NC3O分子体系的异构化及其结构和性能的理论研究
- 格式:pdf
- 大小:259.95 KB
- 文档页数:5
石墨相氮化碳的结构与光催化性能作者:杨玉蓉王佳慧刘宇飞来源:《牡丹江师范学院学报(自然科学版)》2022年第03期摘要:阐述石墨相氮化碳的合成、在光催化领域中的应用、改性与形貌控制,展望其在光催化领域面临的机遇和挑战.关键词:石墨相氮化碳;光催化;改性[中图分类号]TK91;O644.1[文献标志码]A文章编号:1003-6180(2022)03-0035-04Structure and Photocatalytic Properties of Graphitic Carbon NitrideYANG Yurong,WANG Jiahui,LIU Yufei(School of Science,Heihe University,Heihe 164300,China)Abstract:The synthesis,application,modification and morphology control of graphite-phase carbon nitride in photocatalysis were reviewed,and the opportunities and challenges in photocatalysis field were proposed.Key words:graphitic carbon nitride;photocatalysis;modification工业化的迅速发展导致全球对能源的需求急剧增加.日益增长的能源需求和逐渐恶化的环境问题成为全球可持续发展的巨大挑战.将太阳能转化为可再生能源成为解决能源和环境问题的有效策略.可见光诱导的半导体光催化技术被广泛研究.在众多光催化剂中,石墨相氮化碳因具有较高的物理化学稳定性和独特的電子能带结构等优点而备受关注.石墨相氮化碳稳定性高、成本低、绿色环保,在光催化产氢领域被广泛应用.然而,由于电导率低、载流子复合率高、光吸收效率低,石墨相氮化碳的光催化性能并不理想.本研究对石墨相氮化碳的结构、合成、在光催化领域中的应用、改性与形貌控制进行了分析,展望了光催化领域存在的机遇和挑战.1石墨相氮化碳的合成石墨相氮化碳作为一种可见光催化剂,通常由含有氮的前驱体直接缩合来合成,可以采用对尿素、硫脲、三聚氰胺等富氮的前驱体进行热处理来制备.前驱体材料和制备条件是影响石墨相氮化碳物理化学性质的关键因素,这些因素严重影响了石墨相氮化碳的C/N比、比表面积、孔隙率、吸收边缘及其微观结构.石墨相氮化碳的合成过程是加聚和缩聚的组合:单氰胺分子在约203 °C和234 °C温度下缩合为双氰胺和三聚氰胺,接着进入除去氨的冷凝阶段,大约335 °C时,合成三聚氰胺产物.进一步加热到约390 °C,3s-三嗪单元通过三聚氰胺的重排形成.520 °C,聚合的石墨相氮化碳通过单元进一步冷凝产生.在600 °C以上变得不稳定,超过700 °C,石墨相氮化碳会转化成氮和氰基碎片消失.石墨相氮化碳的独特性质和化学结构受反应气氛的强烈影响.反应气氛能够诱导无序结构、缺陷以及碳和氮空位的产生.缺陷对于多相催化反应是必不可少的,它们可以作为反应物分子的活性位点,通过在价带和导带之间引入其他能级来改变电子能带结构,以增强可见光吸收.半导体中的缺陷和晶格无序可以形成中间态,通常称为带尾态,用于激发电子-空穴对和光催化剂的光学响应.[1-2]无序缺陷的另一个优点是存在更多的俘获位点以阻止光生载流子的复合.具有介孔特征的石墨氮化碳是一种非常有希望的非金属催化剂,除了具有大的比表面积和结晶孔壁,还显示出独特的半导体特性.介孔的形成和比表面积的提高能够调整氮化碳的物理化学性质,从而提升材料的光催化性能.制备石墨相氮化碳的新方法包括超声分散技术、软模板法、化学功能化技术和酸性溶液浸渍法.使用软模板方法形成介孔阵列是通过协同构建两亲表面活性剂和客体物质来实现的.有机模板的成分及其性质对于产生介孔结构至关重要.因此,它们通常被认为是结构导向剂,该方法通常在水热环境中进行,可通过蒸发诱导自组装实现.2石墨相氮化碳在光催化领域中的应用在众多的光催化剂中,石墨相氮化碳由于成本低、制备工艺简单受到了人们的广泛关注.[3-5]石墨相氮化碳具有独特的二维结构,层间的弱范德华力使其具有片状石墨特征,使得每层中的原子排列成具有强共价键的蜂窝状结构,从而形成具有π共轭的类石墨平面构型,进而能够迅速的传输光生载流子.[6-9]石墨相氮化碳的禁带宽度为2.7 eV,最大吸收边为460 nm,能够吸收太阳光谱的部分可见光,具有热稳定性、生物相容性、环保性和耐腐蚀的优点.[10]石墨相氮化碳的价带由N2p轨道构成,导带由N2p和C2p 轨道杂化而成,它具有适当的价带和导带电位,满足光催化产氢、产氧的条件,在光催化领域中被广泛应用.已经开发了大量高效的光催化活性的石墨相氮化碳基纳米材料,其异质结具有出色的光解水制氢性能.石墨相氮化碳作为一种非金属金属和可见光响应的催化剂,在污染物降解中有广阔的应用前景.石墨相氮化碳的光催化降解反应可分为两类:污染物的气相降解,有机污染物和有毒离子的液相去除.二维石墨相氮化碳异质结作为光催化剂在CO2还原中受到广泛关注.石墨相氮化碳的导带底满足CO2还原半反应,能够实现光催化CO2还原.CO2光还原过程不仅仅是一步反应,它涉及质子参加的多电子反应过程,能够产生多种产物.从热力学角度看,CO2通过获得多个(二、四、六、八)电子和氢自由基,依次还原生成气态和液态烃,依次为HCOOH(液态)、CO (气态)、HCHO(液态)、CH3OH(液态)到CH4(气态).光催化消毒是另一个值得关注的方向.与传统的消毒方法(如臭氧法、氯化法和紫外线法)相比,光催化消毒具有高效、无毒和稳定的特点,是解决这一问题的新选择.3石墨相氮化碳光催化剂的改性与形貌控制由于N2p和C2p轨道的杂化,石墨相氮化碳表现出严重的光生载流子复合.此外,它的光吸收效率低,这些因素极大地限制了其光催化活性的提高.为了提高石墨相氮化碳的光催化活性,研究人员采用了多种策略来提高石墨相氮化碳的光催化活性,如元素和分子掺杂、缺陷引入、界面调控、贵金属负载、有机物复合、与光敏材料和导电材料形成异质结以及合成石墨相氮化碳基同质结.[11]非金属或阴离子的掺杂导致石墨相氮化碳的带隙变窄,从而增强光捕获能力.这是由于杂质的引入,形成了局域态,并将价带顶的位置提高,由此缩小了带隙,增加了光吸收.此外,非金属的掺杂也会导致π电子的离域效应,能够增强材料的电导率、光生载流子的迁移率和电子-空穴对分离率.从动力学和热力学的角度来看,价带宽度对空穴的迁移率起着重要作用,因为宽度越大,空穴的迁移率越高,从而导致更好的氧化效果.价带宽度的增加,需要阴离子或非金属掺杂剂在材料中均匀分布.共掺杂或多个原子的掺杂也是一种很有前途的方法,它可以更有效地调节石墨相氮化碳的带隙.多原子共掺杂能够显著提高石墨相氮化碳的光催化活性.空位也会提高石墨相氮化碳的光吸收,影响它的光催化能力,充当发生反应物吸附、活化以及电子捕获的特定位点,有效地调控材料的能带结构.[12-13]在石墨相氮化碳内引入氮空位能够减小带隙,在石墨相氮化碳中引入碳空位为光生电荷载流子的快速转移提供了活性位点和扩散通道,提高石墨相氮化碳的光吸收,降低光生载流子的复合.将石墨相氮化碳与其他非金属材料、碳基材料、聚合物和分子聚合也是提高其光催化活性的有效方法.石墨相氮化碳和氧化石墨烯复合的纳米材料是通过浸渍和化学还原的组合工艺制备的,石墨烯起到了导电通道的作用,从而有效地分离光生载流子.将MOF材料与石墨相氮化碳复合能够有效提高石墨相氮化碳的光催化活性.石墨相氮化碳与有机分子结合能够有效提高光催化性能,用低负电性分子掺杂剂取代氮原子有利于电子转移,从而提高电导率并抑制光生载流子的复合.增强的电子共轭体系显著地降低了石墨相氮化碳的带隙,导致吸收峰发生红移.由于石墨相氮化碳的电子结构很大程度上由其富电子共轭骨架决定,有机化合物(包括有機分子、有机聚合物和MOFs)与石墨相氮化碳的结合为扩展芳香族聚醚共轭体系提供了可能,实现了对其固有结构特性的调整,例如缩小其带隙以促进光吸收和电荷传输.[14-15]构建异质结或同质结也是增强电荷分离的有效策略.将石墨相氮化碳和其他半导体复合会产生能带偏移,从而在界面处感应出内置电场,实现光生电荷载流子的反向传输.同型异质结已被广泛用于非金属光催化剂.目前,研究人员已经采用了多种策略来制备石墨相氮化碳同质结光催化剂,这些石墨相氮化碳同质结光催化剂显示了良好的光催化活性.控制纳米结构也会导致石墨相氮化碳的化学、物理和光学性质发生改变,调整氧化还原位点的数量、电子和空穴到达活性位点的扩散距离,对提高石墨相氮化碳的性能至关重要.近年来,许多学者深入研究了光催化产氢与石墨相氮化碳形态之间的关系,开发了量子点、一维纳米线、纳米棒、纳米纤维、纳米管、二维纳米片.[16-17]合成石墨相氮化碳的过程中添加造孔剂,通过热缩聚成功制备了多孔石墨相氮化碳,这些多孔石墨相氮化碳的光催化活性和稳定性均得到很大提高.研究人员通过在NH3气氛下对块状石墨相氮化碳进行热处理,开发了具有大量平面内孔和大量碳空位的多孔石墨相氮化碳纳米片,平面内孔赋予石墨相氮化碳具有许多边界,减少了范德华相互作用以减轻严重的聚集,但也暴露了额外的活性边缘和扩散路径,极大地加速了光生电子-空穴的传输和扩散.[18]由于面内孔丰富,石墨相氮化碳的合理改性可以同时实现载流子的有效传输、分离、转移和利用,以及高效的光吸收,这是开发新一代性能优异光催化剂的基础.总之,作为研究最广泛的光催化剂之一,石墨相氮化碳具有可调谐的电子能带结构、化学稳定性、低成本等优异的特性.然而,氮原子的高电负性增加了共轭体系的缺陷,导致石墨相氮化碳的电子利用率和电导率下降,从而对其光催化活性产生不利影响.尽管迄今为止已经取得了一些令人振奋的成果,但石墨相氮化碳杂化复合材料的效率和稳定性仍远未达到大规模应用的要求.在未来的研究中需要深入挖掘光催化反应机理,更好地设计石墨相氮化碳基有机光催化剂,进一步提高材料的稳定性.开发剥离石墨相氮化碳,探索均匀的单层或多层纳米片的新方法,实现更高的太阳能转化效率.开发价格低廉、绿色环保、具有较高的化学稳定性的石墨相氮化碳基光催化剂,并应用到工业领域中,仍然是一个挑战.参考文献[1]桑娜,任玉兰,王雪,等.Bi/BiOBr光催化剂的合成及性能研究[J].牡丹江师范学院学报:自然科学版,2019 (04):46-49.[2]汪鹏生,李洋,李甲地.水热法制备TiO2/MoS2纳米球光催化剂及其光催化性能研究[J].牡丹江师范学院学报:自然科学版,2017(04):37-39.[3]孙志明,李雪,马建宁,等.类石墨氮化碳/伊利石复合材料的制备及其可见光催化性能[J].复合材料学报,2018,35(06):1558-1565.[4]胡金娟,马春雨,王佳琳,等.Ag-Ag2O/TiO2-g-C3N4纳米复合材料的制备及可见光催化性能[J].复合材料学报,2020,37(06):1401-1410.[5]曹雪娟,单柏林,邓梅,等.Fe掺杂g-C3N4光催化剂的制备及光催化性能研究[J].重庆交通大学学报:自然科学版,2019,38(11):52-57.3石墨相氮化碳光催化剂的改性与形貌控制由于N2p和C2p轨道的杂化,石墨相氮化碳表现出严重的光生载流子复合.此外,它的光吸收效率低,这些因素极大地限制了其光催化活性的提高.为了提高石墨相氮化碳的光催化活性,研究人员采用了多种策略来提高石墨相氮化碳的光催化活性,如元素和分子掺杂、缺陷引入、界面调控、贵金属负载、有机物复合、与光敏材料和导电材料形成异质结以及合成石墨相氮化碳基同质结.[11]非金属或阴离子的掺杂导致石墨相氮化碳的带隙变窄,从而增强光捕获能力.这是由于杂质的引入,形成了局域态,并将价带顶的位置提高,由此缩小了带隙,增加了光吸收.此外,非金属的掺杂也会导致π电子的离域效应,能够增强材料的电导率、光生载流子的迁移率和电子-空穴对分离率.从动力学和热力学的角度来看,价带宽度对空穴的迁移率起着重要作用,因为宽度越大,空穴的迁移率越高,从而导致更好的氧化效果.价带宽度的增加,需要阴离子或非金属掺杂剂在材料中均匀分布.共掺杂或多个原子的掺杂也是一种很有前途的方法,它可以更有效地调节石墨相氮化碳的带隙.多原子共掺杂能够显著提高石墨相氮化碳的光催化活性.空位也會提高石墨相氮化碳的光吸收,影响它的光催化能力,充当发生反应物吸附、活化以及电子捕获的特定位点,有效地调控材料的能带结构.[12-13]在石墨相氮化碳内引入氮空位能够减小带隙,在石墨相氮化碳中引入碳空位为光生电荷载流子的快速转移提供了活性位点和扩散通道,提高石墨相氮化碳的光吸收,降低光生载流子的复合.将石墨相氮化碳与其他非金属材料、碳基材料、聚合物和分子聚合也是提高其光催化活性的有效方法.石墨相氮化碳和氧化石墨烯复合的纳米材料是通过浸渍和化学还原的组合工艺制备的,石墨烯起到了导电通道的作用,从而有效地分离光生载流子.将MOF材料与石墨相氮化碳复合能够有效提高石墨相氮化碳的光催化活性.石墨相氮化碳与有机分子结合能够有效提高光催化性能,用低负电性分子掺杂剂取代氮原子有利于电子转移,从而提高电导率并抑制光生载流子的复合.增强的电子共轭体系显著地降低了石墨相氮化碳的带隙,导致吸收峰发生红移.由于石墨相氮化碳的电子结构很大程度上由其富电子共轭骨架决定,有机化合物(包括有机分子、有机聚合物和MOFs)与石墨相氮化碳的结合为扩展芳香族聚醚共轭体系提供了可能,实现了对其固有结构特性的调整,例如缩小其带隙以促进光吸收和电荷传输.[14-15]构建异质结或同质结也是增强电荷分离的有效策略.将石墨相氮化碳和其他半导体复合会产生能带偏移,从而在界面处感应出内置电场,实现光生电荷载流子的反向传输.同型异质结已被广泛用于非金属光催化剂.目前,研究人员已经采用了多种策略来制备石墨相氮化碳同质结光催化剂,这些石墨相氮化碳同质结光催化剂显示了良好的光催化活性.控制纳米结构也会导致石墨相氮化碳的化学、物理和光学性质发生改变,调整氧化还原位点的数量、电子和空穴到达活性位点的扩散距离,对提高石墨相氮化碳的性能至关重要.近年来,许多学者深入研究了光催化产氢与石墨相氮化碳形态之间的关系,开发了量子点、一维纳米线、纳米棒、纳米纤维、纳米管、二维纳米片.[16-17]合成石墨相氮化碳的过程中添加造孔剂,通过热缩聚成功制备了多孔石墨相氮化碳,这些多孔石墨相氮化碳的光催化活性和稳定性均得到很大提高.研究人员通过在NH3气氛下对块状石墨相氮化碳进行热处理,开发了具有大量平面内孔和大量碳空位的多孔石墨相氮化碳纳米片,平面内孔赋予石墨相氮化碳具有许多边界,减少了范德华相互作用以减轻严重的聚集,但也暴露了额外的活性边缘和扩散路径,极大地加速了光生电子-空穴的传输和扩散.[18]由于面内孔丰富,石墨相氮化碳的合理改性可以同时实现载流子的有效传输、分离、转移和利用,以及高效的光吸收,这是开发新一代性能优异光催化剂的基础.总之,作为研究最广泛的光催化剂之一,石墨相氮化碳具有可调谐的电子能带结构、化学稳定性、低成本等优异的特性.然而,氮原子的高电负性增加了共轭体系的缺陷,导致石墨相氮化碳的电子利用率和电导率下降,从而对其光催化活性产生不利影响.尽管迄今为止已经取得了一些令人振奋的成果,但石墨相氮化碳杂化复合材料的效率和稳定性仍远未达到大规模应用的要求.在未来的研究中需要深入挖掘光催化反应机理,更好地设计石墨相氮化碳基有机光催化剂,进一步提高材料的稳定性.开发剥离石墨相氮化碳,探索均匀的单层或多层纳米片的新方法,实现更高的太阳能转化效率.开发价格低廉、绿色环保、具有较高的化学稳定性的石墨相氮化碳基光催化剂,并应用到工业领域中,仍然是一个挑战.参考文献[1]桑娜,任玉兰,王雪,等.Bi/BiOBr光催化剂的合成及性能研究[J].牡丹江师范学院学报:自然科学版,2019 (04):46-49.[2]汪鹏生,李洋,李甲地.水热法制备TiO2/MoS2纳米球光催化剂及其光催化性能研究[J].牡丹江师范学院学报:自然科学版,2017(04):37-39.[3]孙志明,李雪,马建宁,等.类石墨氮化碳/伊利石复合材料的制备及其可见光催化性能[J].复合材料学报,2018,35(06):1558-1565.[4]胡金娟,马春雨,王佳琳,等.Ag-Ag2O/TiO2-g-C3N4纳米复合材料的制备及可见光催化性能[J].复合材料学报,2020,37(06):1401-1410.[5]曹雪娟,单柏林,邓梅,等.Fe掺杂g-C3N4光催化剂的制备及光催化性能研究[J].重庆交通大学学报:自然科学版,2019,38(11):52-57.。
《Organic Chemistry—Structure and Function》——一本适用于大学双语有机教学的原版教材宋怡(南京市北圩路41号 210017 南京晓庄学院化学系)摘要:教材问题已经成为制约我国双语教学发展的客观瓶颈之一。
本文介绍了一本适用于大学双语有机教学的优秀原版教材,希望能够为解决双语有机配套教材匮乏的问题提供一些有用的信息。
双语教学实践正在我国如火如荼的开展,而配套教材匮乏已经成为制约双语教学健康发展的客观瓶颈之一。
当前的主要对策是引进外国原版教材。
我们向大家推荐其中一本优秀的原版大学有机化学教材。
1 内容简介《有机化学——结构与功能》(Organic Chemistry—Structure and Function ,K.Peter C.V ollhardt, Neil E. Schore编,第三版,New Y ork W.H.Freeman and Company 2000年出版)是一本适用于化学及生物医学等专业的基础有机化学教材。
该教材对有机化学基础知识进行了较为全面的整合,以官能团为主线贯穿体系结构,突出强调了构效关系和有机合成的重要地位。
全书篇幅较长,共分26章。
每一章除主要内容外还包括以下几个单元:Chemical Highlight:与本章节内容相关的扩展资料Chapter Integration Problem:本章综合例题及解答New Reaction:本章新涉及的化学反应Reaction Summary Road Map:化学反应总结而成的路径图Important Concepts:重要概念总结Problem:本章习题章节内容及Chemical Highlight部分内容一览表2 特点分析2.1整体突出构效关系许多学生把有机看作是大量的令人望而生畏的知识点,要消除这种误解,帮助学生学习和理解有机化学,最佳途径是给学生提供一个知识的框架,学生能够围绕该框架组织自己的知识点。
催化重点知识点一、概述催化剂定义描述:在反应体系中,若存在某一种类物质,可使反应速率明显变化(增加或减少),而本身的化学性质和数量在反应前后基本保持不变,这种物质称为催化剂。
催化剂可以是正催化剂,也可以是负催化剂。
催化剂的组成:主体,载体,其他。
主体分为主催化剂、共催化剂、助催化剂。
助催化剂分为结构助催化剂、电子助催化剂、晶格缺陷助催化剂、扩散助催化剂。
主催化剂:起催化作用的根本性物质。
没有它不存在催化作用。
共催化剂:催化剂中含有两种单独存在时都具有催化活性的物质,但各自的催化活性大小不同,活性大的为主催化剂,活性小的为共催化剂。
两者组合可提高催化活性。
助催化剂:是催化剂中提高主催化剂的活性、选择性、改善催化剂的耐热性、抗毒性、机械强度、寿命等性能的组分。
催化反应:有催化剂参与的反应。
催化反应的分类:通常根据体系中催化剂和反应物的“相”分类;也可根据反应中反应分子间电子传递情况分类。
催化反应分为:均相催化反应,多相催化反应,酸碱反应,氧化还原反应。
均相催化反应:催化剂和反应物形成均一的相,可以是气相、液相。
多相催化反应:催化剂和反应物处于不同相,催化剂通常均为固体。
可分为气固、液固。
酸碱反应:在反应中发生电子对转移的称为酸-碱反应。
氧化还原反应:在反应中发生一个电子转移的称为氧化-还原反应。
催化特征:1催化是一种知识,是一种关于加快化学反应发生的“捷径”的知识。
2催化不能改变化学反应热力学平衡, 但促使热力学可自发发生的反应尽快发生,尽快达到化学平衡。
3催化是选择性的,往往要在一系列平行反应中特别地让其中一种反应尽快发生,尽速达到平衡。
如果可能,它还要同时抑制其它反应的进行。
四、如果热力学允许,催化对可逆反应的两个方向都是有效的。
催化的本质:在催化剂作用下,以较低活化能实现的自发化学反应被称为催化反应。
催化剂是一种中介物质,它提供了改变活化能的路径从而加快了反应速率(或降低了反应温度),但其自身最终并没有被消耗。
几种席夫碱衍生物的二阶NLO性质的理论计算和实验研究1梁小蕊1,王刚2,赵波3,*,江炎兰1,梁承红11海军航空工程学院基础部,山东烟台(264001)2中国科学院烟台海岸带可持续发展研究所,山东烟台(264003)3南京师范大学化学与环境科学学院,南京(210097)E-mail:zhaobopaper@摘要:采用密度泛函理论B3L YP方法,在6-31G水平上对10种芳醛缩芳胺类席夫碱衍生物进行几何结构优化,在获得稳定构型的基础上,用TDHF/6-31G方法计算了它们的分子二阶非线性光学系数β值。
用室温固相方法合成了其中的6种化合物,并测试了它们的宏观SHG响应。
从微观和宏观两个方面研究了芳醛缩芳胺类席夫碱衍生物系列二阶非线性光学材料的性质,探讨了取代基种类、取代位置等有关因素对这类化合物非线性光学性质的影响规律。
关键词:席夫碱,DFT,二阶非线性光学材料,固相合成,SHG中图分类号:O621.11.引言近年来,由于有机二阶非线性光学(NLO)材料在许多光电子学领域如光学信息处理、远程通讯等有广泛的应用,因而仍是人们的研究热点之一[1,2]。
与目前研制的无机材料相比,有机材料具有非线性光学系数大、响应时间快和抗光伤阈值高等优点。
在设计有机二阶非线性光学(NLO)材料时,分子具有足够大的二阶NLO系数β值是材料具有理想的宏观二阶NLO 响应的先决条件。
但是,材料是否具有宏观的非线性响应不仅取决于分子的β值,还要在宏观上形成非中心对称的晶体结构,因此如何在宏观上设计出非中心对称的晶体材料是有机二阶非线性光学材料研制的重要课题。
席夫碱类化合物及其金属配合物在药学、催化、分析化学、腐蚀以及光致变色等领域研究较多[3-5],作为非线性光学材料被人们所关注是近几年才开始的,在此方面的研究还不深入,然而该类化合物的分子共轭性强、可变性大,有利于产生SHG效应,且截止吸收波长短,在可见光区吸收少或无吸收,分子易结晶,是一类比较理想的有机倍频材料。
电荷极化光催化剂光转化二氧化碳制多碳化学品的研究进展解仲凯;施伟东
【期刊名称】《化工进展》
【年(卷),期】2024(43)5
【摘要】二氧化碳(CO_(2))光合成高附加值多碳化学品是缓解温室效应和能源危机的极具前景的绿色发展新技术。
设计具有电荷极化活性位点的光催化剂能够有效降低C-C偶联反应能垒,进而提高光合成多碳化学品催化选择性和活性。
本文综述了光催化CO_(2)还原制C_(2)化学品的相关研究,深入研究电荷不对称位点构筑的主要策略,阐明微观层面上电荷极化效应对C_(2)产物活性和选择性的影响机制,总结出极具前景的高效光催化剂的设计与开发思路,为光催化技术的实际应用提供重要的理论和实践指导。
展望未来,应更加注重催化剂在原子层面上的精准调控,开发出更高效、更专一的多碳产物制备系统,助力能源产业结构的低碳转型。
【总页数】9页(P2714-2722)
【作者】解仲凯;施伟东
【作者单位】江苏大学化学化工学院
【正文语种】中文
【中图分类】O643.36;O644.1;TB34
【相关文献】
1.基于二氧化钛光催化剂生物质转化制备氢气和化学品的研究进展
2.二氧化碳转化制备化学品的研究进展
3.二氧化碳转化制取燃料及高值化学品研究进展
4.二氧化碳间接转化制化学品的研究进展
5.极化促进光催化剂电荷分离的最新进展
因版权原因,仅展示原文概要,查看原文内容请购买。
聚合物粘结剂PVP、PAM和PVA结构与性能的分子动力学研究柴卫红;汪焰恩;魏庆华;杨明明;张映锋;魏生民【摘要】在粉末打印骨支架的工艺中,粘结剂的性质是影响骨支架质量的关键因素.采用分子动力学的模拟方法对三种常用高分子粘结剂的体系进行了构建和模拟,从微观分子层面研究了聚合物粘结剂PVP,PAM和PVA的部分性质,比如密度、内聚能及力学性能,并对三种粘结剂的性能参数进行了比较,对其内在关系进行了揭示.此外,还通过建立粘结剂与羟基磷灰石的界面相互作用模型,对三种粘结剂与羟基磷灰石的界面结合能进行了计算和比较,分析了影响高聚物粘结特性的根本原因.这一工作不仅对常用粘结剂的基本性质进行了预估,而且对骨支架粉末粘结工艺中粘结剂的选择提供了理论依据.%During the process of bone scaffold manufacturing with 3D printing technology,the properties of binder is a key factor that affects the quality of bone scaffold.In this paper,a molecular dynamics simulation method was applied to build and simulate the models of three commonly used polymer binders,and some properties of polymer binders PVP,PAM and PVP are investigated from a microscopic molecularlevel,such as density,cohesive energy and mechanical properties.The performance parameters of three binders are compared and studied,and then the internal relations are also revealed.Moreover,the interaction models of binders and HA surfaces are constructed,and the interfacial bonding energies are calculated and compared respectively,and the root reason affecting polymer bonding properties is also found.This work not only predicts the basic properties of commonly used binder,but alsoprovides the theoretical basis for the choice of binder for the bone scaffold manufacturing by 3D printing technology.【期刊名称】《计算力学学报》【年(卷),期】2018(035)003【总页数】6页(P344-349)【关键词】聚合物粘结剂;分子动力学;内聚能密度;结合能;机械性能【作者】柴卫红;汪焰恩;魏庆华;杨明明;张映锋;魏生民【作者单位】西北工业大学机电学院,西安710072;西北工业大学机电学院,西安710072;西北工业大学机电学院,西安710072;西北工业大学机电学院,西安710072;西北工业大学机电学院,西安710072;西北工业大学机电学院,西安710072【正文语种】中文【中图分类】O647.11;O3131 引言随着三维打印技术的发展,基于微滴喷射原理的三维粉末粘结打印技术已在很多领域得到应用,特别是在骨支架制备方面技术已比较成熟[1,2]。
化工进展Chemical Industry and Engineering Progress2024 年第 43 卷第 1 期CoZn-MOF 衍生多级孔取向碳载CoP 及其析氢性能汪尚1,姚瑶1,王佳1,董迪迪1,2,常刚刚1(1 武汉理工大学化学化工与生命科学学院,湖北 武汉 430070;2 武汉东湖学院生命科学与化学学院,湖北 武汉 430212)摘要:在“双碳”背景下,高效、清洁的氢能源成为代替传统化石能源的重要选择,而电解水产氢是开发氢能源需要攻克的关键技术之一。
目前,电解水产氢催化活性较高的催化剂主要以贵金属催化剂为主,然而贵金属价格高昂、资源稀缺严重阻碍了它们在清洁能源领域的大规模应用。
因此,开发高效、耐用、廉价和地球资源丰富的电催化剂是实现电解水产氢的迫切需求。
本文以无定形的锌钴双金属有机框架为前体,通过酸溶液处理制备了一种具有独特多面体结构的新型骨架材料(ZnCo-MOF ),然后通过逐级碳化磷化过程,在保留原有形态的基础上得到了CoP 负载的具有规则形貌的多级孔碳(H-CoP/C )。
研究表明:多级孔碳作载体不仅能够负载更多活性位点,而且有利于活性位点的暴露、材料的导电性和催化过程中的传质。
凭借有利的结构特征、充足的活性位点,所获得的电催化剂H-CoP/C 在碱性介质中展现出优异的HER 性能,驱动10mA/cm 2的电流密度只需168mV 的过电位,优于大多数的非贵金属电催化剂。
关键词:电解水;析氢;CoP ;金属有机骨架;多级孔碳中图分类号:TQ15 文献标志码:A 文章编号:1000-6613(2024)01-0447-08Hierarchical porous carbon supported CoP derived from CoZn-MOFand its hydrogen evolution propertiesWANG Shang 1,YAO Yao 1,WANG Jia 1,DONG Didi 1,2,CHANG Ganggang 1(1 School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, Hubei,China; 2 School of Life Sciences and Chemistry, Wuhan Donghu University, Wuhan 430212, Hubei, China)Abstract: Under the background of “double carbon”, efficient and clean hydrogen energy has become an important alternative to traditional fossil energy, and electrolysis of water to produce hydrogen is a key technology to be conquered. At present, the catalysts with high catalytic activity for efficient hydrogen evolution are mainly precious metals. However, the high cost and scarcity of precious metals seriously hinder their large-scale application in clean energy technology. Therefore, the development of efficient, durable, cheap and earth-rich electrocatalysts is of good importance to realize these technologies. In this work, a novel ZnCo-MOF with unique polyhedral morphology was synthesized by using ZnCo-MOF-74 NPs as precursor under the treatment of acid solution. Then, CoP-doped hierarchical porous carbon with regular morphology (H-CoP/C) was obtained through a stepwise calcination and phosphorylation process. The results showed that hierarchical porous carbon as a carrier could not only support more active sites,研究开发DOI :10.16085/j.issn.1000-6613.2023-0227收稿日期:2023-02-20;修改稿日期:2023-07-03。
物理化学(070304)专业博士研究生课程教学大纲课程名称:物理化学前言(Frontiers of Physical Chemistry)课程编号:B07030402学分:4总学时数:80开课学期:第1-2学期考核方式:课程论文与笔试结合课程说明:(课程性质、地位及要求的描述)。
“物理化学前言(Frontiers of Physical Chemistry)”是化学系物理化学专业博士研究生专业学位课程之一。
现代物理化学是研究所有物质体系的化学行为的原理、规律和方法的学科。
涵盖从微观到宏观对结构与性质的关系规律、化学过程机理及其控制的研究。
它是化学以及在分子层次上研究物质变化的其他学科领域的理论基础。
在物理化学发展过程中,逐步形成了若干分支学科:结构化学,化学热力学,化学动力学,液体界面化学,催化,电化学,量子化学等。
20世纪的物理化学随着物理科学发展的总趋势偏重于微观的和理论的研究,取得不少起里程碑作用的成就,如化学键本质、分子间相互作用、分子结构的测定、表面形态与结构的精细观察等等。
目前有三个方面的问题:一是宏观和介观研究应该加强;二是微观结构研究要由静态、稳态向动态、瞬态发展,包括反应机理研究中的过渡态问题,催化反应机理与微观反应动力学问题等;三是应该参与到复杂性研究中去,在物质体系中化学复杂性是直接关系人类生存与进步的,也是可以用实验方法研究的。
总之,留给21世纪物理化学家的问题甚多。
教学内容、要求及学时分配:本课程总学时为80学时,4学分;授课手段:课堂讲授为主,并通过观看录像;课外活动:专题讨论、课程小论文及参观等;考试方式:课程论文与笔试结合。
第一篇结构化学(8学时)单分子化学物理生物大分子间的相互作用动力学问题过渡金属团簇的最新发展动态和趋势浅谈结构化学的发展及其与配位超分子化学的关系纳米尺度分子工程研究纳米科技的兴起与物理化学学科的发展机遇第二篇理论与计算化学(8学时)新世纪物理化学学科前沿与发展趋势——理论与计算化学量子化学领域的一些前沿问题和发展趋势纳米结构材料的线性和非线性光学响应介观化学体系中若干重要复杂性和非线性问题研究计算机模拟方法及其在物理化学中的应用线性标度电子结构方法应当进一步加强处理复杂化学体系的理论方法研究生物物理化学与新药发现有机/高分子光电功能材料的基本理论问题价键理论方法的研究进展与展望密度泛函理论的前沿和发展趋势多酸化学与分子设计非平衡态系统及不可逆过程物理化学的理论基础——化学反映体系的随机热力第三篇催化科学(8学时)催化学科前沿与发展趋势浅议多相手性催化前沿和发展趋势光催化学科的前沿与发展趋势离子液体物理化学——物理化学学科发展的新方向用于石油炼制和石油化工领域的新兴催化材料二氧化碳的温和活化与碳酸酯的合成多相催化研究中的理论计算方法多相催化材料发展的一个新方向——从负载型纳米催化剂到纳米复合型或纳米建筑型催化剂生物催化技术的发展趋势及前景有机-无机杂化介孔材料在催化领域的发展现状及趋势不对称催化反应的应用基础研究项目催化的纳米特性第四篇分子动力学与动态学(8学时)面向新世纪的物理化学学科前沿与发展趋势和分子反应动力学研究前沿量子分子动力学立体化学反应动力学分子动态结构发展的新趋势第五篇胶体与界面科学(8学时)关于胶体科学重点课题的几点想法用溶致液晶组建纳米材料的新途径溶液中两亲分子有序组合体结构、性质的调控与应用利用有机模板合成具有特定形态、结构的无机材料表面科学的研究现状与未来发展趋势界面分子组装第六篇电化学(8学时)纳米结构半导体材料的光电化学二相界面固体电解质膜的形成与性质调制腐蚀电化学及其研究方法的前沿与趋势液/液界面电化学的进展及其发展趋势纳米材料原子排列结构层次的电化学催化离子电池的进展初探纳米电化学之发展第七篇分子聚集体化学(8学时)基于主客体作用的荧光传感器研究进展空心结构的金属纳米颗粒的制备和性能超分子化学有机分子和高分子的光物理和光化学性质及其在超高压条件下的特殊行为有机纳米结构的构建及其光电性能研究第八篇复杂体系的热力学(8学时)复杂流体的若干物理化学问题超临界流体和离子液体化学热力学及其在绿色化学与技术中的作用第九篇新材料及新能源中的物理化学(8学时)太阳能光催化分解水制氢研究基于生物学原理与材料的微纳米结构制造(合成)原理与方法纳米电子学氢能与燃料电池技术现状和发展趋势关于移动氢源基础研究的若干看法高能二次电池的前沿与发展趋势纳米多孔材料的研究现状及发展趋势具有高水热稳定性和高催化活性的新型有序介孔催化材料纳米化学——机遇和挑战有机/聚合物激光材料与激光器中温固体氧化物燃料电池第十篇物理化学中的方法与技术(8学时)介绍“物理化学年度评论”微米尺度固液体系的物理化学问题和创新契机化学生物学给物理化学带来新的发展机遇单分子力谱:从分子、界面到超分子结构质谱与气相离子化学核磁共振波谱学前沿和发展趋势物理化学的现状和发展趋势教材或主要参考书目:教材:梁文平,杨俊林,陈拥军,李灿主编. 新世纪的物理化学--学科前沿与展望. 北京:科学出版社,2004.主要参考书目:[1] 中国科学院化学学部,国家自然科学基金委化学科学部(组织编写). 展望21世纪的化学.北京:化学工业出版社,2000.[2] 大学化学编辑部编. 今日化学. 北京:高等教育出版社,2001.[3] 白春礼. 纳米科技现在与未来. 成都:四川教育出版社,2001.[4] 吴越. 催化化学(上下册),北京:科学出版社,2000.[5] 韩德刚,高执棣,高盘良. 物理化学. 北京:高等教育出版社,2001.[6] 游效曾,孟今庆,韩万书. 配位化学进展. 北京:高等教育出版社,2000.[7] 徐如人,庞文琴. 无机合成与制备化学. 北京:高等教育出版社,2001.[8] 辛勤. 固体催化剂研究方法. 北京:科学出版社,2004.[9] 魏运洋,李建. 化学反应机理导论. 北京:科学出版社,2003.[10] 周公都,段连运. 结构化学基础. 北京:北京大学出版社,2002.(大纲起草人:王小芳大纲审定人:薛岗林)。