2012年统计学第3章参数估计
- 格式:ppt
- 大小:1.33 MB
- 文档页数:80
第5章参数估计●1. 从一个标准差为5的总体中抽出一个容量为40的样本,样本均值为25。
(1)样本均值的抽样标准差等于多少?(2)在95%的置信水平下,允许误差是多少?解:已知总体标准差σ=5,样本容量n=40,为大样本,样本均值=25,(1)样本均值的抽样标准差===0。
7906(2)已知置信水平1-=95%,得=1。
96,于是,允许误差是E ==1.96×0.7906=1.5496。
●2.某快餐店想要估计每位顾客午餐的平均花费金额,在为期3周的时间里选取49名顾客组成了一个简单随机样本.(3)假定总体标准差为15元,求样本均值的抽样标准误差;(4)在95%的置信水平下,求允许误差;(5)如果样本均值为120元,求总体均值95%的置信区间。
解:(1)已假定总体标准差为=15元,则样本均值的抽样标准误差为===2.1429(2)已知置信水平1-=95%,得=1.96,于是,允许误差是E ==1.96×2.1429=4.2000。
(3)已知样本均值为=120元,置信水平1-=95%,得=1.96,这时总体均值的置信区间为=120±4。
2=可知,如果样本均值为120元,总体均值95%的置信区间为(115。
8,124.2)元。
●3.某大学为了解学生每天上网的时间,在全校7500名学生中采取不重复抽样方法随机抽取36人,调查他们每天上网的时间,得到下面的数据(单位:小时):3.3 3。
1 6。
2 5.8 2。
3 4。
1 5.4 4。
5 3。
24。
4 2。
0 5。
4 2。
6 6。
4 1.8 3.5 5.7 2。
32。
1 1.9 1.2 5.1 4.3 4。
2 3.6 0。
8 1。
54。
7 1。
4 1.2 2。
9 3。
5 2.4 0.5 3.6 2。
5求该校大学生平均上网时间的置信区间,置信水平分别为90%、95%和99%。
解:⑴计算样本均值:将上表数据复制到Excel表中,并整理成一列,点击最后数据下面空格,选择自动求平均值,回车,得到=3。
统计学参数估计参数估计是统计学中的一个重要概念,它是指在推断统计问题中,通过样本数据对总体参数进行估计的过程。
这一过程是通过样本数据来推断总体参数的未知值,从而进行总体的描述和推断。
在统计学中,参数是指总体的其中一种特征的度量,比如总体均值、总体方差等。
而样本则是从总体中获取的一部分观测值。
参数估计的目标就是基于样本数据来估计总体参数,并给出估计的精确程度,即估计的可信区间或置信区间。
常见的参数估计方法包括点估计和区间估计。
点估计是一种通过单个数值来估计总体参数的方法。
点估计的核心是选择合适的统计量作为估计量,并使用样本数据计算出该统计量的具体值。
常见的点估计方法包括最大似然估计和矩估计。
最大似然估计是一种寻找参数值,使得样本数据出现的概率最大的方法。
矩估计则是通过样本矩的函数来估计总体矩的方法。
然而,点估计只能提供一个参数的具体值,无法提供该估计值的精确程度。
为了解决这个问题,区间估计被引入。
区间估计是指通过一个区间来估计总体参数的方法。
该区间被称为置信区间或可信区间。
置信区间是在一定置信水平下,总体参数的真值落在该区间内的概率。
置信区间的计算通常涉及到抽样分布、标准误差和分位数等概念。
在实际应用中,参数估计经常用于统计推断、统计检验和决策等环节。
例如,在医学研究中,研究人员可以通过对患者进行抽样调查来估计其中一种药物的有效性和不良反应的发生率。
在市场调研中,市场研究人员可以通过抽取部分样本来估计一些产品的市场份额或宣传效果。
参数估计的准确性和可靠性是统计分析的关键问题。
估计量的方差和偏倚是影响估计准确性的主要因素,通常被称为估计量的精确度和偏倚性。
经典的参数估计要求估计量是无偏且有效的,即估计量的期望值等于真值,并且方差最小。
总之,参数估计是统计学中的一个重要概念,它通过样本数据对总体参数进行估计,并给出估计值的精确程度。
参数估计在统计推断、统计检验和决策等领域具有广泛的应用。
估计量的准确性和可靠性是参数估计的关键问题,通常通过方差和偏倚的分析来评价估计量的性质。
统计学——参数估计第8 讲参数估计本讲的主要内容8.1 参数估计的⼀般问题8.2 ⼀个总体参数的区间估计8.3 两个总体参数的区间估计8.4 样本量的确定学习⽬标1.估计量与估计值的概念2.点估计与区间估计的区别3.评价估计量优良性的标准4.⼀个总体参数的区间估计⽅法5.两个总体参数的区间估计⽅法6.样本量的确定⽅法8.1 参数估计的⼀般问题8.1.1 估计量与估计值估计量与估计值(estimator & estimated value)1.估计量:⽤于估计总体参数的随机变量如样本均值,样本⽐例, 样本⽅差等例如: 样本均值就是总体均值m 的⼀个估计量2.参数⽤θ表⽰,估计量⽤表⽰3.估计值:估计参数时计算出来的统计量的具体值如果样本均值?x=80,则80就是m的估计值8.1.2 点估计与区间估计点估计 (point estimate)1.⽤样本的估计量的某个取值直接作为总体参数的估计值例如:⽤样本均值直接作为总体均值的估计;⽤两个样本均值之差直接作为总体均值之差的估计2.⽆法给出估计值接近总体参数程度的信息⑴虽然在重复抽样条件下,点估计的均值可望等于总体真值,但由于样本是随机的,抽出⼀个具体的样本得到的估计值很可能不同于总体真值⑵⼀个点估计量的可靠性是由它的抽样标准误差来衡量的,这表明⼀个具体的点估计值⽆法给出估计的可靠性的度量区间估计 (interval estimate)1.在点估计的基础上,给出总体参数估计的⼀个区间范围,该区间由样本统计量加减估计误差⽽得到2.根据样本统计量的抽样分布能够对样本统计量与总体参数的接近程度给出⼀个概率度量⽐如,某班级平均分数在75~85之间,置信⽔平是95%区间估计的图⽰置信⽔平 (confidence level)1. 将构造置信区间的步骤重复很多次,置信区间包含总体参数真值的次数所占的⽐例称为置信⽔平2. 表⽰为置信⽔平 =1 - aa 为是总体参数未在区间内的⽐例3. 常⽤的置信⽔平值有 99%, 95%, 90%相应的 a 为0.01,0.05,0.10置信区间 (confidence interval)1. 由样本统计量所构造的总体参数的估计区间称为置信区间2. 统计学家在某种程度上确信这个区间会包含真正的总体参数,所以给它取名为置信区间3. ⽤⼀个具体的样本所构造的区间是⼀个特定的区间,我们⽆法知道这个样本所产⽣的区间是否包含总体参数的真值我们只能是希望这个区间是⼤量包含总体参数真值的区间中的⼀个,但它也可能是少数⼏个不包含参数真值的区间中的⼀个总体参数以⼀定的概率落在这⼀区间的表述是错误的置信区间 (95%的置信区间)8.1.3 评价估计量的标准⽆偏性 (unbiasedness)⽆偏性:估计量抽样分布的数学期望等于被估计的总体参数有效性 (efficiency)有效性:对同⼀总体参数的两个⽆偏点估计量,有更⼩标准差的估计量更有效⼀致性 (consistency)⼀致性:随着样本量的增⼤,估计量的值越来越接近被估计的总体参数P ()BA ⽆偏有偏θθθ?AB的抽样分布1?θ2?θP ()θθ?θ?8.2 ⼀个总体参数的区间估计8.2.1 总体均值的区间估计⼀个总体参数的区间估计8.2.1-1总体均值的区间估计(正态总体、s2已知,或⾮正态总体、⼤样本)总体均值的区间估计 (⼤样本)1.假定条件总体服从正态分布,且⽅差(σ2) 已知如果不是正态分布,可由正态分布来近似 (n3 30)2.使⽤正态分布统计量z3.总体均值µ在1-α置信⽔平下的置信区间为8.2.1-2总体均值的区间估计(正态总体、s2未知、⼩样本)总体均值的区间估计 (⼩样本)1.假定条件总体服从正态分布,但⽅差(σ2) 未知⼩样本 (n < 30)2.使⽤t分布统计量3.总体均值µ在1-α置信⽔平下的置信区间为t 分布t 分布是类似正态分布的⼀种对称分布,它通常要⽐正态分布平坦和分散。