥运会跳水比赛中共有7名评委给出某选手原始评分,在评定该选手的成绩时,去掉其中一个最高分和一个最低分,得到5个有效评分,则与7个原始评分(不全相同)相比,一定会变小的数字特征是( )A. 众数B. 方差C. 中位数D. 平均数【答案】B【解析】的【分析】根据题意,由数据的中位数、平均数、方差、众数的定义,分析可得答案.【详解】对于A:众数可能不变,如8,7,7,7,4,4,1,故A错误;对于B:方差体现数据的偏离程度,因为数据不完全相同,当去掉一个最高分、一个最低分,一定使得数据偏离程度变小,即方差变小,故B正确;对于C:7个数据从小到大排列,第4个数为中位数,当首、末两端的数字去掉,中间的数字依然不变,故5个有效评分与7个原始评分相比,不变的中位数,故C错误;对于C:平均数可能变大、变小或不变,故D错误;故选:B6. 已知一个几何体的三视图如图,则它的表面积为()A. 3πB. 4πC. 5πD. 6π【答案】B【解析】【分析】由三视图可知,该几何体是圆锥和半球拼接成的组合体,且圆锥的底面圆和半球的大圆面半径相同,根据题干三视图的数据,以及圆锥的侧面积和球的表面积公式,即得解【详解】由三视图可知,该几何体是圆锥和半球拼接成的组合体,且圆锥的底面圆和半球的大圆面半径相同底面圆的半径1r =,圆锥的母线长2l ==记该几何体的表面积为S 故211(2)4422S r l r πππ=+⨯=故选:B7. 设平面向量a ,b 的夹角为120︒,且1a = ,2b = ,则()2a a b ⋅+= ( )A. 1B. 2C. 3D. 4【答案】A【解析】【分析】利用向量数量积的运算律以及数量积的定义,计算即得解【详解】由题意,()22222112cos120211a ab a a b ⋅+=+⋅=⨯+⨯⨯=-= 则()21a a b ⋅+= 故选:A8. 设x ,y 满足240220330x y x y x y +-≤⎧⎪-+≤⎨⎪++≥⎩,则2z x y =+的最大值是( )A. 2- B. 1- C. 1 D. 2【答案】D【解析】【分析】画出不等式组表示的平面区域,如图中阴影部分所示, 转化2z x y =+为2y x z =-+,要使得2z x y =+取得最大值,即直线2y x z =-+与阴影部分相交且截距最大,数形结合即得解【详解】画出不等式组表示的平面区域,如图中阴影部分所示转化2z x y =+为2y x z=-+要使得2z x y =+取得最大值,即直线2y x z =-+与阴影部分相交且截距最大由图像可知,当经过图中B 点时,直线的截距最大240220x y x y +-=⎧⎨-+=⎩,解得(0,2)B 故2022z =⨯+=故2z x y =+的最大值是2故选:D9. “α为第二象限角”是“sin 1αα>”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】根据条件sin 1αα->求出α的范围,从而可判断出选项.【详解】因为1sin 2sin 2sin 23πααααα⎛⎫⎛⎫-==- ⎪ ⎪ ⎪⎝⎭⎝⎭,所以由sin 1αα>,得2sin 13πα⎛⎫-> ⎪⎝⎭,即1sin 32πα⎛⎫-> ⎪⎝⎭,所以522,636k k k Z ππππαπ+<-<+∈,即722,26k k k Z πππαπ+<<+∈,所以当α为第二象限角时,sin 1αα>;但当sin 1αα>时,α不一定为第二象限角,故“α为第二象限角”是“sin 1αα>”的充分不必要条件.故选:A .10. 已知直线()100,0ax by a b +-=>>与圆224x y +=相切,则22log log a b +的最大值为( )A. 3B. 2C. 2-D. 3-【答案】D【解析】【分析】由直线与圆相切可得2214a b +=,然后利用均值不等式可得18ab ≤,从而可求22log log a b +的最大值.【详解】解:因为直线()100,0ax by a b +-=>>与圆224x y +=相切,2=,即2214a b +=,因为222a b ab +≥,所以18ab ≤,所以22221log log log log 38a b ab +=≤=-,所以22log log a b +的最大值为3-,故选:D .11. 关于函数()sin cos 6x x f x π⎛⎫=-⎪⎝⎭的叙述中,正确的有( )①()f x 的最小正周期为2π;②()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦内单调递增;③3f x π⎛⎫+ ⎪⎝⎭是偶函数;④()f x 的图象关于点,012π⎛⎫⎪⎝⎭对称.A. ①③B. ①④C. ②③D. ②④【答案】C【解析】【分析】应用差角余弦公式、二倍角正余弦公式及辅助角公式可得()11sin(2)264f x x π=-+,再根据正弦型函数的性质,结合各项描述判断正误即可.【详解】()211sin cos sin sin )cos sin 622x f x x x x x x x x π⎛⎫=-=+=+= ⎪⎝⎭11112cos 2sin(2)44264x x x π-+=-+,∴最小正周期22T ππ==,①错误;令222262k x k πππππ-≤-≤+,则()f x 在[,63k k ππππ-+上递增,显然当0k =时,63ππ⎡⎤-⎢⎥⎣⎦,②正确;1111sin(2)cos 2322424f x x x ππ⎛⎫+=++=+ ⎪⎝⎭,易知3f x π⎛⎫+ ⎪⎝⎭为偶函数,③正确;令26x k ππ-=,则212k x ππ=+,Z k ∈,易知()f x 的图象关于1,124π⎛⎫ ⎪⎝⎭对称,④错误;故选:C12. 攒尖在中国古建筑(如宫殿、坛庙、园林等)中大量存在,攒尖式建筑的屋面在顶部交汇成宝顶,使整个屋顶呈棱锥或圆锥形状.始建于1752年的廓如亭(位于北京颐和园内,如图)是全国最大的攒尖亭宇,八角重檐,蔚为壮观.其檐平面呈正八边形,上檐边长为a ,宝顶到上檐平面的距离为h ,则攒尖的体积为( )A.B.C.D. 【答案】D【解析】【分析】攒尖是一个正八棱锥,由棱锥体积公式计算可得.【详解】如图底面正八边形ABCDEFGH 的外接圆圆心是O (正八边形对角线交点),设外接圆半径为R ,在OAB 中,4AOB π∠=,AB a =,由余弦定理得222222cos (24a R R R R π=+-=-,22R ==,正八边形的面积为218sin 24S R π=⨯22(1a =,所以攒尖体积13V Sh ==.故选:D .二、填空题:本大题共4小题,每小题5分,共20分.13. 命题“x N ∃∈,22x x <”的否定是_______________________.【答案】2,2x x N x ∀∈≥【解析】【分析】根据命题的否定的定义求解.【详解】特称命题的否定是全称命题.命题“x N ∃∈,22x x <”的否定是:2,2x x N x ∀∈≥.故答案为:2,2x x N x ∀∈≥.14. 函数()ln f x x =-在1x =处的切线方程为_______________________.(要求写一般式方程)【答案】230x y +-=【解析】【分析】利用导函数求出斜率,即可写出切线方程.【详解】()ln f x x =-的导函数是()1f x x'=,所以()111122f '=-=-.又()11f =,所以函数()ln f x x =-在1x =处的切线方程为()1112y x -=--,即230x y +-=.故答案为:230x y +-=.15. 已知双曲线()2222:10,0x y C a b a b-=>>的两个焦点分别为1F 、2F ,且两条渐近线互相垂直,若C 上一点P 满足213PF PF =,则12F PF ∠的余弦值为_______________________.【答案】13【解析】【分析】由题意可得b a =,进而得到c =,再结合双曲线的定义可得123,PF a PF a ==,进而结合余弦定理即可求出结果.【详解】因为双曲线()2222:10,0x y C a b a b -=>>,所以渐近线方程为b y x a =±,又因为两条渐近线互相垂直,所以21b a ⎛⎫-=- ⎪⎝⎭,所以1b a =,即b a =,因此c =,因此213PF PF =,又由双曲线的定义可知122PF PF a -=,则123,PF a PF a ==,所以在12F PF △中由余弦定理可得222122112121cos 23PF PF F F F PF PF PF +-∠===⋅,故答案为:13.16. 已知向量(),a x m = ,()32,2b x x =-+ .(1)若当2x =时,a b ⊥ ,则实数m 的值为_______________________;(2)若存在正数x ,使得//a b r r,则实数m 取值范围是__________________.【答案】①. 2- ②. (),0[2,)-∞⋃+∞【解析】【分析】(1)由2x =时,得到()2,a m = ,()4,4b = ,然后根据a b ⊥ 求解;(2)根据存在正数x ,使得//a b r r,则()22320x m x m +-+=,()0,x ∈+∞有解,利用二次函数的根的分布求解.【详解】(1)当2x =时,()2,a m = ,()4,4b = ,因为a b ⊥ ,所以2440m ⨯+=,解得2m =-,所以实数m 的值为-2;(2)因为存在正数x ,使得//a b r r,所以()()232x x m x +=-,()0,x ∈+∞有解,即()22320x m x m +-+=,()0,x ∈+∞有解,所以()223022380m m m -⎧->⎪⎨⎪∆=--≥⎩或230220m m -⎧-≤⎪⎨⎪<⎩,解得2m ≥或0m <,所以实数m 的取值范围是(),0[2,)-∞⋃+∞.故答案为:-2,(),0[2,)-∞⋃+∞三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个题目考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:共60分.17. 某企业有甲、乙两条生产线,其产量之比为4:1.现从两条生产线上按分层抽样的方法得到一个样本,其部分统计数据如表(单位:件),且每件产品都有各自生产线的标记.的产品件数一等品二等品总计甲生产线2乙生产线7总计50(1)请将22⨯列联表补充完整,并根据独立性检验估计;大约有多大把握认为产品的等级差异与生产线有关?()20P K k ≥0.150.100.050.0250.0100.0050.0010k 2.0722.7063.8415.0246.6357.87910.828参考公式:()()()()()22n ad bc K a b c d a c b d -=++++(2)从样本的所有二等品中随机抽取2件,求至少有1件为甲生产线产品的概率.【答案】(1)列联表见解析,有97.5%的把握认为产品的等级差异与生产线有关; (2)710【解析】【分析】(1)完善列联表,计算出卡方,再与观测值比较即可判断;(2)记甲生产线的2个二等品为A ,B ,乙生产线的3个二等品为a ,b ,c ,用列举法列出所有可能结果,再根据古典概型的概率公式计算可得;小问1详解】解:依题意可得22⨯列联表如下:产品件数一等品二等品总计甲生产线38240乙生产线7310总计45550所以()225038327 5.5561040545K ⨯-⨯=≈⨯⨯⨯,因为5.024 5.556 6.635<<,所以有97.5%的把握认为产品的等【级差异与生产线有关;【小问2详解】解:依题意,记甲生产线的2个二等品为A ,B ,乙生产线的3个二等品为a ,b ,c ;则从中随机抽取2件,所有可能结果有AB ,Aa ,Ab ,Ac ,Ba ,Bb ,Bc ,ab ,ac ,bc 共10个,至少有1件为甲生产线产品的有AB ,Aa ,Ab ,Ac ,Ba ,Bb ,Bc 共7个,所以至少有1件为甲生产线产品的概率710P =;18. 如图,在正三棱柱111ABC A B C -中,D 是BC 的中点.(1)求证:平面1ADC ⊥平面11BCC B ;(2)已知1AA =,求异面直线1A B 与1DC 所成角的大小.【答案】(1)证明见解析; (2)6π【解析】【分析】(1)证得AD ⊥平面11BCC B ,结合面面垂直的判定定理即可证出结论;(2)建立空间直角坐标系,利用空间向量的夹角坐标公式即可求出结果.【小问1详解】因为正三棱柱111ABC A B C -,所以AB AC =,又因为D 是BC 的中点,所以AD BC ⊥,又因为平面ABC ⊥平面11BCC B ,且平面ABC ⋂平面11BCC B BC =,所以AD ⊥平面11BCC B ,又因为AD ⊂平面1ADC ,所以平面1ADC ⊥平面11BCC B ;【小问2详解】取11B C 的中点E ,连接DE ,由正三棱柱的几何特征可知,,DB DA DE 两两垂直,故以D 为坐标原点,分以,,DA DB DE 所在直线为x 轴,y 轴,z 轴建立如图所示空间直角坐标系,设2AB =,则1AA =,所以()()(11,0,1,0,0,0,0,0,1,A B D C -,则((11,0,1,A B DC =-=-u u u r u u u r,所以111111cos ,A B DC A B DC A B DC ⋅===⋅u u u r u u u ru u u r u u u r u u u r u u u r 由于异面直线成角的范围是0,2π⎛⎤⎥⎝⎦,所以异面直线1A B 与1DC ,因此异面直线1A B 与1DC 所成角为6π.19. 已知n N *∈,数列{}n a 的首项11a =,且满足下列条件之一:①1122n n n a a +=+;②()121n n na n a +=+.(只能从①②中选择一个作为已知)(1)求{}n a 的通项公式;(2)若{}n a 的前n 项和n S m <,求正整数m 的最小值.【答案】(1)22n nn a = (2)4【解析】【分析】(1)若选①,则可得11222n n n n a a ++⋅-⋅=,从而可得数列{}2nn a ⋅是以2为公差,2为首项的等差数列,则可求出2nn a ⋅,进而可求出n a ,若选②,则1112n n a a n n +=⋅+,从而可得数列n a n ⎧⎫⎨⎬⎩⎭是以12为公比,1为首项的等比数列,则可求出na n,进而可求出n a ,(2)利用错位相减法求出n S ,从而可求出正整数m 的最小值【小问1详解】若选①,则由1122n n n a a +=+可得11222n n n n a a ++⋅-⋅=,所以数列{}2n n a ⋅是以2为公差,1122a ⋅=为首项的等差数列,所以222(1)2nn a n n ⋅=+-=,所以22n nn a =,若选②,则由()121n n na n a +=+,得1112n n a a n n +=⋅+,所以数列n a n ⎧⎫⎨⎬⎩⎭是以12为公比,1111a a ==为首项的等比数列,所以1112n n a n -⎛⎫=⨯ ⎪⎝⎭,所以1222n n nnn a -==【小问2详解】因为12312462(1)222222n n n n n S --=+++⋅⋅⋅++,所以234112462(1)2222222n n n n nS +-=+++⋅⋅⋅++,所以23112222122222n n n n S +=+++⋅⋅⋅+-2311112()2222n nn=+++⋅⋅⋅+-111[1]42121212n nn -⎛⎫- ⎪⎝⎭=+⨯--222n n +=-,所以2442n nn S +=-,所以4n S <,所以正整数m 的最小值为4,20. 已知椭圆()2222:10x y C a b a b+=>>的短轴长为,左顶点A 到右焦点F 的距离为3.(1)求椭圆C 的方程(2)设直线l 与椭圆C 交于不同两点M ,N (不同于A ),且直线AM 和AN 的斜率之积与椭圆的离心率互为相反数,求证:l 经过定点.【答案】(1)22143x y +=(2)证明见解析【解析】【分析】(1)依题意可得b =、3a c +=,再根据222c a b =-,即可求出a 、c ,从而求出椭圆方程、离心率;(2)设直线l 为y kx m =+,()11,M x y ,()22,N x y ,联立直线与椭圆方程,消元列出韦达定理,依题意可得12AM AN k k ⋅=-,即可得到方程,整理得到225480m k km --=,即可得到m 、k 的关系,从而求出直线过定点;【小问1详解】解:依题意b =、3a c +=,又222c a b =-,解得2a =,1c =,所以椭圆方程为22143x y +=,离心率12c e a ==;【小问2详解】解:由(1)可知()2,0A -,当直线斜率存在时,设直线l 为y kx m =+,联立方程得22143y kx mx y =+⎧⎪⎨+=⎪⎩,消去y 整理得()2223484120k xkmx m +++-=,设()11,M x y ,()22,N x y ,所以122834km x x k +=-+,212241234m x x k-=+;因为直线AM 和AN 的斜率之积与椭圆的离心率互为相反数,所以12AM AN k k ⋅=-;即()()22121212121212121212222242AM ANk x x km x x m y y kx m kx m k k x x x x x x x x +++++⋅=⋅=⋅==-+++++++所以2222222241281343441282243434m km k km m k k m km k k -⎛⎫+-+ ⎪++⎝⎭=--⎛⎫+-+ ⎪++⎝⎭,即22221231164162k m k m km -+=-+-,所以225480m k km --=,即()()2520m k m k -+=,所以2m k =或25m k =-,当2m k =时,直线l :2y kx k =+,恒过定点()2,0-,因为直线不过A 点,所以舍去;当25m k =-时,直线l :25y kx k =-,恒过定点2,05⎛⎫ ⎪⎝⎭;当直线斜率不存在时,设直线0:l x x =,()00,M x y ,()00,N x y -,则00001222AM AN y y k k x x -⋅=⋅=-++,且2200143x y +=,解得025x =或02x =-(舍去);综上可得直线l 恒过定点2,05⎛⎫⎪⎝⎭.21. 已知函数()sin xf x e k x =-,其中k 为常数.(1)当1k =时,判断()f x 在区间()0,∞+内的单调性;(2)若对任意()0,x π∈,都有()1f x >,求k 的取值范围.【答案】(1)判断见解析 (2)(,1]k ∈-∞【解析】【分析】小问1:当1k =时,求出导数,判断导数在()0,∞+上的正负,即可确定()f x 在()0,∞+上的单调性;小问2:由()1f x >得sin 10x e k x -->,令()sin 1x g x e k x =--,将参数k 区分为0k ≤,01k <≤,1k >三种情况,分别讨论()g x 的单调性,求出最值,即可得到k 的取值范围.【小问1详解】当1k =时,得()sin xf x e x =-,故()cos xf x e x '=-,当()0,∞+时,()0f x '>恒成立,故()f x 在区间()0,∞+为单调递增函数.【小问2详解】当()0,x π∈时,sin (0,1]x ∈,故()1f x >,即sin 1x e k x ->,即sin 10x e k x -->.令()sin 1x g x e k x =--①当0k ≤时,因为()0,x π∈,故sin (0,1]x ∈,即sin 0k x -≥,又10x e ->,故()0f x >在()0,x π∈上恒成立,故0k ≤;②当01k <≤时,()cos x g x e k x '=-,()sin x g x e k x ''=+,故()0g x ''>在()0,x π∈上恒成立,()g x '在()0,x π∈上单调递增,故0()(0)0g x g e k ''>=->,即()g x 在()0,x π∈上单调递增,故0()(0)10g x g e >=-=,故01k <≤;③当1k >时,由②可知()g x '在()0,x π∈上单调递增,设()0g x '=时的根为0x ,则()g x 在0(0,)x x ∈时为单调递减;在0(,)x x π∈时为单调递增又0(0)10g e =-=,故0()0g x <,舍去;综上:(,1]k ∈-∞【点睛】本题考查了利用导数判断函数单调性,及利用恒成立问题,求参数的取值范围的问题,对参数做到不重不漏的讨论,是解题的关键.(二)选考题:共10分.请考生在第22,23题中任选一题作答.如果多做,那么按所做的第一题计分.[选修4—4:坐标系与参数方程](10分)22. 在平面直角坐标系xOy 中,伯努利双纽线1C (如图)的普通方程为()()222222x y x y +=-,曲线2C 的参数方程为cos sin x r y r θθ=⎧⎨=⎩(其中r ∈(,θ为参数).的(1)以O 为极点,x 轴的非负半轴为极轴建立极坐标系,求1C 和2C 的极坐标方程;(2)设1C 与2C 的交于A ,B ,C ,D 四点,当r 变化时,求凸四边形ABCD 的最大面积.【答案】(1)1:C 2222cos 2sin ρθθ=-;2:C r ρ=(2)2【解析】【分析】(1)根据直角坐标方程,极坐标方程,参数方程之间的公式进行转化即可;(2)设点A 在第一象限,并且设点A 的极坐标,根据题意列出点A 的直角坐标,表示出四边形ABCD 的面积进行计算即可.小问1详解】1:C ()()222222x y x y +=-,由cos ,sin x y ρθρθ==,故222222()2(cos sin )ρρθρθ=-,即2222cos 2sin ρθθ=-2:C cos sin x r y r θθ=⎧⎨=⎩,即222x y r +=,即22r ρ=,rρ=【小问2详解】由1C 和2C 图象的对称性可知,四边形ABCD 为中心在原点处,且边与坐标轴平行的矩形,设点A 在第一象限,且坐标为(,)ρα(02πα<<,又r ρ=,则点A 的直角坐标为(cos ,sin )r r αα,又2222cos 2sin ραα=-,即2222cos 2sin 2cos 2r ααα=-=故S 四边形ABCD =22cos 2sin 2sin 2r r r ααα⋅==22cos 2sin 22sin 4ααα⋅⋅=又02πα<<,故042απ<<,因此当42πα=,即8πα=时,四边形ABCD 的面积最大为2.[选修4—5:不等式选讲](10分)【23. 设M 为不等式1431x x ++≥-的解集.(1)求集合M 的最大元素m ;(2)若a ,b M ∈且a b m +=,求1123a b +++的最小值.【答案】(1)3m = (2)12【解析】【分析】(1)分类讨论13x ≥,1x ≤-,113x -<<,打开绝对值求解,即得解;(2)由题意1,3,3a b a b -≤≤+=,构造11(2)(3)132([11]2328113823a b b a a b a b a b ++++++=+⨯=+++++++++,利用均值不等式即得解【小问1详解】由题意,1431x x ++≥-(1)当13x ≥时,1431x x ++≥-,解得3x ≤,即133x ≤≤;(2)当1x ≤-时,1413x x --+≥-,解得1x ≥-,即=1x -;(3)当113x -<<时,1413x x ++≥-,解得1x ≥-,即113x -<<综上:13x -≤≤故集合{|13}M x x =-££,3m =【小问2详解】由题意,1,3,3a b a b -≤≤+=,故(2)(3)8a b +++=故11(2)(3)132()[112328113823a b b a a b a b a b ++++++=+⨯=+++++++++由于1,3a b -≤≤,故20,30a b +>+>由均值不等式,113211[11[1123823821b a a b a b +++=+++≥++=++++当且仅当3223b a a b ++=++,即2,1a b ==时等号成立故求1123a b +++的最小值为12。
高三数学(文科)阶段性质量检测试题说明:本试卷分第I 卷(选择题)和第II 卷(非选择题)共两卷.其中第l 卷共60分,第II 卷共90分,两卷合计I50分.答题时间为120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题;每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的,把正确选项的代号涂在答题卡上.) 1.已知函数)1lg()(x x f -=的定义域为M ,函数xy 1=的定义域为N ,则N M ⋂=( ) A.{}0,1|≠<x x x 且 B.{}01|≠≤x x x 且 C.{}1|>x x D.{}1|≤x x2.设,)21(,5.225.205.2===c b a ,则c b a ,,的大小关系是( ) A.b c a >> B.b a c >> C.c a b >> D.c b a >> 3.如果命题 “⌝(p ∨ q)”为假命题,则( )A .p ,q 均为真命题B .p ,q 均为假命题C .p ,q 中至少有一个为真命题D . p, q 中至多有一个为真命题 4.若向量(3,6),(4,2),(12,6)u v w =-==--,则下列结论中错误的是( ) A.u v ⊥ B.v wC.3w u v =-D.对任一向量AB ,存在实数,a b 使AB au bv =+5.设x 、y 满足24,1,22,x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩则z x y =+( )A .有最小值2,最大值3B .有最小值2,无最大值C .有最大值3,无最大值D .既无最小值,也无最大值6.已知ααπααcos sin ),0,4(,25242sin +-∈-=则等于( ) A.51- B.51 C. 57- D.577.已知函数)(x f 是R 上的偶函数,若对于0≥x ,都有)()2(x f x f =+,且当)1(log )(,)2,0[2+=∈x x f x 时,则)2012()2011(f f +-的值为( )A.-2B.-1C.1D.2 8.函数)2||00)sin()(πφωφω<>>+=,,(A x A x f 的部分图象如图示,则将)(x f y =的图象向右平移6π个单位后,得到图象解析式为( ) A.x y 2sin = B.x y 2cos = C.)32sin(π+=x y D.)62sin(π-=x y 9.已知2)(-=x a x f ,)1,0(log )(≠>=a a x x g a ,若0)4()4(<-g f ,则)(),(x g y x f y ==在同一坐标系内的大致图象是( )10. 首项为20-的等差数列,从第10项起开始为正数,则公差d 的取值范围是 A.209d >B.52d ≤C.20592d <≤ D.20592d ≤< 11. 若函数f(x)=212log ,0,log (),0x x x x >⎧⎪⎨-<⎪⎩,若f(a)>f(-a),则实数a 的取值范围是( )A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(0,1)D.(-∞,-1)∪(0,1)12.已知向量),4(),2,1(y b x a =-=,若b a ⊥,则yx 39+的最小值为( )A.2B.32C.6D.9第Ⅱ卷(非选择题 共90分)二、填空题:本题共4个小题,每题4分,共16分.把正确答案填在答题卡的相应位置.13.在ABC ∆中,若C B A cos cos 2sin =,则=+C B tan tan ________.14.函数⎩⎨⎧>+-≤-=1,341,22)(2x x x x x x f 的图象和函数)1ln()(-=x x g 的图象的交点个数是______________.15.函数)2,0(),3sin(2ππ∈-=x x y 的单调递增区间为____________.16. 下列命题:(1)若函数)a x x x f ++=2lg()(为奇函数,则1=a ; (2)函数x x f sin )(=的周期π=T ; (3)方程x x sin lg =有且只有三个实数根;(4)对于函数x x f =)(,若2)()()2(0212121x x f x x f x x +<+<<,则. 其中的真命题是 .(写出所有真命题的序号)三、解答题.本大题共6个小题,共74分.解答时要求写出必要的文字说明、证明过程或推理步骤.17. (本小题满分12分)在△ABC 中,a 、b 、c 分别是三个内角A 、B 、C 的对边,a =2,sin,552=B 且△ABC 的面积为4. (Ⅰ)求cos B 的值; (Ⅱ)求边b 、c 的长。
浙江省菱湖中学高三上学期期中考试(数学文)一、选择题(每小题5分,共50分)1、已知全集,则正确表示集合和关系的韦恩(Venn )图是 ( )2、已知,其中为虚数单位,则 ( ) A. B. 1 C. 2 D. 33、已知函数,若 = ( ) (A)0(B)1(C)2(D)34、若一个底面是正三角形的三棱柱的正视图如上图所示,则其侧面积...等于( )A. B.2 C. D.65、如图所示的程序框图中输出的S= ( ) A .B. C. D. 16、函数是 ( )A .最小正周期为的奇函数 B. 最小正周期为的偶函数 C. 最小正周期为的奇函数 D. 最小正周期为的偶函数7、公差不为零的等差数列的前项和为.若是的等比中项, ,则等于 ( )A. 18B. 24C. 60D. 90 . 8、若向量,则“”是“”的( ) A.充分而不必要条件 B.必要而不充分条件C.充要条件D.既不充分又不必要条件9、函数f (x )= ( ) (A)(-2,-1) (B) (-1,0) (C) (0,1) (D) (1,2)U R ={1,0,1}M =-{}2|0N x x x =+=()2,a ib i a b R i+=+∈i a b +=1-)1(log )(2+=x x f ()1,f α=α3239998100991011001)4(cos 22--=πx y ππ2π2π{}n a n n S 4a 37a a 与832S =10S (x,3)(x )a R =∈x 4=5||=→a 2xe x +-的零点所在的一个区间是10、设和为双曲线()的两个焦点, 若,是正三角形的三个顶点,则双曲线的离心率为 ( ) A .B .C .D .3 二、填空题(每小题4分,共28分) 11、某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100), [100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是 .12、三张卡片上分别写上字母E 、E 、B ,将三张卡片随机地排成一行,恰好排成英文单词BEE 的概率为 。
高三(上)期中数学试卷(文科)一、选择题(本大题共12 小题,共36.0 分)1.复数A. 10B.C. 10iD.【答案】 C【分析】【剖析】依据复数的运算睁开获得表达式,即可获得结果.【详解】依据复数的乘法运算获得:.故答案为: C.【点睛】此题考察了复数的运算法例, 考察了推理能力与计算能力,属于基础题, 复数问题高考必考,常有考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的模长的计算.2. 已知全集,会合,会合,则会合()A. B. C. D.【答案】 B【分析】,,则,应选 B.考点:此题主要考察会合的交集与补集运算.3. 已知向量,,,则A. B.2 C. D.3【答案】 C【分析】【剖析】由题意求出,利用∥(),获得1×2=﹣1(1+m),求出m即可.【详解】向量(﹣ 1, 1),(3,m),∴(2,1+m),∵∥(),∴1×2=﹣ 1( 1+m),∴m=﹣3.应选: C.【点睛】此题考察向量共线与向量的平行的坐标运算,考察计算能力.4. 已知某几何体的三视图以下图俯视图中曲线为四分之一圆弧,则该几何体的表面积为A. B. C. D.4【答案】 D【分析】【剖析】由已知中的三视图可得该几何体是一个以俯视图为底面的柱体,代入柱体的表面公式,即可获得答案 .【详解】由已知中的三视图可得该几何体是一个以俯视图为底面的柱体,底面面积为,底面周长为,柱体的高为1,因此该柱体的表面积为.【点睛】此题考察了几何体的三视图及组合体的表面积的计算,在由三视图复原为空间几何体的实质形状时,要依据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不行见轮廓线在三视图中为虚线. 求解以三视图为载体的空间几何体的表面积与体积的重点是由三视图确立直观图的形状以及直观图中线面的地点关系和数目关系,利用相应表面积与体积公式求解 .5. 函数的图象可能是A. B.C. D.【答案】 A【分析】【剖析】研究函数的性质,依据性质作出判断.【详解】,即函数为奇函数,图像对于原点对称。
成都七中高三期中测试题(文科)
参考答案及评分意见
一、选择题(每小题5分,共60分)
D D D A A B B B B B D D
二、填空题(每小题4分,共16分)
13、(或其等价形式); 14、-2; 15、; 16、(-∞,-1).
三、解答题:
17、解:(1)记“甲当选班委”为事件A,则; (2分)
记“乙当选班委”为事件B,则; (4分)
记“丙当选班委”为事件C,则; (6分)
因为事件A、B、C互斥,所以恰有一名同学当选的概率为
. (8分)(2)设“甲、乙、丙三人都当选班委”为事件D,则
. (10分)又“至多两人当选班委”为对立事件,且
. (12分)18、解:(1)由已知得. (3分)
解得. (6分)(2)原式(9分)
. (12分)19、解:由题意,以G为原点、GE为x轴、GD为y轴、GP为z轴,建立空间直角坐标系,则
G(0,0,0),E(,0,0),P(0,0,4),C(,,0),D(0,,0),B(,-,0). (3分)(1)(,0,0),(,,-4),则
. (6分)所以异面直线GE与PC所成角的大小的余弦值为. (8分)
(2)设平面PBG的法向量为(x,y,z),且(,-,0),(0,0,4),则
,取x=1得(1,1,0).(或直接证明为法向量)(10分)又(0,,0),
所以点D到平面PBG的距离为. (12分)
20、解:(1)由f(x)是R上的奇函数,得f(0)=0,即d=0. (1分)
所以f(x)=ax3+cx,f'(x)=3ax2+c. (2分)
又∵当x=1时,f(x)取得极值-2.
∴,即,解得. (4分)
所以f(x)=x3-3x,f'(x)=3x2-3=3(x+1)(x-1).
则f'(x)取值规律及f(x)的单调性情况如下表所示:
∴f(x)的单调递增区间为(-∞,-1)和(1,+∞);单调递减区间为(-1,1). (7分)
f(x)的极大值为f(-1)=2. (8分)(2)由(1)知,当x1,x2∈[-1,1]时,有|f(x1)|≤2,|f(x2)|≤2. (10分)所以|f(x1)-f(x2)|≤|f(x1)|+|f(x2)|≤4. (12分)
21、证明:由f(x)=-x2+2x,g(x)=kx及|f(x)+g(x)|<1得
-1<x2-(k+2)x<1 (※). (2分)当x=0时,不等式(※)显然成立; (4分)
当x∈(0,2]时,不等式(※)恒成立,即
(0<x≤2)恒成立. (8分)而,. (10分)
所以<k+2<2,故<k<0. (12分)
22、证明:(1)当n≥2时,a n=S n-S n-1=(4-2a n+1)-(4-2a n)=2a n-2a n+1,即a n+1=a n. (3分)
当n=1时,S1=4-2a2,又a1=2,所以a2=1,也满足上式. (5分)
故{a n}是等比数列,其通项为a n=()n-2. (7分)(2)由(1)可得,S n=4(1-). (8分)∵S n·S n+2-S n+12=16(1-)(1-)-16(1-)2
=16[(1--+)-(1-+)
=-<0. (11分)
∴S n·S n+2<S n+12. (12分)
两边取对数,得log2(S n·S n+2)<2log2S n+1,即
log2(S n·S n+2)<2log2S n+1. (14分)。