中考数学专题复习专题二--新型问题
- 格式:doc
- 大小:672.50 KB
- 文档页数:22
2021年重庆中考复习最值问题专题训练二类型一:旋转三角形利用三点共线求最值例1、如图,菱形ABCD的边长为4,∠A=60°,E是边AD的中点,F是边AB上的一个动点将线段EF绕着点E逆时针旋转60°得到EG,连接BG、CG,则BG+CG的最小值为.练习1、如图,在平行四边形ABCD中,∠A=45°,AB=4,AD=2,M是AD边的中点,N是AB边上一动点,将线段MN绕点M逆时针旋转90至MN′,连接N′B,N′C,则N′B+N′C 的最小值.2、如图,菱形ABCD的边长是6,∠A=60°,E是AD的中点,F是AB边上一个动点,EG=EF且∠GEF=60°,则GB+GC的最小值是 .类型二:旋转三角形利用四点共线求最值例2、如图,△ABC中,∠ABC=30°,AB=4,BC=5,P是△ABC内部的任意一点,连接PA,PB,PC,则PA+PB+PC的最小值为 .练习如图,矩形ABCD中,AB=2,BC=6,P为矩形内一点,连接PA,PB,PC,则PA+PB+PC 的最小值是.类型三:旋转三角形利用垂线段最短求最值例2、如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为 .练习1、(2019秋•东台市期中)如图,正方形ABCD中边长为6,E为BC上一点,且BE=1.5,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为 .2、如图,长方形 ABCD 中,AB=3,BC=4,E 为 BC 上一点,且 BE=2,F 为 AB 边上的一个动点,连接 EF,将 EF 绕着点 E 顺时针旋转 45˚到 EG 的位置,连接 FG 和CG,则 CG 的最小值为.3、如图,平行四边形ABCD 中,∠B =60°,BC =12,AB =10,点E 在AD 上,且AE =4,点F 是AB 上一点,连接EF ,将线段EF 绕点E 逆时针旋转120°得到EG ,连接GD ,则线段GD 长度的最小值为 .类型四:利用二次函数求最值例3、如图,在ABC ∆中,090ACB ∠=,5,2AC BC ==,点D 是AC 边上一点,连接BD ,将线段BD 绕点D 逆时针旋转090得线段ED ,连接AE ,则AE 的最小值为 .A例4、(2010秋•东城区期末)如图,在△ABC 中,∠ACB 为锐角,点D 为射线BC 上一动点,连接AD ,将线段AD 绕点A 逆时针旋转90°得到AE ,连接EC .若点D 在线段BC 上运动,DF ⊥AD 交线段CE 于点F ,且∠ACB =45°,,则线段CF 长的最大值为.例5、如图,在△ABC 中,∠BAC =120°,AB =AC =6,D 为边AB 上一动点(不与B 点重合),连接CD ,将线段CD 绕着点D 逆时针旋转90°得到DE ,连接BE ,则S △BDE的最大值为 .练习1、如图,矩形ABCD中,AB=2,BC=4,点E是矩形ABCD的边AD上的一动点,以CE为边,在CE的右侧构造正方形CEFG,连结AF,则AF的最小值为 .2、(2019秋•黄陂区期中)如图,在△ABC中,AB=AC,∠BAC=120°,点D为AB边上一点(不与点B重合),连接CD,将线段CD绕点D逆时针旋转90°,点C的对应点为E,连接BE.若AB=2,则△BDE面积的最大值为 .类型五:构造等边三角形求最值例6、如图,在四边形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足为点D,则对角线AC的长的最大值为.练习如图,在四边形ABCD中,AB=6,BC=4,若AC=AD,且∠ACD=60°,则对角线BD的长的最大值为 .类型六:利用对称求最值例7、(2019•成都)如图,在边长为1的菱形ABCD 中,∠ABC =60°,将△ABD 沿射线BD 的方向平移得到△A 'B 'D ',分别连接A 'C ,A 'D ,B 'C ,则A 'C +B 'C的最小值为.练习:如图,在矩形ABCD中,AB =1BC =,将ABD ∆沿射线DB 平移到A B D '''∆,连接B C D C ''、,则+B C D C ''的最小值为.类型七:利用基本不等式求最值2021年重庆中考复习最值问题专题训练二类型一:旋转三角形利用三点共线求最值例1、如图,菱形ABCD的边长为4,∠A=60°,E是边AD的中点,F是边AB上的一个动点将线段EF绕着点E逆时针旋转60°得到EG,连接BG、CG,则BG+CG的最小值为.解:如图,取AB的中点N.连接EN,EC,GN,(即将△EAF绕点E逆时针旋转60°得△ENG)作EH⊥CD交CD的延长线于H.∵四边形ABCD是菱形,∴AD=BD,∵AE=ED,AN=NB,∴AE=AN,∵∠A=60°,∴△AEN是等边三角形,∴∠AEN=∠FEG=60°,∴∠AEF=∠NEG,∵EA=EN,EF=EG,∴△AEF≌△NEG(SAS),∴∠ENG=∠A=60°,∵∠ANE=60°,∴∠GNB=180°﹣60°﹣60°=60°,∴点G的运动轨迹是射线NG,易知B,E关于射线NG对称,∴GB=GE,∴GB+GC=GE+GC≥EC,在Rt△DEH中,∵∠H=90°,DE=2,∠EDH=60°,∴DH=DE=1,EH =,在Rt△ECH中,EC==2,∴GB+GC≥2,∴GB+GC的最小值为2.练习1、如图,在平行四边形ABCD中,∠A=45°,AB=4,AD=2,M是AD边的中点,N是AB边上一动点,将线段MN绕点M逆时针旋转90至MN′,连接N′B,N′C,则N′B+N′C的最小值.解:如图,作ME⊥AD交AB于E,连接EN′、AC、作CF⊥AB于F.∵∠MAE=45°,∴△MAE是等腰直角三角形,∴MA=ME,∵∠AME=∠NMN′=90°,∴∠AMN=∠EMN′,∵MN=MN′,∴△AMN≌△EMN′,∴∠MAN=∠MEN′=45°,∴∠AEN′=90°,∴EN′⊥AB,∵AM=DM =,AB=4,∴AE=2,EB=2,∴AE=EB,∴N′B=N′A,∴N′B+N′C=N′A+N′C,∴当A、N′、C共线时,N′B+N′C的值最小,最小值=AC,在Rt△BCF中,∵BC=AD=2,∠CBF=∠DAB=45°,∴CF=BF=2,在Rt△ACF中,AC ==22、(2019秋•海曙区校级月考)如图,菱形ABCD的边长是6,∠A=60°,E是AD的中点,F是AB边上一个动点,EG=EF且∠GEF=60°,则GB+GC的最小值是 .A解:取AB的中点H,连接HG、HE、HG、BE、CE,则△AEF≌△HEG∴∠GHE=∠A=60°,∴HG∥AD,可知△BHG≌△EHG,∴BG=GE,∴CE的长就是GB+GC的最小值;在Rt△EBC中,EB=3,BC =6,∴EC=3,∴GB+GC的最小值3.类型二:旋转三角形利用四点共线求最值例2、如图,△ABC中,∠ABC=30°,AB=4,BC=5,P是△ABC内部的任意一点,连接PA,PB,PC,则PA+PB+PC的最小值为 .解析:如图,将△ABP 绕着点B 逆时针旋转60°,得到△DBE ,连接EP ,CD ,∴△ABP ≌△DBE ∴∠ABP =∠DBE ,BD =AB =4,∠PBE =60°,BE =PE ,AP =DE ,∴△BPE 是等边三角形 ∴EP =BP ∴AP +BP +PC =PC +EP +DE ,∴当点D ,点E ,点P ,点C 共线时,PA +PB +PC 有最小值CD∵∠ABC =30°=∠ABP ∠+PBC ,∴∠DBE ∠+PBC =30°,∴∠DBC =90°,∴CD==. 练习如图,矩形ABCD 中,AB =2,BC =6,P 为矩形内一点,连接PA ,PB ,PC ,则PA +PB +PC的最小值是 .解:由旋转的性质可知:△PFC 是等边三角形,∴PC =PF ,∵PB =EF , ∴PA +PB +PC =PA +PF +EF ,∴当A 、P 、F 、E 共线时,PA +PB +PC 的值最小, ∵四边形ABCD 是矩形,∴∠ABC =90°,∴tan ∠ACB==,∴∠ACB =30°,AC =2AB =4,∵∠BCE =60°,∴∠ACE =90°,∴AE==2.类型三:旋转三角形利用垂线段最短求最值例2、如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .解析:由题意可知,点F 是主动点,点G 是从动点,点F 在线段上运动,点G 也一定在直线轨迹上运动将△EFB 绕点E 旋转60°,使EF 与EG 重合,得到△EFB ≌△EHG ,从而可知△EBH 为等边三角形,点G 在垂直于HE 的直线HN 上,作CM ⊥HN ,则CM 即为CG 的最小值,作EP ⊥CM ,可知四边形HEPM 为矩形,则CM =MP +CP =HE+EC =1+=,CG 的最小值为. 练习1、(2019秋•东台市期中)如图,正方形ABCD 中边长为6,E 为BC 上一点,且BE =1.5,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .解:由题意可知,点F 是主动点,点G 是从动点,点F 在线段上运动,点G 也一定在直线轨迹上运动将△EFB 绕点E 旋转60°,使EF 与EG 重合,得到△EFB ≌△EHG ,从而可知△EBH 为等边三角形,点G 在垂直于HE 的直线HN 上,作CM ⊥HN ,则CM 即为CG 的最小值,作EP ⊥CM ,可知四边形HEPM 为矩形,则CM =MP +CP =HE +EC ==,故答案为:.2、如图,长方形 ABCD 中,AB=3,BC=4,E 为 BC 上一点,且 BE =2,F 为 AB 边上的一个动点,连接 EF ,将 EF 绕着点 E 顺时针旋转 45˚到 EG 的位置,连接 FG 和 CG ,则 CG 的最小值为 .F解析:由题意可知,点F 是主动点,点G 是从动点,点F 在线段上运动,点G 也一定在直线轨迹上运动,将△EFB 绕点E 旋转45°,使EF 与EG 重合,得到△EFB ≌△EHG ,从而可知△EBH 为等腰直角三角形,点G 在垂直于HE 的直线HG上,作CM ⊥HG ,则CM即为CG 的最小值,作EN ⊥CM ,可知四边形HENM 为矩形,则CM =MN +CN =HE EC =12+3、如图,平行四边形ABCD 中,∠B =60°,BC =12,AB =10,点E 在AD 上,且AE=4,点F 是AB 上一点,连接EF ,将线段EF 绕点E 逆时针旋转120°得到EG ,连接GD ,则线段GD 长度的最小值为 .解析:将线段AE 绕点E 逆时针旋转120°得到EH ,连接HG ,过点H 作HM ⊥AD , ∵四边形ABCD 是平行四边形,∴∠A ∠+B =180°,∴∠A =120°,∵将线段AE 绕点E 逆时针旋转120°得到EH ,将线段EF 绕点E 逆时针旋转120°得到EG ,∴EF =EG =4,AE =EH ,∠AEH =∠FEG =120°,∴∠DEH =60°,∠AEF =∠HEG ,且EF =EG ,AE =EH ,∴△AEF ≌△HEG (SAS ) ∴∠A =∠EHG =120°=∠AEH ,∴AD ∥HG ,∴点G 的轨迹是过点H 且平行于AD 的直线, ∴当DG ⊥HG 时,线段GD 长度有最小值,∵∠HEM =60°,EH =4,HM ⊥AD , ∴EM =2,MH =EM =2,∴线段GD 长度的最小值为2,类型四:利用二次函数求最值例3、如图,在ABC ∆中,090ACB ∠=,5,2AC BC ==,点D 是AC 边上一点,连接BD ,将线段BD 绕点D 逆时针旋转090得线段ED ,连接AE ,则AE 的最小值为.A解:过E 作EF ⊥AC 于点F . 则∠EFD =90°,∵090ACB ∠=,∴∠EFD=∠C ,∵ED=DB ,∠FED =∠CDB ,∴△EFH ≌△EDC , ∴DF =CB =2,EF CD =,设AD x =,则2AF x =+,5EF CD x ==-, ∴AE ===,∴当32x =时,AE 有最小值2. 例4、(2010秋•东城区期末)如图,在△ABC 中,∠ACB 为锐角,点D 为射线BC 上一动点,连接AD ,将线段AD 绕点A 逆时针旋转90°得到AE ,连接EC .若点D 在线段BC 上运动,DF ⊥AD 交线段CE 于点F ,且∠ACB =45°,,则线段CF 长的最大值为 .解:过A作AM⊥BC于M,EN⊥AM于N,如图,∵线段AD绕点A逆时针旋转90°得到AE,∴∠DAE=90°,AD=AE,∴∠NAE=∠ADM,易证得Rt△AMD≌Rt△ENA,∴NE=AM,∵∠ACB=45°,∴△AMC为等腰直角三角形,∴AM=MC,∴MC=NE,∵AM⊥BC,EN⊥AM,∴NE∥MC,∴四边形MCEN为平行四边形,∵∠AMC=90°,∴四边形MCEN为矩形,∴∠DCF=90°,∴Rt△AMD∽Rt△DCF,∴=,设DC=x,∵∠ACB=45°,,∴AM=CM=3,MD=3﹣x ,∴=,∴CF=﹣x2+x,∴当x=1.5时有最大值,最大值为0.75.例5、如图,在△ABC中,∠BAC=120°,AB=AC=6,D为边AB上一动点(不与B点重合),连接CD,将线段CD绕着点D逆时针旋转90°得到DE,连接BE,则S△BDE的最大值为 .解:作CM⊥AB于M,EN⊥AB于N,∴∠EDN+∠DEN=90°,∵∠EDC=90°,∴∠EDN+∠CDM=90°,∴∠DEN=∠CDM,在△EDN和△DCM 中∴△EDN≌△DCM(AAS),∴EN=DM,∵∠BAC=120°,∴∠MAC=60°,∴∠ACM=30°,∴AM =AC =6=3,∴BM=AB+AM=6+3=9,设BD=x,则EN=DM=9﹣x,∴S△BDE ==(9﹣x)=﹣(x﹣4.5)2+,∴当BD=4,5时,S△BDE 有最大值为.练习1、如图,矩形ABCD中,AB=2,BC=4,点E是矩形ABCD的边AD上的一动点,以CE为边,在CE的右侧构造正方形CEFG,连结AF,则AF的最小值为 .解:过F作FH⊥ED,∵正方形CEFG,∴EF=EC,∠FEC=∠FED+∠DEC=90°,∵FH⊥ED,∴∠FED+∠EFH=90°,∴∠DEC=∠EFH,且EF=EC,∠FHE=∠EDC=90°,∴△EFH≌△EDC(AAS),∴EH=DC=2,FH=ED,∴AF ===∴当AE=1时,AF的最小值为3 .2、(2019秋•黄陂区期中)如图,在△ABC中,AB=AC,∠BAC=120°,点D为AB边上一点(不与点B重合),连接CD,将线段CD绕点D逆时针旋转90°,点C的对应点为E,连接BE.若AB=2,则△BDE面积的最大值为 .解:作CM⊥AB于M,EN⊥AB于N,∴∠EDN+∠DEN=90°,∵∠EDC=90°,∴∠EDN+∠CDM=90°,∴∠DEN=∠CDM,在△EDN和△DCM 中,∴△EDN≌△DCM(AAS),∴EN=DM,∵∠BAC=120°,∴∠MAC=60°,∴∠ACM=30°,∴AM =AC =2=1,∴BM=AB+AM=2+1=3,设BD=x,则EN=DM=3﹣x,∴S△BDE ==(3﹣x)=﹣(x﹣1.5)2+,∴当BD=1.5时,S△BDE 有最大值为,类型五:构造等边三角形求最值例6、如图,在四边形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足为点D,则对角线AC的长的最大值为.CAE解析:如图,以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,∵AB=BD,∠ABC=∠DBE,BC=BE,∴△ABC≌△DBE,∴DE=AC,∵在等边三角形BCE中,EF⊥BC,∴BF=BC=2,∴EF=BF=×2=2,以BC为直径作⊙F,则点D在⊙F 上,连接DF ,∴DF =BC=×4=2,∴AC =DE≤DF+EF=2+2,即AC的最大值为2+2.练习如图,在四边形ABCD中,AB=6,BC=4,若AC=AD,且∠ACD=60°,则对角线BD的长的最大值为 .解析:将AB绕点A顺时针旋转60°得到线段AK,连接BK、DK.则AK=AB=BK=6,∠KAB=60°,∴∠DAC=∠KAB,∴∠DAK=∠CAB,在△DAK和△CAB中,,∴△DAK≌△CAB(SAS)∴DK=BC=4,∵DK+KB≥BD,DK=4,KB=AB=6∴当D、K、B共线时,BD的值最大,最大值为DK+KB=10.类型六:利用对称求最值例7、(2019•成都)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为 .解法一:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△A'B'D',∴A′B′=AB=1,A′B′∥AB,∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴A′B′=CD,A′B′∥CD,∴四边形A′B′CD是平行四边形,∴A′D=B′C,∴A'C+B'C的最小值=A′C+A′D的最小值,∵点A′在过点A且平行于BD的定直线上,∴作点D关于定直线的对称点E,连接CE交定直线于A′,则CE的长度即为A'C+B'C的最小值,∵∠A′AD=∠ADB=30°,AD=1,∴∠ADE=60°,DH=EH =AD=,∴DE=1,∴DE =CD,∵∠CDE=∠EDB′+∠CDB=90°+30°=120°,∴∠E=∠DCE=30°,∴CE=2×CD=.解法二:练习:如图,在矩形ABCD中,AB=,1BC=,将ABD∆沿射线DB平移到A B D'''∆,连接B C D C''、,则+B C D C''的最小值为.解法一:解法一:解法三:解法四:类型七:利用基本不等式求最值解:原式=1111+12a a++⨯=11+12a a a ++=2222+32a a a a +++=2232+32a a a a a ++-+=21+32a a a -+=112+3a a -+ 12a a +≥ ,1+35a a ∴+≥,11253a a ∴≤++,11253a a∴-≥-++, 14125+3a a∴-≥+.当2a a =,即a =45,此时2b =.。
2023年九年级中考数学专题训练:蚂蚁爬行问题一.选择题1.如图,长方体的高为,底面是边长为的正方形一只蚂蚁从顶点开始爬向顶点,那么它爬行的最短路程为()A.B.C.D.2.如图,圆柱形玻璃板,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的A处,则蚂蚁到达蜂蜜的最短距离是()A.15cm B.16cm C.17cm D.18cm3.如图所示,圆柱的高AB=3,底面直径BC=6,现在有一只蚂蚁想要从A处沿圆柱侧面爬到对角C处捕食,则它爬行的最短距离是( )A.3B.6C.9D.64.如图是一个三级台阶,它的每一级的长,宽,高分别是,A和B是这个台阶相对的端点,点A处有一只蚂蚁,想到B处去吃食物,则这只蚂蚁爬行的最短距离为()A.B.C.D.5.图,长方体的长为8,宽为10,高为6,点B离点C的距离为2,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.B.C.D.6.如图,圆柱的底面周长为16,BC=12,动点P从A点出发,沿着圆柱的侧面移动到BC的中点S,则移动的最短距离为( )A.10B.12C.14D.207.一只蚂蚁趴在如图所示的数轴上,它从点A沿数轴向右爬行2个单位长度到达点B,设点A表示,那么点B所表示的数为()A.B.C.D.8.如图,圆柱形容器高为,底面周长为,在杯内壁离杯底的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为( )A.B.C.D.二.填空题9.一只蚂蚁先向上爬4个单位长度,再向右爬5个单位长度后,到达,则它最开始所在位置的坐标是___________.10.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在岔路口随机选择一条路径,它获得食物的概率是______.11.如图,一只蚂蚁从点A沿数轴向右沿直线爬行2个单位长度到达点B,点A表示的数为,设点B所表示的数为m,则__________.12.如图,透明的圆柱形容器(容器厚度忽略不计)的高为,底面周长为,在容器内壁离容器底部的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿的点A处,则蚂蚁吃到饭粒需爬行的最短路径是_____.13.如图,正方体的棱长为3 cm,已知点B与点C间的距离为1 cm,一只蚂蚁沿着正方体的表面从点A爬到点C,需要爬行的最短距离为_________.14.已知圆锥的底面半径是,母线长为,C为母线的中点,蚂蚁在圆锥侧面上从A爬到C的最短距离是_____________.15.如图在直线AB上有一点C,,有两只蚂蚁分别以2cm/s、1cm/s 从A、C两点同时出发向右运动,经过__________秒,两只蚂蚁到C点的距离相等.16.在一个长米,宽为4米的长方形草地上,如图推放着一根三棱柱的木块,它的侧棱长平行且大于场地宽,木块的主视图的高是米的等腰直角三角形,一只蚂蚁从点A处到C处需要走的最短路程是___________.三.解答题17.如图,一个无盖的长方体盒子紧贴地面,一只蚂蚁由A出发,在盒子表面上爬到点G,已知,,,,求这只蚂蚁爬行的最短距离.18.如图是长、宽、高的长方体容器.(1)求底面矩形的对角线的长;(2)长方体容器内可完全放入的棍子最长是多少?(3)一只蚂蚁从D点爬到E点最短路径是多少?19.如图,已知圆锥底面半径为,母线长为,求一只蚂蚁从A处出发绕圆锥侧面一周(回到原来的位置A处)所爬行的最短距离.20.如图,已知A、B分别为数轴上的两点,A点对应的数为,B点对应的数为,现有一只蚂蚁P从B点出发,以5个单位的速度沿数轴向左运动;同时另一只蚂蚁Q恰好从A点出发,以3个单位的速度沿数轴向右运动,请解决以下问题:(1)设两只蚂蚁在数轴上的C点相遇,请求出C点对应的数是多少?(2)经过多少秒,之间的距离恰好是之间的距离的一半?参考答案:1.C2.A3.A4.A5.A6.A7.B8.C9.10.11./12./13厘米13.14.15.或2016.17.18.(1)底面矩形的对角线的长为(2)长方体容器内可完全放入的棍子最长是(3)蚂蚁从D点爬到E点最短路径19.20.(1)(2)秒或秒。
圆中的新定义问题1(2023•淮安模拟)在平面直角坐标系xOy 中,对于点P 和线段AB ,若线段PA 或PB 的垂直平分线与线段AB 有公共点,则称点P 为线段AB 的融合点.(1)已知A (3,0),B (5,0),①在点P 1(6,0),P 2(1,-2),P 3(3,2)中,线段AB 的融合点是 P 1,P 3 ;②若直线y =t 上存在线段AB 的融合点,求t 的取值范围;(2)已知⊙O 的半径为4,A (a ,0),B (a +1,0),直线l 过点T (0,-1),记线段AB 关于l 的对称线段为A B .若对于实数a ,存在直线l ,使得⊙O 上有A B 的融合点,直接写出a 的取值范围.【解答】解:(1)①∵P 1(6,0),A (3,0),∴P 1A 的线段垂直平分线与x 轴的交点为92,0,∴P 1是线段AB 的融合点;∵P 2(1,-2),B (5,0),设直线P 2B 的垂直平分线与x 轴的交点为(a ,0),∴(a -1)2+4=(5-a )2,解得a =52,∴直线P 2B 的垂直平分线与x 轴的交点为52,0,∴P 2不是线段AB 的融合点;∵P 3(3,2),B (5,0),设直线P 3B 的垂直平分线与x 轴的交点为(b ,0),∴(b -3)2+4=(5-b )2,解得b =3,∴直线P 3B 的垂直平分线与x 轴的交点为(3,0),∴P 3是线段AB 的融合点;故答案为:P 1,P 3;②线段AB 的融合点在以A 、B 为圆心,AB 为半径的圆及内部,∵A (3,0),B (5,0),∴AB =2,当y =t 与圆相切时,t =2或t =-2,∴-2≤t ≤2时,直线y =t 上存在线段AB 的融合点;(2)由(1)可知,A B 的融合点在以A 、B 为圆心,A B 为圆心的圆及内部,∵A (a ,0),B (a +1,0),∴AB =A B =1,∵⊙O 上有A B 的融合点,∴圆O 与圆A 、B 有交点,∴圆O 与圆A 、圆B 的公共区域为以O 为圆心2为半径,以O 为圆心6为半径的圆环及内部区域,当a >0时,a 的最大值为62-12=35,最小值为22-12-1=3-1,∴3-1≤a ≤35;当a <0时,a 的最大值为-22-12=-3,最小值为-62-12-1=-35-1,∴-35-1≤a ≤-3;综上所述:a 的取值范围为3-1≤a ≤35或-35-1≤a ≤-3.2(2023•西城区校级模拟)在平面内,C 为线段AB 外的一点,若以点A ,B ,C 为顶点的三角形为直角三角形,则称C 为线段AB 的直角点.特别地,当该三角形为等腰直角三角形时,称C 为线段AB 的等腰直角点.(1)如图1,在平面直角坐标系xOy 中,点M 的坐标为(-1,0),点N 的坐标为(1,0),在点P 1(2,1),P 2(-1,2),P 332,12 中,线段MN 的直角点是 P 2、P 3 ;(2)在平面直角坐标系xOy 中,点A ,B 的坐标分别为(t ,0),(0,4).①若t =4,如图2所示,若C 是线段AB 的直角点,且点C 在直线y =-x +8上,求点C 的坐标;②如图3,点D 的坐标为(m ,-2),⊙D 的半径为1,若⊙D 上存在线段AB 的等腰直角点,求出m 的取值范围.【解答】解:(1)∵P 2(-1,2),M (-1,0),∴P 2M ⊥MN ,∴P 2是线段MN 的直角点;∵M (-1,0),N (1,0),∴MN =2,∵P 332,12,∴P 3O =1,∴P 3在以O 为圆心,MN 为直径的圆上,∴∠MP 3N =90°,∴P 3是线段MN 的直角点;故答案为:P 2、P 3;(2)①∵A (4,0),B (0,4),∴OA =OB =4,∴∠OAB =∠OBA =45°.根据题意,若点C 为线段AB 的直角点,则需要分三种情况:当点B 为直角顶点,过点B 作BC 1⊥AB 于点C 1,过点C 1作C 1M ⊥y 轴于点M ,∴∠C 1BM =45°,∴C 1M =BM ,设C 1M =BM =a ,∴C 1(a ,a +4),∴-a +8=a +4,解得a =2,∴C 1(2,6);当点A 为直角顶点,过点A 作AC 2⊥AB 于点C 2,过点C 2作C 2N ⊥x 轴于点N ,∴∠C 2AN =45°,∴C 2N =AN ,设C 2N =AN =b ,∴C 2(b +4,b ),∴-(b +4)+8=b ,解得b =2,∴C 2(6,2);当点C 为直角顶点,取AB 的中点P ,则P (2,2),设C 3的横坐标为t ,则C 3(t ,-t +8),由直角三角形的性质可知,C 3P =BP =AP =22,∴(t -2)2+(-t +6)2=(22)2,解得t =4,∴C3(4,4),综上,点C的坐标为(2,6)或(6,2)或(4,4).②如图,以AB为边向下作正方形ABC1C2,连接AC1,BC2交于点C3,则C1,C2,C3是线段AB的等腰直角点.根据点A的运动可知,点C1在直线l1:x=-4上运动,C2在直线l2:y=-x-4上运动,C3在直线l3:y=-x上运动.设l2与y=-2相交于点K,l3与y=-2相交于点L,∴K(2,-2),L(2,-2).由此可得出临界情况如图:如图3(1)中,当⊙D与l1相切时,m=-5;如图3(2)中,当⊙D与l2相切时,点F为切点,连接DF,则ΔDFK为等腰直角三角形,且DF=1,∴DK=2;∴D(-2+2,-2),即m=-2+2;如图3(3)中,当⊙D与l3相切时,点G为切点,连接DG,则ΔDGL为等腰直角三角形,且DG=1,∴DL=2;∴D(2-2,-2),即m=2-2;如图3(4)中,当⊙D与l3相切时,点H为切点,连接DH,则ΔDHL为等腰直角三角形,且DH=1,∴DL=2;∴D(2+2,-2),即m=2+2;综上,符合题意的m的取值范围:-5≤m≤-2+2或2-2≤m≤2+2.3(2023•秀洲区校级二模)婆罗摩芨多是公元7世纪古印度伟大的数学家,他在三角形、四边形、零和负数的运算规则,二次方程等方面均有建树,他也研究过对角线互相垂直的圆内接四边形,我们把这类对角线互相垂直的圆内接四边形称为“婆氏四边形”;(1)若平行四边形ABCD是“婆氏四边形”,则四边形ABCD是③.(填序号)①矩形②菱形③正方形(2)如图1,RtΔABC中,∠BAC=90°,以AB为弦的⊙O交AC于D,交BC于E,连接DE、AE、BD,AB=6,sin C=35,若四边形ABED是“婆氏四边形”,求DE的长;(3)如图2,四边形ABCD为⊙O的内接四边形,连接AC,BD,OA,OB,OC,OD,已知∠BOC+∠AOD= 180°,①求证:四边形ABCD是“婆氏四边形”;②当AD+BC=4时,求⊙O半径的最小值.【解答】(1)解:∵平行四边形ABCD为⊙O的内接四边形,∴∠ABC=∠ADC,∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴平行四边形ABCD是矩形,∵四边形ABCD是“婆氏四边形”,∴AC⊥BD,∴矩形ABCD是正方形,故答案为:③;(2)解:∵∠BAC=90°,AB=6,sin C=35,∴BC=10,AC=8,∴BD为直径,∴∠BED =∠DEC =90°,∵四边形ABED 是“婆氏四边形”,∴AE ⊥BD ,∴AD =DE ,AB =BE =6,设AD =DE =m ,则CD =8-m ,EC =4,在Rt ΔEDC 中,m 2+42=(8-m )2,解得m =3,∴DE =3;(3)①证明:如图2,设AC ,BD 相交于点E ,∵∠DCA =12∠AOD ,∠BDC =12∠BOC ,∠BOC +∠AOD =180°,∴∠DCA +∠BDC =12(∠AOD +∠BOC )=12×180°=90°,∴∠CED =90°,∴AC ⊥BD ,∵四边形ABCD 是⊙O 的内接四边形,∴四边形ABCD 是“婆氏四边形”;②解:过点O 作OM ⊥AD 交于M ,过O 作ON ⊥BC 交于N ,∴AM =12AD ,BN =12BC ,∠AMO =∠BNO =90°,∴∠AOM +∠OAM =90°,∵OA =BO =CO =DO ,∴∠AOM =12∠AOD ,∠BON =12∠BOC ,∵∠BOC +∠AOD =180°,∴∠AOM =∠OBN ,∴ΔOAM ≅ΔBON (AAS ),∴ON =AM =12AD ,∵AD +BC =4,设ON =AM =n ,则AD =2n ,BC =4-2n ,BN =2-n ,在Rt ΔBON 中,BO =n 2+(2-n )2=2(n -1)2+2,当n =1时,BO 有最小值2,∴⊙O 半径的最小值为2.4(2022秋•西城区期末)给定图形W 和点P ,Q ,若图形W 上存在两个不重合的点M ,N ,使得点P 关于点M 的对称点与点Q 关于点N 的对称点重合,则称点P 与点Q 关于图形W 双对合.在平面直角坐标系xOy 中,已知点A (-1,-2),B (5,-2),C (-1,4).(1)在点D (-4,0),E (2,2),F (6,0)中,与点O 关于线段AB 双对合的点是 D ,F ;(2)点K 是x 轴上一动点,⊙K 的直径为1,①若点A 与点T (0,t )关于⊙K 双对合,求t 的取值范围;②当点K 运动时,若ΔABC 上存在一点与⊙K 上任意一点关于⊙K 双对合,直接写出点K 的横坐标k 的取值范围.【解答】解:(1)当A 点是D 点的中点时,对应点为(2,-4);当B 点是D 点的中点时,对应点为(14,-4);当A 点是E 点的中点时,对应点为(-4,-6);当B 点是E 点的中点时,对应点为(8,-6);当A 点是F 点的中点时,对应点为(-8,-4);当B 点是F 点的中点时,对应点为(4,-4);当A 点是O 点的中点时,对应点为(-2,-4);当B 点是O 点的中点时,对应点为(10,-4);∴D 、F 与点O 关于线段AB 双对合,故答案为:D 、F ;(2)①设K(k,0),∵A(-1,-2),T(0,t),∴A点关于K点对称点G为(2k+1,2),T点关于K点对称点H为(2k,-t),∵点A与点T(0,t)关于⊙K双对合,∴A点关于点K的对称点在以G为圆心,∵⊙K的直径为1,∴点A关于点K的对称点在以G点为圆心,1为半径的圆上,点T关于点K的对称点在以H为圆心,1为半径的圆上,如图所示,∵点A与点T(0,t)关于⊙K双对合,∴当圆G与圆H有交点,∵GH=1+(t+2)2,∴1+(t+2)2≤2,解得-2-3≤t≤-2+3;②∵A(-1,-2),B(5,-2),C(-1,4),K(k,0),∴A点关于K点的对称点F(2k+1,2),B点关于K点的对称点E(2k-5,2),C点关于K点的对称点G(2k+1, -4),∴ΔABC上任意一点关于K点对称点在阴影区域,∵ΔABC上存在一点与⊙K上任意一点关于⊙K双对合,∴阴影区域与圆K有公共交点,∵阴影部分是由ΔEGF边上任意一点为圆心,1为半径的圆构成的区域,如图1时,k-(2k+1)=12+1,解得k=-52;如图2时,2k+1-k=12+1,解得k=12;∴-52≤k≤12时,ΔABC上存在一点与⊙K上任意一点关于⊙K双对合;过点K作KN⊥EG交于N,直线EG交x轴于点M,设直线EG的解析式为y=k x+b,∴(2k-5)k +b=2 (2k+1)k +b=-4 ,解得k =-1b=2k-3 ,∴y=-x+2k-3,∴M(2k-3,0),∵直线y=-x与y=-x+2k-3平行,∴∠KMN=45°,∴KM=2KN=322,如图3时,k-(2k-3)=322,解得k=3-322,如图4时,2k-3-k=322,解得k=3+322,∴3-322≤k≤3+322时,ΔABC上存在一点与⊙K上任意一点关于⊙K双对合;综上所述:-52≤k≤12或3-322≤k≤3+322时,ΔABC上存在一点与⊙K上任意一点关于⊙K双对合.5(2022•钟楼区模拟)概念认识:平面内,M为图形T上任意一点,N为⊙O上任意一点,将M、N两点间距离的最小值称为图形T到⊙O的“最近距离”,记作d(T-⊙O).例:如图1,在直线l上有A、C、O三点,以AC为对角线作正方形ABCD,以点O为圆心作圆,与l交于E、F两点,若将正方形ABCD记为图形T,则C、E两点间的距离称为图形T到⊙的“最近距离”.数学理解:(1)在平面内有A、B两点,以点A为圆心,5为半径作⊙A,将点B记为图形T,若d(T-⊙A)=2,则AB= 3或7.(2)如图2,在平面直角坐标系中,以O(0,0)为圆心,半径为2作圆.①将点C(4,3)记为图形T,则d(T-⊙O)=.②将一次函数y=kx+22的图记为图形T,若d(T-⊙)>0,求k的取值范围.推广运用:(3)在平面直角坐标系中,P的坐标为(t,0),⊙P的半径为2,D、E两点的坐标分别为(5,5)、(5,-5),将ΔDOE记为图形T,若d(T-⊙P)=1,则t=.【解答】解:(1)如图1中,∵d(T-⊙A)=2,∴CB=CB′=2,∵AC=5,∴AB′=5-2=3,AB=5+2=7.故答案为:3或7.(2)①如图2中,连接OC交⊙O于E.∵C(4,3),∴OC=42+32=5,∵OE=2,∴EC=3,∴d(T-⊙O)=3.故答案为:3.②如图,设直线y=kx+22与⊙O相切于E,K.连接OK,OE.∵OE⊥DE,OK⊥DK,OD=22,OE=OK=2,∴DK=OD2?OK2=(22)2-22=2,DE=OD2?OE2=(22)2-22=2,∴DE=OE=DK=OK,∴四边形DEOK是菱形,∵∠DKO=∠DEO=90°,∴四边形DEOK是正方形,∴∠ODE=∠ODK=45°,∴直线DE的解析式为y=-x+22,直线DK的解析式为y=x+22,∵d(T-⊙O)>0,∴观察图象可知满足条件的k的值为-1<k<1且k≠0.(3)如图3-1中,当点P在DE的右边时.∵D(5,5),∴∠DOP=45°,∵d(T-⊙P)=1,∴OP=5+1+2=8∴t=8.如图3-2中,当点P在∠DOE的外侧时,由题意可知OM=1,OP=1+2=3,t=-3.综上所述,满足条件的t的值为8或-3.6(2022秋•昌平区期末)已知:对于平面直角坐标系xOy中的点P和⊙O,⊙O的半径为4,交x轴于点A,B,对于点P给出如下定义:过点C的直线与⊙O交于点M,N,点P为线段MN的中点,我们把这样的点P叫做关于MN的“折弦点”.(1)若C(-2,0).①点P1(0,0),P2(-1,1),P3(2,2)中是关于MN的“折弦点”的是 P1,P2 ;②若直线y=kx+3(k≠0).上只存在一个关于MN的“折弦点”,求k的值;(2)点C在线段AB上,直线y=x+b上存在关于MN的“折弦点”,直接写出b的取值范围.【解答】解:(1)①连接OP,∵P点是弦MN的中点,∴OP⊥MN,∴∠CPO=90°,∴P点在以CO为直径的圆上,∵C(-2,0),∴P点在以(-1,0)为圆心,1为半径的圆上,∵点P1(0,0),P2(-1,1)在该圆上,∴点P1(0,0),P2(-1,1)是关于MN的“折弦点”,故答案为:P1,P2;②由①可知,P点在以(-1,0)为圆心,1为半径的圆上,设圆心D(-1,0),∵直线y=kx+3(k≠0)上只存在一个关于MN的“折弦点”,∴直线y=kx+3(k≠0)与圆D相切,过点D作DF垂直直线y=kx+3交于点F,∵直线y=kx+3与x轴交于点E-3k,0,与y轴交于点G(0,3),∴DE=-1+3k,OF=3k,OG=3,∵∠DFE=∠EOG=90°,∴ΔEGO∽ΔEFD,∴DF GO =ED EG,∴13=3k-13+3k2,解得k=3 3;(2)由(1)可知,P点在以OC为直径的圆上,∵直线y=x+b上存在关于MN的“折弦点”,∴直线y=x+b与圆D相交或相切,过D点作DF垂直直线y=x+b交于点F,∵直线y=x+b与x轴交于点(-b,0),与y轴交于点(0,b),当C点与A点重合时,b有最大值,此时D(-2,0),∴(-2+b)2=8,解得b=22+2或b=22+2(舍);当C点与B点重合时,b有最小值,此时D(2,0),∴(-b-2)2=8,解得b=22-2(舍)或b=-22-2;∴-22-2≤b≤22+2时,直线y=x+b上存在关于MN的“折弦点”.7(2022秋•东城区校级月考)如图,在平面直角坐标系xOy中,过⊙T外一点P引它的两条切线,切点分别为M,N,若60°<∠MPN<180°,则称P为⊙T的环绕点.(1)当⊙O半径为1时,①在P1(2,2),P2(2,0),P3(2,1)中,⊙O的环绕点是 P1 ;②直线y=3x+b与x轴交于点A,y轴交于点B,若线段AB上存在⊙O的环绕点,求b的取值范围;(2)⊙T的半径为2,圆心为(0,t),以-m,33m(m>0)为圆心,33m为半径的所有圆构成图形H,若在图形H上存在⊙T的环绕点,直接写出t的取值范围.【解答】解:(1)①如图,PM,PN是⊙T的两条切线,M,N为切点,连接TM,TN,当∠MPN=60°时,∵PT平分∠MPN,∴∠TPN=∠MPT=30°,∵TM⊥PM,TN⊥PN,∴∠TNP=∠PMT=90°,∴TP =2TM =2,以T 为圆心,TP 为半径作⊙T .观察图象可知:当60°<∠MPN <180°时,⊙T 的环绕点在图中的圆环内部(包括大圆上的点不包括小圆上的点),故答案为:P 1;②如图中,设小圆交y 轴的正半轴于F ,当直线y =3x +b 经过点F 时,b =1,当直线y =3x +b 与大圆相切于K (在第二象限)时,连接OK ,由题意B (0,b ),A -b 3,0,所以OB =b ,OA =b 3,AB =103b ,∵OK =2,12×AB ×OK =12×OA ×OB ,∴b =210,观察图象可知,当1<b <210时,线段AB 上存在⊙的环绕点,根据对称怀可知:当-210<b <-1时,线段AB 上存在⊙的环绕点,综上所述,满足条件的b 的值为1<b <210或-210<b <-1;(2)如图中,不妨设E -m ,33m (m >0),则点E 直线y =-33x 上,∵m >0,∴点E 在射线OE 上运动,作EM ⊥x 轴;∵E -m ,33m (m >0),∴OM =m ,EM =33m ,以E -m ,33m (m >0)为圆心,33m 为半径的⊙E 与x 轴相切,作⊙E 的切线ON ,观察图象可知:以E -m ,33m (m >0)为圆心,33m 为半径的所有圆构成图形H ,图形H 即为∠MON 的内部,包括射线OM ,ON 上,当⊙T 的圆心在y 轴的正半轴上时,假设以T 为圆心,4为半径的圆与射线ON 相切于D ,连接TD ,∵tan ∠EOM =EM OM=33,∴∠EOM =30°,∵OM ,ON 是⊙E 的切线,∴∠EON =∠EOM =30°.∴∠TOD =30°,∴OT =2DT =8,∴T (0,8),当⊙T 的圆心在y 轴的负半轴上时,且经过点O (0.0)时,T (0,-4),观察图象可知,当-4<t <8时,在图象上存在⊙T 的环绕点.8(2022秋•海淀区校级月考)对于平面直角坐标系中的线段AB 和点P (点P 不在线段AB 上),给出如下定义:当PA =PB 时,过点A (或点B )向直线PB (或PA )作垂线段,则称此垂线段为点P 关于线段AB 的“测度线段”,垂足称为点P 关于线段AB 的“测度点”.如图所示,线段AD 和BC 为点P 关于线段AB 的“测度线段”,点C 与点D为点P关于线段AB的“测度点”.(1)如图,点M(0,4)、N(2,0),①点P的坐标为(5,4),直接写出点P关于线段MN的“测度线段”的长度4;②点H为平面直角坐标系中的一点,且HM=HN,则下列四个点:Q1(0,0),Q2(3,3),Q3(1,0),Q4(0,4)中,是点H 关于线段MN的“测度点”的是;(2)直线y=-34x+6与x轴、y轴分别交于点A与点B,①点G为平面直角坐标系中一点,且GA=GB,若一次函数y=kx-14k+3上存在点G关于线段AB的“测度点”,直接写出k的取值范围为;②⊙O的半径为r,点C与点D均在⊙O上,且线段CD=65r.点K与点O位于线段CD的异侧,且KC=KD,若在线段AB上存在点K关于线段CD的“测度点”,直接写出r的取值范围为.【解答】解:(1)①∵M(0,4)、P(5,4),∴MP⎳x轴,∴点P关于线段MN的“测度线段”的长度为4,故答案为:4;②∵过点N作NF⊥MH交于F点,过点M作MG⊥NH交于点G,∵∠MFN=∠MGN=90°,∴F、G点在以MN为直径的圆上,设MN的中点为E,∵点M(0,4)、N(2,0),∴E(1,2),MN=25,∴点H关于线段MN的“测度点”在以E为圆心,5为半径的圆上,且不与M、N重合,∵Q1(0,0),Q2(3,3),Q3(1,0),Q4(0,4)中,Q1E=5,Q2E=5,Q3E=2,Q4E=5,∴Q1,Q2是点H关于线段MN的“测度点”,故答案为:Q1,Q2;(2)①当x=0时,y=6,∴B(0,6),当y=0时,x=8,∴A(8,0),∴AB的中点F(4,3),AB=10,由(1)可知,点G关于线段AB的“测度点”在以F为圆心,5为半径的圆上,且不与A、B点重合,∵一次函数y=kx-14k+3上存在点G关于线段AB的“测度点”,∴直线y=kx-14k+3与圆F相切或相交,过点F作FK垂直直线y=kx-14k+3交于点K,直线与y轴的交点为T,过点F作FL⎳KT交于交y轴于点L,过点L作SL⊥KT交于点S,∴LS =FK =5,∴LF 的直线解析式为y =kx -4k +3,∴L (0,-4k +3),T (0,-14k +3),∴TL =-10k ,∵sin ∠LTS =5-10k =11+k 2,∴k =±33,∴-33≤k ≤33时,一次函数y =kx -14k +3上存在点G 关于线段AB 的“测度点”,故答案为:-33≤k ≤33;②由(1)可知,K 点关于线段CD 的“测度点”在以CD 为直角的半圆上,且不与C 、D 重合,当CD ⎳AB ,且AB 与圆P 相切时,r 有最小值,由①可得,45=35r 6-r ,解得r =247,当CD 在AB 上时,r 有最大值,r =6,∴247≤r <6时,线段AB 上存在点K 关于线段CD 的“测度点”,故答案为:247≤r <6.9(2022•盐城一模)对于平面内的两点K 、L ,作出如下定义:若点Q 是点L 绕点K 旋转所得到的点,则称点Q 是点L 关于点K 的旋转点;若旋转角小于90°,则称点Q 是点L 关于点K 的锐角旋转点.如图1,点Q 是点L 关于点K 的锐角旋转点.(1)已知点A (4,0),在点Q 1(0,4),Q 2(2,23),Q 3(-2,23),Q 4(22,-22)中,是点A 关于点O 的锐角旋转点的是 Q 2,Q 4 .(2)已知点B (5,0),点C 在直线y =2x +b 上,若点C 是点B 关于点O 的锐角旋转点,求实数b 的取值范围.(3)点D 是x 轴上的动点,D (t ,0),E (t -3,0),点F (m ,n )是以D 为圆心,3为半径的圆上一个动点,且满足n ≥0.若直线y =2x +6上存在点F 关于点E 的锐角旋转点,请直接写出t 的取值范围.【解答】解:(1)如图,∵A (4,0),Q 1(0,4),∴OA =OQ 1=4,∠AOQ 1=90°,∴点Q 1不是点A 关于点O 的锐角旋转点;∵Q 2(2,23),作Q 2F ⊥x 轴于点F ,∴OQ 2=OF 2+Q 2F 2=22+(23)2=4=OA ,∵tan ∠Q 2OF =232=3,∴∠Q 2OF =60°,∴点Q 2是点A 关于点O 的锐角旋转点;∵Q 3(-2,23),作Q 3G ⊥x 轴于点G ,则tan ∠Q 3OG =Q 3G OG=232=3,∴∠Q3OG =60°,∴OQ 3=OG cos ∠Q 3OG =2cos60°=4=OA ,∵∠AOQ 3=180°-60°=120°,∴Q 3不是点A 关于点O 的锐角旋转点;∵Q 4(22,-22),作Q 4H ⊥x 轴于点H ,则tan ∠Q 4OH =Q 4H OH =2222=1,∴∠Q 4OH =45°,∵OQ 4=OH cos ∠Q 4OH =22cos45°=4=OA ,∴Q 4是点A 关于点O 的锐角旋转点;综上所述,在点Q 1,Q 2,Q 3,Q 4中,是点A 关于点O 的锐角旋转点的是Q 2,Q 4,故答案为:Q 2,Q 4.(2)在y 轴上取点P (0,5),当直线y =2x +b 经过点P 时,可得b =5,当直线y =2x +b 经过点B 时,则2×5+b =0,解得:b =-10,∴当-10<b <5时,OB 绕点O 逆时针旋转锐角时,点C 一定可以落在某条直线y =2x +b 上,过点O 作OG ⊥直线y =2x +b ,垂足G 在第四象限时,如图,则OT =-b ,OS =-12b ,∴ST =OS 2+OT 2=-12b 2+(-b )2=-52b ,当OG =5时,b 取得最小值,∵5×-52b =-b ×-12b ,∴b =-55,∴-55≤b <5.(3)根据题意,点F 关于点E 的锐角旋转点在半圆E 上,设点P 在半圆S 上,点Q 在半圆T 上(将半圆D 绕点E 旋转),如图3(1),半圆扫过的区域为图3(1)中阴影部分,如图3(2)中,阴影部分与直线y =2x +6相切于点G ,tan ∠EMG =2,SG =3,过点G 作GI ⊥x 轴于点I ,过点S 作SJ ⊥GI 于点J ,∴∠SGJ =∠EMG ,∴tan ∠SGJ =tan ∠EMG =2,∴GJ =355,SJ =655,∴GI =GJ +JI =3+355,∴MI =12GI =32+3510,∴OE =IE +MI -OM =352-32,即x E =t -3=352-32,解得t =352+32,如图3(3)中,阴影部分与HK 相切于点G ,tan ∠OMK =tan ∠EMH =2,EH =6,则MH =3,EM =35,∴x E =t -3=-3-35,解得t =-35,观察图象可知,-35≤t <3+352+32.10(2022秋•姜堰区期中)如图1,在平面内,过⊙T 外一点P 画它的两条切线,切点分别为M 、N ,若∠MPN ≥90°,则称点P 为⊙T 的“限角点”.(1)在平面直角坐标系xOy 中,当⊙O 半径为1时,在①P 1(1,0),②P 2-1,12,③P 3(-1,-1),④P 4(2,-1)中,⊙O 的“限角点”是②④;(填写序号)(2)如图2,⊙A 的半径为2,圆心为(0,2),直线l :y =-34x +b 交坐标轴于点B 、C ,若直线l 上有且只有一个⊙A 的“限角点”,求b 的值.(3)如图3,E (2,3)、F (1,2)、G (3,2),⊙D 的半径为2,圆心D 从原点O 出发,以2个单位/s 的速度沿直线l :y =x 向上运动,若ΔEFG 三边上存在⊙D 的“限角点”,请直接写出运动的时间t (s )的取值范围.【解答】解:(1)∵⊙O 半径为1,∴当P 为圆O 的“限角点”时,1<OP ≤2,∵OP 1=1,OP 2=52,OP 3=2,OP 4=5,∴⊙O 的“限角点”是P 2,P 3,故答案为:②③;(2)∵⊙A 的半径为2,∴当P 为圆A 的“限角点”时,2<AP ≤2,设直线l 上有且只有一个⊙O 的“限角点”P m ,-34m +b ,∴PA =2,此时AP ⊥BC ,令x =0,则y =b ,∴C (0,b ),令y =0,则x =43b ,∴B 43b ,0 ,∴tan ∠OCB =OB OC =43=AP CP ,∴CP =32,∴AC =52,∴|b -2|=52,∴b =92或b =-12;(3)∵圆心D 从原点O 出发,以2个单位/s 的速度沿直线l 移动,∴圆沿x 轴正方向移动t 个单位,沿y 轴正方向移动t 个单位,∴移动后D 点坐标为(t ,t ),设ΔEFG 边上的点P 是圆D 的“限角点”,则2<PD ≤2,在圆D 移动的过程中,当DF =2时,(t -1)2+(t -2)2=4,解得t =3-72或t =3+72,当t =3-72时,ΔEFG 边上开始出现⊙D 的“限角点”,当圆D 移动到E 点在圆上时,DE =2,(t -2)2+(t -3)2=2,解得t =5+32或t =5-32,∴3-72≤t <5-32时,ΔEFG 边上存在⊙D 的“限角点”,当圆D 再次移动到点F 在圆上时,DF =2,(t -2)2+(t -1)2=2,解得t =3+32或t 3-32,当t =3+32时,ΔEFG 三边上开始又要出现⊙D 的“限角点”;设直线EG 的解析式为y =kx +b ,直线y =x 与直线EG 的交点设为点H ,∴2k +b =33k +b=2 ,解得k =-1b =5 ,解得y =-x +5,联立方程组y =-x +5y =x,解得x =52y =52,∴H 52,52,当DH =2时,2t -52 2=4,解得t =2+52或t =-2+52,∴当t =2+52,ΔEFG 边上存在⊙D 的“限角点”,∴3+32<t ≤2+52时,ΔEFG 边上存在⊙D 的“限角点”;综上所述:3-72≤t <5-32或3+32<t ≤2+52时,ΔEFG 边上存在⊙D 的“限角点”.11(2022秋•西城区校级期中)在平面直角坐标系xOy中,已知点M(a,b),N.对于点P给出如下定义:将点P绕点M逆时针旋转90°,得到点P ,点P 关于点N的对称点为Q,称点Q为点P的“对应点”.(1)如图1,若点M在坐标原点,点N(1,1),①点P(-2,0)的“对应点”Q的坐标为 (2,0) ;②若点P的“对应点”Q的坐标为(-1,3),则点P的坐标为;(2)如图2,已知⊙O的半径为1,M是⊙O上一点,点N(0,2),若P(m,0)(m>1)为⊙O外一点,点Q为点P的“对应点”,连接PQ.①当点M(a,b)在第一象限时,求点Q的坐标(用含a,b,m的式子表示);②当点M在⊙O 上运动时,直接写出PQ长的最大值与最小值的积为.(用含m的式子表示)【解答】解:(1)①∵P(-2,0),∴P点绕点M逆时针旋转90°得到点P (0,-2),∵点P 关于点N的对称点为Q,∴Q(2,0);故答案为:(2,0);②∵Q的坐标为(-1,3),∴Q点关于N(1,1)的对称点为P (3,-1),将P 绕M点顺时针旋转90°得到点P,过P 作P F⊥x轴于点F,过点P作PE⊥x轴于点E,∵∠P OP=90°,∴∠POE+∠FOP =90°,∵∠EPO+∠EOP=90°,∴∠FOP =∠EPO,∵OP=OP ,∴ΔPOE≅△OP F(AAS),∴EO=P F=1,PE=OF=3,∴P(-1.-3),故答案为:(-1,-3);(2)①过点M作EF⊥x轴于点F,过点P 作P E⊥EF交于点E,由(1)可得ΔMPF≅△P ME(AAS),∴MF=EP ,FP=ME,∵M(a,b),P(m,0),∴EF=b+m-a,EP =b,∴P (a+b,b+m-a),∵点N(0,2),∴Q(-a-b,4-b-m+a);②P点绕O点逆时针旋转90°后得到点G,∴G(0,m),∵P (a+b,b+m-a),∴GP =2(a 2+b 2),∵M (a ,b )在圆O 上,∴a 2+b 2=1,∴GP =2,∴P 在以G 为圆心,2为半径的圆上,设G 点关于N 点的对称点为H ,则H (0,4-m ),∴QH =2(a 2+b 2)=2,∴Q 点在以H 为圆心2为半径的圆上,∴PQ 的最大值为PH +2,PQ 的最小值为PH -2,∴PQ 长的最大值与最小值的积为(PH +2)(PH -2)=2m 2-8m +14,故答案为:2m 2-8m +14.12(2022•秦淮区二模)【概念认识】与矩形一边相切(切点不是顶点)且经过矩形的两个顶点的圆叫做矩形的第Ⅰ类圆;与矩形两边相切(切点都不是顶点)且经过矩形的一个顶点的圆叫做矩形的第Ⅱ类圆.【初步理解】(1)如图①~③,四边形ABCD 是矩形,⊙O 1和⊙O 2都与边AD 相切,⊙O 2与边AB 相切,⊙O 1和⊙O 3都经过点B ,⊙O 3经过点D ,3个圆都经过点C .在这3个圆中,是矩形ABCD 的第Ⅰ类圆的是①,是矩形ABCD 的第Ⅱ类圆的是.【计算求解】(2)已知一个矩形的相邻两边的长分别为4和6,直接写出它的第Ⅰ类圆和第Ⅱ类圆的半径长.【深入研究】(3)如图④,已知矩形ABCD ,用直尺和圆规作图.(保留作图痕迹,并写出必要的文字说明)①作它的1个第Ⅰ类圆;②作它的1个第Ⅱ类圆.【解答】解:(1)由定义可得,①的矩形有一条边AD 与⊙O 1相切,点B 、C 在圆上,∴①是第Ⅰ类圆;②的矩形有两条边AD 、AB 与⊙O 2相切,点C 在圆上,∴②是第Ⅱ类圆;故答案为:①,②;(2)如图1,设AD =6,AB =4,切点为E ,过点O 作EF ⊥BC 交BC 于F ,交AD 于E ,连接BO ,设BO =r ,则OE =r ,OF =4-r ,由垂径定理可得,BF =CF =3,在Rt ΔBOF 中,r 2=(4-r )2+32,解得r =258;如图2,设AD =4,BC =6,切点为E ,过点O 作EF ⊥BC 交BC 于F ,交AD 于E ,连接BO ,设BO =r ,则OE =r ,OF =6-r ,由垂径定理可得,BF =CF =2,在Rt ΔBOF 中,r 2=(6-r )2+22,解得r =103;综上所述:第Ⅰ类圆的半径是258或103;如图3,AD =6,AB =4,过点O 作MN ⊥AD 交于点M ,交BC 于点N ,连接OC ,设AB 边与⊙O 的切点为G ,连接OG ,∴GO ⊥AB ,设OM =r ,则OC =r ,则ON =4-r ,∵OG =r ,∴BN =r ,∴NC =6-r ,在Rt ΔOCN 中,r 2=(4-r )2+(6-r )2,解得r =10-43,∴第Ⅱ类圆的半径是10-43;(3)①如图4,第一步,作线段AD 的垂直平分线交AD 于点E ,第二步,连接EC ,第三步,作EC 的垂直平分线交EF 于点O ,第四步,以O 为圆心,EO 为半径作圆,∴⊙O 即为所求第Ⅰ类圆;②如图5,第一步:作∠BAD 的平分线;第二步:在角平分线上任取点E ,过点E 作EF ⊥AD ,垂足为点F ;第三步:以点E 为圆心,EF 为半径作圆E ,交AC 于点G ,连接FG ;第四步:过点C 作CH ⎳FG ,CH 交AD 于点H ;第五步:过点H 作AD 的垂线,交∠BAD 的平分线于点O ;第六步:以点O 为圆心,OH 为半径的圆,⊙O 即为所求第Ⅱ类圆.13(2021秋•海淀区校级期末)新定义:在平面直角坐标系xOy 中,若几何图形G 与⊙A 有公共点,则称几何图形G 的叫⊙A 的关联图形,特别地,若⊙A 的关联图形G 为直线,则称该直线为⊙A 的关联直线.如图,∠M 为⊙A 的关联图形,直线l 为⊙A 的关联直线.(1)已知⊙O 是以原点为圆心,2为半径的圆,下列图形:①直线y =2x +2;②直线y =-x +3;③双曲线y =2x,是⊙O 的关联图形的是①③(请直接写出正确的序号).(2)如图1,⊙T 的圆心为T (1,0),半径为1,直线l :y =-x +b 与x 轴交于点N ,若直线l 是⊙T 的关联直线,求点N 的横坐标的取值范围.(3)如图2,已知点B (0,2),C (2,0),D (0,-2),⊙I 经过点C ,⊙I 的关联直线HB 经过点B ,与⊙I 的一个交点为P ;⊙I 的关联直线HD 经过点D ,与⊙I 的一个交点为Q ;直线HB ,HD 交于点H ,若线段PQ 在直线x =6上且恰为⊙I 的直径,请直接写出点H 横坐标h 的取值范围.【解答】解:(1)由题意①③是⊙O的关联图形,故答案为①③.(2)如图1中,∵直线l1y=-x+b是⊙T的关联直线,∴直线l的临界状态是和⊙T相切的两条直线l1和l2,当临界状态为l1时,连接TM(M为切点),∴TM=1,TM⊥MB,且∠MNO=45°,∴ΔTMN是等腰直角三角形,∴TN=2,OT=1,∴N(1+2,0),把N(1+2,0)代入y=-x+b中,得到b=1+2,同法可得当直线l2是临界状态时,b=-2+1,∴点N的横坐标的取值范围为-2+1≤N x≤2+1.(3)如图3-1中,当点Q在点P是上方时,连接BQ,PD交于点H,当圆心I在x轴上时,点H与点C重合,此时H(2,0),得到h的最大值为2,如图3-2中,当点P在点Q是上方时,直线PB,QD交于点H,当圆心I在x轴上时,点H(-6,0)得到h的最小值为-6,综上所述,-6≤h<0,0<h≤2.14(2022春•海淀区校级月考)定义:P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段a与线段b的“冰雪距离”.已知O(0,0),A(1,1),B(m,n),C(m,n+2)是平面直角坐标系中四点.(1)根据上述定义,完成下面的问题:①当m=2,n=1时,如图1,线段BC与线段OA的“冰雪距离”是1.②当m=2时,线段BC与线段OA的“冰雪距离”是1,则n的取值范围是.(2)如图2,若点B落在圆心为A,半径为1的圆上,当n≥1时,线段BC与线段OA的“冰雪距离”记为d,结合图象,求d的最小值;(3)当m的值变化时,动线段BC与线段OA的“冰雪距离”始终为1,线段BC的中点为M.求点M随线段BC运动所走过的路径长.【解答】解:(1)①当m=2,n=1时,B(2,1),C(2,3).线段BC与线段OA的冰雪距离为AB=1.故答案为:1.②当m=2时,点A到直线BC的距离为1.若线段BC与线段OA的冰雪距离是1,则点A到BC的垂线的垂足在线段BC上,∴n≤1≤n+2,即-1≤n≤1.故答案为:-1≤n ≤1.(2)如图,B 2(0,1)为圆A 与y 轴的切点,B 11-22,1+22满足∠B 1AO =90°.当B 在B 1右侧时,冰雪距离d ≥B 1A =22.当B 在弧B 1B 2上时,冰雪距离d 为点B 到OA 的距离,结合图象可知,当且仅当B 处在点B 2时,d 取最小值22.(3)如图,当点B 位于图中弧DI 、线段IH 、弧HG 时,线段BC 与线段OA 的“冰雪距离”始终为1.当点C 位于图中弧DE 、线段EF 、弧FG 时,线段BC 与线段OA 的“冰雪距离”始终为1.当线段BC 由图中B 1D 向上平移到DC 3时,或由B 2G 向上平移到GC 4时,线段BC 与线段OA 的“冰雪距离”始终为1.对应中点M 所走过的路线长为:2π+4+22.15(2022•东城区校级开学)对于⊙C 和⊙C 上的一点A ,若平面内的点P 满足:射线AP 与⊙C 交于点Q (点Q 可以与点P 重合),且1≤PAQA ≤2,则点P 称为点A 关于⊙C 的“生长点”.已知点O 为坐标原点,⊙O 的半径为1,点A (-1,0).(1)若点P 是点A 关于⊙O 的“生长点”,且点P 在x 轴上,请写出一个符合条件的点P 的坐标 (2,0)(答案不唯一);(2)若点B 是点A 关于⊙O 的“生长点”,且满足∠BAO =30°,求点B 的纵坐标t 的取值范围;(3)直线y =3x +b 与x 轴交于点M ,且与y 轴交于点N ,若线段MN 上存在点A 关于⊙O 的“生长点”,直接写出b 的取值范围是.【解答】解:(1)根据“生长点”定义,点P 的坐标可以是(2,0),故答案为:(2,0)(答案不唯一);(2)如图,在x 轴上方作射线AM ,与⊙O 交于M ,使得∠OAM =30°,并在射线AM 上取点N ,使AM =MN ,并由对称性,将MN 关于x 轴对称,得M N ,则由题意,线段MN 和M N 上的点是满足条件的点B .作MH ⊥x 轴于H ,连接MC ,∴∠MHA =90°,即∠OAM +∠AMH =90°.∵AC 是⊙O 的直径,∴∠AMC =90°,即∠AMH +∠HMC =90°.∴∠OAM =∠HMC =30°.∴tan30°=MH AH=HC MH =33,设MH=y,则AH=3y,CH=33y,∴AC=AH+CH=433y=2,解得y=32,即点M的纵坐标为32.又由AN=2AM,A为(-1,0),可得点N的纵坐标为3,故在线段MN上,点B的纵坐标t满足:32≤t≤3,由对称性,在线段M N 上,点B的纵坐标t满足:?3≤t≤?3 2,∴点B的纵坐标t的取值范围是:32≤t≤3或?3≤t≤?32.(3)如图,Q是⊙O上异于点A的任意一点,延长AQ到P,使得PA=2AQ,∵Q的轨迹是以O为圆心,1为半径的圆,∴点P的运动轨迹是以K(1,0)为圆心,2为半径的圆,当直线MN与⊙K相切于点R时,连接KR,在RtΔKMR中,∠KRM=90°,∵直线y=3x+b与x轴夹角为60°,∴∠KMR=60°,KR=2,∴KM=2÷sin60°=433,∴OM=1+433,∴ON=3OM=4+3,∴b=-4-3,当直线MN经过G(0,-1)时,满足条件,此时b=-1,观察图象可知:当-4-3≤b≤-1时,线段MN上存在点A关于⊙O的“生长点”,根据对称性,同法可得当1≤b≤4-3时,也满足条件.故答案为:-4-3≤b≤-1或1≤b≤4-3.16(2022•东城区校级开学)在平面直角坐标系xOy中,给出如下定义:若点P在图形M上,点Q在图形N 上,称线段PQ长度的最小值为图形M,N的“近距离”,记为d(M,N).特别地,若图形M,N有公共点,规定d(M,N)=0,如图,点A(-23,0),B(0,2).(1)如果⊙O的半径为2,那么d(A,⊙O)= 23-2 ,d(B,⊙O)=;(2)如果⊙O的半径为r,且d(⊙O,AB)>0,求r的取值范围;(3)如果C(0,m)是y轴上的动点,⊙C的半径为1,使d(⊙C,AB)<1,直接写出m的取值范围为.【解答】解:(1)∵⊙O的半径为2,A(-23,0),B(0,2),∴OB=2,OA=23>2,∴点A在⊙O外,点B在⊙O上,∴d(A,⊙O)=23-2,d(B,⊙O)=0,故答案为:23-2;0;(2)如图1,过点O 作OD ⊥AB 于点D ,在Rt ΔAOB 中,∵tan ∠BAO =OB OA =223=33,∴∠BAO =30°.在Rt ΔADO 中,sin ∠BAO =DO OA =12=DO23,∴DO =3,∵d (⊙O ,AB )=0,∴r 的取值范围是0<r <3或r >23;(3)如图2,过点C 作CN ⊥AB 于点N ,由(2)知,∠BAO =30°.∵C (m ,0),当点C 在点B 的上边时,m >2,此时,d (⊙C ,AB )=BC ,∴BC ≤1,即m -2≤1,解得m ≤3;当点C 与点B 重合时,m =2,此时d (⊙C ,AB )=0,当点C 在点B 的下边时,m <2,∴BC =2-m ,∴CN =BC ⋅sin ∠OBA =32(2-m ).∵d (⊙C ,AB )<1,⊙C 的半径为1,∴0<32(2-m )<1.∴2-233<m <2.综上所述:2-233<m ≤3.故答案为:2-233<m ≤3.17(2021秋•润州区校级月考)在平面直角坐标系xOy 中,⊙C 的半径为r ,P 是与圆心C 不重合的点,点P 关于⊙C 的反称点的定义如下:若在射线CP 上存在一点P ′,满足CP +CP ′=2r ,则称P ′为点P 关于⊙C 的反称点,如图为点P 及其关于⊙C 的反称点P ′的示意图.(1)当⊙O 的半径为1时,①分别判断点M (3,1),N 32,0,T (-1,3)关于⊙O 的反称点是否存在?若存在,直接求其坐标;②将⊙O 沿x 轴水平向右平移1个单位为⊙O ′,点P 在直线y =-x +1上,若点P 关于⊙O ′的反称点P ′存在,且点P ′不在坐标轴上,则点P 的横坐标的取值范围 1-2≤x ≤1+2且x ≠2-2 ;(2)⊙C 的圆心在x 轴上,半径为1,直线y =-x +12与x 轴,y 轴分别交于点A 、B ,点E 与点D 分别在点A 与点B 的右侧2个单位,线段AE 、线段BD 都是水平的,若四边形ABDE 四边上存在点P ,使得点P 关于⊙C 的反称点P ′在⊙C 的内部,直接写出圆心C 的横坐标的取值范围.。
2024年九年级中考数学专题复习:新定义型问题与二次函数相关的问题一、单选题1在R 上定义运算⊗:x ⊗y =x (1-y ),若不等式(x -a )⊗x +a <1对任意实数x 成立,则实数a 的取值范围()A.-1<a <1B.0<a <2C.-12<a <32D.-32<a <122我们定义一种新函数:形如y =ax 2+bx +c a ≠0,b 2-4ac >0 的函数叫做“鹊桥”函数.数学兴趣小组画出一个“鹊桥”函数y =x 2+bx +c 的图象如图所示,则下列结论正确的是()A.bc <0B.当x =1时,函数的最大值是4C.当直线y =x +m 与该图象恰有三个公共点时,则m =1D.关于x 的方程x 2+bx +c =3的所有实数根的和为43我们定义:若点A 在某一个函数的图象上,且点A 的横纵坐标相等,我们称点A 为这个函数的“好点”.若关于x 的二次函数y =ax 2+tx -3t 对于任意的常数t ,恒有两个“好点”,则a 的取值范围为()A.0<a <13B.0<a <12C.13<a <12D.12<a <14对于实数a ,b ,定义符号min a ,b ,其意义为:min a ,b =ba ≥baa <b .例如:min =2,-1 =-1,若关于x 的函数y =min 2x -1,-x +3,x 2-ax 则使该函数的最大值小于0时a 的范围是()A.a >2B.-1<a <0C.1<a <2D.a >35定义:两个不相交的函数图象在平行于y 轴方向上的最短距离称为这两个函数的“完美距离”.抛物线y =2x 2-5x +3与直线y =-2x -1的“完美距离”为()A.238B.3C.278D.2186定义运算“※”为:a ※b =ab 2(b >0)-ab2b ≤0,如:1※-2 =-1×(-2)2=-4,则函数y =2※x 的图象大致是()A. B.C. D.7新定义:若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点.若二次函数y=x2-x+c(c为常数)在-2<x<4的图象上存在两个二倍点,则c的取值范围是()A.-2<c<14B.-2<c<94C.-4<c<14D.-4<c<948对于任意实数a和b,定义新运算,a#b=a2-ab a≥bb2-ab a<b有下列四个结论,其中正确的结论个数为()①2#-1的运算结果为6;②方程3x#x-2=0的解为x1=0,x2=-1;③当x<5时,函数y=2#x-3的图像经过第一、二、四象限;④函数y=2x#x-1的图像不经过第二、四象限.A.1个B.2个C.3个D.4个二、填空题9定义:两个不相交的函数图象在竖直方向上的最短距离,叫做这两个函数的“向心值”.则抛物线y =x2-2x+3与直线y=x-2的“向心值”为.10定义一种新的运算“早”,运算规则如下:(1)当a≥b时,a♀b=a;(2)当a<b时,a♀b=b2.那么当-2≤x≤2时,1♀x♀x-2♀x的最大值是.11对于实数a,b,定义运算:“☆”为a☆b=a2-ab-2a,如:2☆3=22-2×3-2×2=-6,若m,n 是二次函数y=x2-2x-3的图象与x轴的交点的横坐标,则m☆n=.12定义新运算:对于任意实数a,b,都有a⊗b=ab-a+b,例如 2⊗=2×3-2+3=1.若y关于x的函数y=kx+1⊗x-1的图象与x轴仅有一个公共点,则实数k的值为.13新定义:若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点.若二次函数y=x2-x+c(c(c 为常数)在-2<x<4的图象上存在两个二倍点,则c的取值范围是.14新定义:任意两数m,n,按规定y=mn-m+n得到一个新数y,称所得新数y为数m,n的“愉悦数”.则当m=2x+1,n=x-1,且m,n的“愉悦数”y为正整数时,正整数x的值是.15定义:在平面直角坐标系中,若点A满足横、纵坐标都为整数,则把点A叫做“整点”.如:B3,0、C-1,3都是“整点”.抛物线y=ax2+2ax+a-2a>0与x轴交于点M,N两点,若该抛物线在M、N 之间的部分与线段MN所围的区域(包括边界)恰有5个整点,则a的取值范围是.16定义:对角线互相垂直的四边形为垂美四边形.已知垂美四边形ABCD的对角线AC、BD满足AC+BD=12,则当AC=时,四边形ABCD的面积最大.三、解答题17新定义:[a,b,c]为二次函数y=ax2+bx+c(a≠0,a,b,c为实数)的“图象数”,如:y=-x2+2x+ 3的“图象数”为[-1,2,3].(1)图像数为[1,-1,0]的二次函数表达式为.(2)求证:“图象数”为[1,m+3,m]的二次函数的图象与x轴恒有两个交点.18定义:若x,y满足x2=4y+t,y2=4x+t且x≠y(t为常数),则称点M(x,y)为“和谐点”.(1)请直接判断点(1,-5)是否为“和谐点”;(2)P(2,m)是“和谐点”,求m值;(-3<x<-1)的图象上存在“和谐点”,求k的取值范围.(3)若双曲线y=kx19某网店有(万件)商品,计划在元旦旺季售出商品x(万件),经市场调查测算,花费t(万元)进行促销后,商品的剩余量3-x与促销费t之间的关系为3-x=kt+1(其中k为常数),如果不搞促销活动,只能售出1(万件)商品.(1)要使促销后商品的剩余量不大于0.1(万件),促销费t至少为多少(万元)?(2)已知商品的进价为32(元/件),另有固定成本3(万元),定义每件售出商品的平均成本为32+3x(元),若将商品售价为:“每件售出商品平均成本的1.5倍”与“每件售出商品平均促销费的一半”之和,则当促销费t为多少(万元)时,该网店售出商品的总利润最大?此时商品的剩余量为多少?20我们定义一种新函数:形如y=ax2+bx+ca≠0,b2-4ac>0的函数叫作“华为”函数.如图,小丽同学画出了“华为”函数y=x2-2x-3的图像,根据该图像解答下列问题:(1)求该函数图像与x轴和y轴的交点坐标.(2)当函数值y随x值的增大而减小时,求自变量x的取值范围.2024年九年级中考数学专题复习:新定义型问题与二次函数相关的问题一、单选题1在R 上定义运算⊗:x ⊗y =x (1-y ),若不等式(x -a )⊗x +a <1对任意实数x 成立,则实数a 的取值范围()A.-1<a <1B.0<a <2C.-12<a <32D.-32<a <12【答案】C【分析】本题的考点是函数恒成立问题,主要考查了函数恒成立问题,关键是理解新定义的运算,掌握将不等式转化为二次不等式,解决恒成立问题转化成图象恒在x 轴上方,从而有△<0,解△<0即可.【详解】根据运算法则得x -a ⊗x +a =x -a 1-x -a <1化简得:x 2-x -a 2+a +1>0在R 上恒成立,即Δ<0,1-4-a ²+a +1 <0,即4a 2-4a -3<0,解得-12<a <32,故选:C .2我们定义一种新函数:形如y =ax 2+bx +c a ≠0,b 2-4ac >0 的函数叫做“鹊桥”函数.数学兴趣小组画出一个“鹊桥”函数y =x 2+bx +c 的图象如图所示,则下列结论正确的是()A.bc <0B.当x =1时,函数的最大值是4C.当直线y =x +m 与该图象恰有三个公共点时,则m =1D.关于x 的方程x 2+bx +c =3的所有实数根的和为4【答案】D【分析】本题考查二次函数的应用、新定义、二次函数的性质,由-1,0 ,3,0 是函数图象和x 轴的交点,利用待定系数法求得b 、c 的值可判断A 错误;根据图象可判断B 错误;由图象可判断C 错误;由题意可得x 2-2x -3=3或x 2-2x -3=-3,利用根与系数的关系可判断D 正确.利用数形结合的思想解答是解题的关键.【详解】解:∵-1,0 ,3,0 是函数图象和x 轴的交点,∴1-b +c =09+3b +c =0,解得:b =-2c =-3 ,∴bc =-2 ×-3 =6>0,故A 错误;由图象可得,函数没有最大值,故B 错误;如图,当直线y =x +m 与该图象恰有三个公共点时,应该有2条直线,故C 错误;关于x 的方程x 2+bx +c =3,即x 2-2x -3=3或x 2-2x -3=-3,当x 2-2x -3=3时,x 1+x 2=--21=2,当x 2-2x -3=-3时,x 3+x 4=--21=2,∴关于x 的方程x 2+bx +c =3的所有实数根的和为2+2=4,故D 正确,故选:D .3我们定义:若点A 在某一个函数的图象上,且点A 的横纵坐标相等,我们称点A 为这个函数的“好点”.若关于x 的二次函数y =ax 2+tx -3t 对于任意的常数t ,恒有两个“好点”,则a 的取值范围为()A.0<a <13B.0<a <12C.13<a <12D.12<a <1【答案】A【分析】“好点”A 的横纵坐标相等,即:x =y =ax 2+tx -3t a ≠0 ,Δ=(t -1)2+12at >0,整理得:t 2-2-12a t +1=0,△1=(2-12a )2-4<0,即可求解.【详解】解:“好点”A 的横纵坐标相等,∴x =y =ax 2+tx -3t a ≠0 ,∴ax 2+t -1 x -3t =0,Δ=b 2-4ac =(t -1)2+12at >0,整理得:t 2-2-12a t +1>0,∵1>0,故当Δ<0时,抛物线开口向上,且与x 轴没有交点,故上式成立,△1=(2-12a )2-4<0,解得:0<a <13,故选:A .【点睛】本题考查的是二次函数图象与系数的关系,要求学生熟悉函数的基本性质,能熟练求解函数与坐标轴的交点及顶点的坐标等.4对于实数a ,b ,定义符号min a ,b ,其意义为:min a ,b =ba ≥baa <b .例如:min =2,-1 =-1,若关于x 的函数y =min 2x -1,-x +3,x 2-ax 则使该函数的最大值小于0时a 的范围是()A.a >2B.-1<a <0C.1<a <2D.a >3【答案】D【分析】画出y =2x -1,y =-x +3,y =x 2-ax 的函数图象,根据题意,最大值小于0时,结合函数图象,即可求解.【详解】解:如图所示,y =min 2x -1,-x +3,x 2-ax 即为函数图象的红色部分,由y=x2-ax,令y=0,则x2-ax=0解得:x1=0,x2=a∵y=x2-ax经过原点,y=-x+3与x轴的交点为3,0,∴当y=min2x-1,-x+3,x2-ax最大值小于0时,则y=x2-ax与x轴的交点在3,0的右侧,∴a>3故选:D【点睛】本题考查了新定义、一元一次不等式以及二次函数、一次函数的交点问题,认真阅读理解其意义,并利用数形结合的思想解决函数的最值问题.5定义:两个不相交的函数图象在平行于y轴方向上的最短距离称为这两个函数的“完美距离”.抛物线y=2x2-5x+3与直线y=-2x-1的“完美距离”为()A.238B.3 C.278D.218【答案】A【分析】先判断抛物线与直线无交点,再根据定义和二次函数的性质求解即可.【详解】解:由2x2-5x+3=-2x-1得2x2-3x+4=0,∵Δ=-32-4×2×4=-23<0,∴方程2x2-3x+4=0没有实数根,∴抛物线y=2x2-5x+3与直线y=-2x-1不相交,设w=2x2-5x+3--2x-1=2x2-3x+4=2x-342+238,∵2>0,∴当x=34时,w有最小值为23 8,即抛物线y=2x2-5x+3与直线y=-2x-1的“完美距离”为23 8,故选:A.【点睛】本题考查二次函数的性质、一元二次方程根的判别式,理解题中定义,熟练掌握二次函数的性质是解答的关键.6定义运算“※”为:a※b=ab2(b>0)-ab2b≤0,如:1※-2 =-1×(-2)2=-4,则函数y=2※x的图象大致是()A. B.C. D.【答案】D【分析】根据定义运算“※”为:a※b=ab2(b>0)-ab2b≤0,可得y=2※x的函数解析式,根据函数解析式,可得函数图象.【详解】解:y=2※x=2x2(x>0) -2x2x≤0,x>0时,图象是y=2x2对称轴右侧的部分;x≤0时,图象是y=-2x2对称轴左侧的部分,故选:D.【点睛】本题考查了二次函数的图象,利用定义运算“※”为:a※b=ab2(b>0)-ab2b≤0得出分段函数是解题关键.7新定义:若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点.若二次函数y=x2-x+c(c为常数)在-2<x<4的图象上存在两个二倍点,则c的取值范围是()A.-2<c<14B.-2<c<94C.-4<c<14D.-4<c<94【答案】D【分析】由点的纵坐标是横坐标的2倍可得二倍点在直线y=2x上,由-2<x<4可得二倍点所在线段AB的端点坐标,结合图象,通过求抛物线与线段交点求解.【详解】解:由题意可得二倍点所在直线为y=2x,将x=-2代入y=2x得y=-4,将x=4代入y=2x得y=8,设A(-2,-4),B(4,8),如图,联立方程x2-x+c=2x,当△>0时,抛物线与直线y=2x有两个交点,即9-4c>0,解得c<9 4,此时,直线x=-2和直线x=4与抛物线交点在点A,B上方时,抛物线与线段AB有两个交点,把x=-2代入y=x2-x+c得y=6+c,把x=4代入y=x2-x+c得y=12+c,∴6+c>-4 12+c>8 ,解得c>-4,∴-4<c<94满足题意.故选:D.【点睛】本题考查二次函数图象与系数的关系,解题关键掌握函数与方程及不等式的关系,将代数问题转化为图形问题求解.8对于任意实数a和b,定义新运算,a#b=a2-ab a≥bb2-ab a<b有下列四个结论,其中正确的结论个数为()①2#-1的运算结果为6;②方程3x#x-2=0的解为x1=0,x2=-1;③当x<5时,函数y=2#x-3的图像经过第一、二、四象限;④函数y=2x#x-1的图像不经过第二、四象限.A.1个B.2个C.3个D.4个【答案】C【分析】本题主要考查了实数的运算,解一元二次方程,二次函数的性质,熟练掌握解一元二次方程的方法以及二次函数的性质是解题的关键.根据新定义的运算即可判断①;分两种情况讨论得到一元二次方程,解方程即可判断②;根据二次函数的性质即可判断③;利用二次函数的图像即可判断④.【详解】解:①∵2>-1,∴2#-1=22-2×-1=6,故正确;②当3x≥x-2时,即x≥-1时,方程为9x2-3x x-2=0,整理得6x2+6x=0,解得x1=0,x2=-1,当3x <x -2时,即x <-1时,方程为x -2 2-3x x -2 =0,整理得x 2-x -2=0,解得x =2或x =-1(不符合题意,舍去),∴方程3x #x -2 =0的解为x 1=0,x 2=-1,故正确;③∵当x <5时,函数y =2#x -3 =4-2x -3 =-2x +10,∴函数y =2#x -3 的图像经过第一、二象限,故错误;④当2x ≥x -1时,即x ≥-1时,函数为y =4x 2-2x x -1 =2x +12 2-12,当2x <x -1时,即x <-1时,函数为y =x -1 2-2x x -1 =-x 2+1,画出函数图像如下:由图可知函数图像不经过第二、四象限,故正确;故选:C .二、填空题9定义:两个不相交的函数图象在竖直方向上的最短距离,叫做这两个函数的“向心值”.则抛物线y =x 2-2x +3与直线y =x -2的“向心值”为.【答案】114【分析】此题考查了一次函数,二次函数的性质以及新定义问题,解题的关键是熟练掌握正确分析“向心值”的概念.根据“向心值”的概念让两个表达式相减,然后求解得到的二次函数最小值即可.【详解】解:∵两个不相交的函数图象在竖直方向上的最短距离为这两个函数的“向心值”,∴设“向心值”为w ,∴w =x 2-2x +3-x -2 =x 2-3x +5=x -322+114,∴w 的最小值为114.故答案为:114.10定义一种新的运算“早”,运算规则如下:(1)当a ≥b 时,a ♀b =a ;(2)当a <b 时,a ♀b =b 2.那么当-2≤x ≤2时,1♀x ♀x -2♀x 的最大值是.【答案】2【分析】本题主要考查了新运算法则、二次函数的性质等知识点,掌握分类讨论思想是解题的关键.分-2≤x ≤1和1≤x ≤2两种情况,分别根据新运算法则求出最值,然后进行比较即可解答.【详解】解:当-2≤x ≤1时,1♀x ♀x -2♀x =1♀x -2=1-2=-1;当1≤x≤2时,1♀x=x2♀x-2=x2-2;♀x-2♀x∵a=1>0,对称轴为x=0,1≤x≤2,∴当x=2时,x2-2有最大值,22-2=2,∴1♀x的最大值是2.♀x-2♀x故答案为:2.11对于实数a,b,定义运算:“☆”为a☆b=a2-ab-2a,如:2☆3=22-2×3-2×2=-6,若m,n 是二次函数y=x2-2x-3的图象与x轴的交点的横坐标,则m☆n=.【答案】6【分析】本题考查了二次函数与一元二次方程的关系,新定义下的实数运算.熟练掌握二次函数与一元二次方程的关系是解题的关键.由题意知,m,n是x2-2x-3=0的两个根,解得x=-1或x=3,分当m=-1,n=3时;当m=3,n=-1时两种情况计算求解即可.【详解】解:由题意知,m,n是x2-2x-3=0的两个根,x+1=0,x-3∴x+1=0或x-3=0,解得x=-1或x=3,当m=-1,n=3时,m☆n=m2-mn-2m=m m-n-2=-1×-1-3-2=6;当m=3,n=-1时,m☆n=m2-mn-2m=m m-n-2=6;=3×3+1-2故答案为:6.12定义新运算:对于任意实数a,b,都有a⊗b=ab-a+b=1.若y关,例如 2⊗=2×3-2+3于x的函数y=kx+1的图象与x轴仅有一个公共点,则实数k的值为.⊗x-1【答案】-1或0/0或-1【分析】由定义的新运算求得y关于x的函数为:y=-x2+kx+k,再由y关于x函数的图象与x轴仅有一个公共点得到,求解即可.【详解】解:∵a⊗b=ab-a+b,∴y=kx+1⊗x-1=kx+1+x-1-kx+1x-1=kx2-2kx-1即y=kx2-2kx-1,∵y=kx2-2kx-1的图象与x轴仅有一个公共点,令y=0,得kx2-2kx-1=0,∴Δ=b2-4ac=4k2+4k=0,∴k2+k=0,解得:k=0或k=-1.故答案为:-1或0.【点睛】本题主要考查了一元二次方程的根与二次函数图像和x轴交点坐标的关系,解题关键是熟记:一元二次方程有两个根,说明二次函数图像和x轴的横坐标有两个交点;一元二次方程有一个根,说明二次函数图像和x轴的横坐标有一个交点;一元二次方程(在实数范围)无解,说明二次函数图像和x轴的横坐标没有交点.13新定义:若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点.若二次函数y=x2-x+c(c(c 为常数)在-2<x<4的图象上存在两个二倍点,则c的取值范围是.【答案】-4<c <94【分析】由点的纵坐标是横坐标的2倍可得二倍点在直线y =2x 上,由-2<x <4可得二倍点所在线段AB 的端点坐标,结合图象,通过求抛物线与线段交点求解.【详解】解:由题意可得二倍点所在直线为y =2x ,将x =-2代入y =2x 得y =-4,将x =4代入y =2x 得y =8,设A (-2,-4),B (4,8),如图,联立方程x 2-x +c =2x ,当∆>0时,抛物线与直线y =2x 有两个交点,即9-4c >0,解得c <94,此时,直线x =-2和直线x =4与抛物线交点在点A ,B 上方时,抛物线与线段AB 有两个交点,把x =-2代入y =x 2-x +c 得y =6+c ,把x =4代入y =x 2-x +c 得y =12+c ,∴6+c >-412+c >8 ,解得c >-4,∴-4<c <94满足题意.故答案为:-4<c <94.【点睛】本题考查二次函数图象与系数的关系,解题关键掌握函数与方程及不等式的关系,将代数问题转化为图形问题求解.14新定义:任意两数m ,n ,按规定y =m n-m +n 得到一个新数y ,称所得新数y 为数m ,n 的“愉悦数”.则当m =2x +1,n =x -1,且m ,n 的“愉悦数”y 为正整数时,正整数x 的值是.【答案】2【分析】根据“愉悦数”的定义,将m 、n 代入y =m n -m +n 得到一个关于x 的方程,然后再求解即可.【详解】解:当m =2x +1,n =x -1,且m ,n 的“愉悦数”y =2x +1x -1-2x +1 +x -1 >0化简得:-x 2+x +3x -1>0∵x 是正整数∴x -1>0即:x -1>0-x 2+x +3>0解得:1<x <1+132∵x 是正整数∴x =2.故答案是2.【点睛】本题主要考查运用二次函数解不等式、分式的混合运算等知识点,正确运用二次函数解不等式成为解答本题的关键.15定义:在平面直角坐标系中,若点A 满足横、纵坐标都为整数,则把点A 叫做“整点”.如:B 3,0 、C -1,3 都是“整点”.抛物线y =ax 2+2ax +a -2a >0 与x 轴交于点M ,N 两点,若该抛物线在M 、N 之间的部分与线段MN 所围的区域(包括边界)恰有5个整点,则a 的取值范围是.【答案】1<a ≤2【分析】画出图象,找到该抛物线在M 、N 之间的部分与线段MN 所围的区域(包括边界)恰有5个整点的边界,利用与y 交点位置可得a 的取值范围.【详解】解:抛物线y =ax 2+2ax +a -2(a >0)化为顶点式为y =a (x +1)2-2,∴函数的对称轴:x =-1,顶点坐标为(-1,-2),∴M 和N 两点关于x =-1对称,根据题意,抛物线在M 、N 之间的部分与线段MN 所围的区域(包括边界)恰有5个整点,这些整点是(0,0),(-1,0),(-1,-1),(-1,-2),(-2,0),如图所示:∵当x =0时,y =a -2,∴-1<a -2≤0,当x =1时,y =4a -2>0,即:-1<a -2≤04a -2>0,解得1<a ≤2,故答案为:1<a ≤2.【点睛】本题考查抛物线与x 轴的交点、配方法确定顶点坐标、待定系数法等知识,利用函数图象确定与y 轴交点位置是本题的关键.16定义:对角线互相垂直的四边形为垂美四边形.已知垂美四边形ABCD 的对角线AC 、BD 满足AC +BD =12,则当AC =时,四边形ABCD 的面积最大.【答案】6【分析】根据垂美四边形的性质列出函数解析式,进行求解即可.【详解】解:∵四边形ABCD 的对角线互相垂直,∴S ABCD =12AC ∙BD ,∵AC +BD =12,∴BD =12-AC ,∴S 四边形ABCD =12AC ∙BD =12AC 12-AC =-12AC 2+6AC ,∵-12<0且0<AC <12,当AC =-62×-12=6时,函数有最大值,∴AC =6时,面积有最大值;故答案是6.【点睛】本题主要考查了二次函数的应用,准确分析计算是解题的关键.三、解答题17新定义:[a ,b ,c ]为二次函数y =ax 2+bx +c (a ≠0,a ,b ,c 为实数)的“图象数”,如:y =-x 2+2x +3的“图象数”为[-1,2,3].(1)图像数为[1,-1,0]的二次函数表达式为.(2)求证:“图象数”为[1,m +3,m ]的二次函数的图象与x 轴恒有两个交点.【答案】(1)y =x 2-x(2)见详解【分析】本题考查了抛物线与轴的交点:(1)根据新定义得到二次函数的解析式即可;(2)根据新定义得到二次函数的解析式为y =x 2+m +3 x +m ,然后根据判别式的意义得到Δ=m +3 2-4m =m +1 2+8>0,从而求证.【详解】(1)解:图像数为[1,-1,0]的二次函数表达式为:y =x 2-x .(2)解:“图象数”为[1,m +3,m ]的二次函数表达式为:y =x 2+m +3 x +m .当y =0时,x 2+m +3 x +m =0Δ=m +3 2-4m =m +1 2+8>0∴该一元二次方程有两个不相等的实数根,即“图象数”为[1,m +3,m ]的二次函数的图象与x 轴恒有两个交点.18定义:若x ,y 满足x 2=4y +t ,y 2=4x +t 且x ≠y (t 为常数),则称点M (x ,y )为“和谐点”.(1)请直接判断点(1,-5)是否为“和谐点”;(2)P (2,m )是“和谐点”,求m 值;(3)若双曲线y =k x(-3<x <-1)的图象上存在“和谐点”,求k 的取值范围.【答案】(1)点1,-5 是“和谐点”(2)m =-6(3)k 的取值范围为3<k ≤4【分析】(1)由题意得,x 2-4y =y 2-4x ,由12-4×-5 =-5 2-4×1,可得点1,-5 是“和谐点”;(2)由题意知,22-4m =m 2-8,即m 2+4m -12=0,计算求出满足要求的解即可;(3)设点a,b为双曲线y=kx(-3<x<-1)上的“和谐点”,则a2=4b+t,b2=4a+t,b=ka(-3<a<-1),即a-ba+b+4=0,可得b=-a-4,由b=ka,可得k=ab=a-a-4=-a2-4a=-a+22+4,且-3<a<-1,然后利用二次函数的图象与性质求取值范围即可.【详解】(1)解:∵x2=4y+t,y2=4x+t,∴x2-4y=t,y2-4x=t,∴x2-4y=y2-4x,∵12-4×-5=-52-4×1,∴点1,-5是“和谐点”;(2)解:∵P2,m是“和谐点”,∴22=4m+t,m2=4×2+t,∴22-4m=t,m2-8=t,∴22-4m=m2-8,即m2+4m-12=0,解得m1=-6,m2=2(不合题意,舍去)∴m=-6;(3)解:设点a,b为双曲线y=kx(-3<x<-1)上的“和谐点”,∴a2=4b+t,b2=4a+t,b=ka(-3<a<-1),∴a2-4b=b2-4a,即a2-b2+4a-4b=0,∴a-ba+b+4=0,∵a≠b,∴a+b+4=0,即b=-a-4,∵b=ka(-3<a<-1),∴k=ab=a-a-4=-a2-4a=-a+22+4,且-3<a<-1,∵-1<0,∴图象开口向下,当a=-2时,k max=4,当a=-1时,k=--1+22+4=3;当a=-3时,k=--3+22+4=3;∴k的取值范围为3<k≤4.【点睛】本题考查了新定义下的实数运算,因式分解法解一元二次方程,二次函数的图象与性质,平方差公式,二次函数的最值,反比例函数解析式等知识.理解题意,熟练掌握因式分解法解一元二次方程,平方差公式,二次函数的图象与性质是解题的关键.19某网店有(万件)商品,计划在元旦旺季售出商品x(万件),经市场调查测算,花费t(万元)进行促销后,商品的剩余量3-x与促销费t之间的关系为3-x=kt+1(其中k为常数),如果不搞促销活动,只能售出1(万件)商品.(1)要使促销后商品的剩余量不大于0.1(万件),促销费t至少为多少(万元)?(2)已知商品的进价为32(元/件),另有固定成本3(万元),定义每件售出商品的平均成本为32+3x(元),若将商品售价为:“每件售出商品平均成本的1.5倍”与“每件售出商品平均促销费的一半”之和,则当促销费t为多少(万元)时,该网店售出商品的总利润最大?此时商品的剩余量为多少?【答案】(1)至少为19万元(2)当促销费为7万元时,网店利润最大为42万元,此时商品的剩余量为0.25万件【分析】题目主要考查不等式的应用及函数的应用,(1)根据题意得出k=2,代入原不等式求解即可;(2)设网店的利润y(万元),根据题意得出相应的函数关系式,然后再由其性质求解即可;理解题意列出相应的函数关系式是解题关键.【详解】(1)解:∵3-x=kt+1,当t=0时,x=1,∴k=2,∴3-x=2t+1,∵2t+1≤0.1,解得:t≥19;(2)设网店的利润y(万元),根据题意得:y=x3+32xx×1.5+t2x-3+32x+t=992-32t+1-t2=50-32t+1+t+12≤50-232t+1×t+12=42,当且仅当32t+1=t+12即t=7时,等号成立,此时3-x=0.25,当促销费为7万元时,网店利润最大为42万元,此时商品的剩余量为0.25万件.20我们定义一种新函数:形如y=ax2+bx+ca≠0,b2-4ac>0的函数叫作“华为”函数.如图,小丽同学画出了“华为”函数y=x2-2x-3的图像,根据该图像解答下列问题:(1)求该函数图像与x轴和y轴的交点坐标.(2)当函数值y随x值的增大而减小时,求自变量x的取值范围.【答案】(1)与x轴交点坐标-1,0,3,0,与y轴交点坐标0,3(2)x≤-1或1≤x≤3【分析】(1)分别令y=0和x=0,然后求解,即可获得答案;(2)首先确定该函数图像的对称轴,然后结合图像,即可获得答案.【详解】(1)解:令y=0,即x2-2x-3=0,可得x2-2x-3=0,∴x+1x-3=0,解得x1=-1,x2=3,∴函数图像与x轴的交点坐标为-1,0和3,0,令x=0,则y=x2-2x-3=-3=3,∴函数图像与y轴的交点坐标为0,3;(2)该图像具有对称性,对称轴是直线x=-b=1,2a函数图像与x轴的交点坐标为-1,0,和3,0观察图像可知,当x≤-1或1≤x≤3时,函数值y随x值的增大而减小.【点睛】本题主要考查了二次函数图像与x轴交点、二次函数图像与y轴交点、解一元二方程、二次函数图像与性质等知识,解题关键是运用数形结合的思想分析问题.。
题型六 二次函数与几何图形综合题类型一 二次函数与图形判定1.(2017·某某)在同一直角坐标系中,抛物线C 1:y =ax 2-2x -3与抛物线C 2:y =x 2+mx +n 关于y 轴对称,C 2与x 轴交于A 、B 两点,其中点A 在点B 的左侧.(1)求抛物线C 1,C 2的函数表达式; (2)求A 、B 两点的坐标;(3)在抛物线C 1上是否存在一点P ,在抛物线C 2上是否存在一点Q ,使得以AB 为边,且以A 、B 、P 、Q 四点为顶点的四边形是平行四边形?若存在,求出P 、Q 两点的坐标;若不存在,请说明理由.2.(2017·随州)在平面直角坐标系中,我们定义直线y =ax -a 为抛物线y =ax 2+bx +c(a 、b 、c 为常数,a ≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y 轴上的三角形为其“梦想三角形”.已知抛物线y =-233x 2-433x +23与其“梦想直线”交于A 、B 两点(点A 在点B 的左侧),与x轴负半轴交于点C.(1)填空:该抛物线的“梦想直线”的解析式为__________,点A的坐标为__________,点B的坐标为__________;(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.(2017·某某模拟)已知:如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).(1)求该抛物线的解析式;(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;(3)若平行于x 轴的动直线l 与该抛物线交于点P ,与直线AC 交于点F ,点D 的坐标为(2,0).问:是否存在这样的直线l ,使得△ODF 是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.4.(2016·某某)如图①,直线y =-43x +n 交x 轴于点A ,交y 轴于点C(0,4),抛物线y =23x 2+bx +c 经过点A ,交y 轴于点B(0,-2).点P 为抛物线上一个动点,过点P 作x轴的垂线PD ,过点B 作BD⊥PD 于点D ,连接PB ,设点P 的横坐标为m.(1)求抛物线的解析式;(2)当△BDP 为等腰直角三角形时,求线段PD 的长;(3)如图②,将△BDP 绕点B 逆时针旋转,得到△BD′P′,且旋转角∠PBP′=∠OAC,当点P 的对应点P′落在坐标轴上时,请直接写出点P 的坐标.类型二 二次函数与图形面积1.(2017·某某)如图,在平面直角坐标系中,直线y =12x +2与x 轴交于点A ,与y 轴交于点C ,抛物线y =-12x 2+bx +c 经过A 、C 两点,与x 轴的另一交点为点B.(1)求抛物线的函数表达式;(2)点D 为直线AC 上方抛物线上一动点;①连接BC 、CD ,设直线BD 交线段AC 于点E ,△CDE 的面积为S 1,△BCE 的面积为S 2,求S 1S 2的最大值; ②过点D 作DF⊥AC,垂足为点F ,连接CD ,是否存在点D ,使得△CDF 中的某个角恰好等于∠BAC 的2倍?若存在,求点D 的横坐标;若不存在,请说明理由.2.(2017·某某)如图甲,直线y=-x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所有符合条件的点M的坐标;若不存在,请说明理由;(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).3.(2017·某某模拟)如图,抛物线y=ax2+bx-3与x轴交于点A(1,0)和点B,与y 轴交于点C,且其对称轴l为x=-1,点P是抛物线上B,C之间的一个动点(点P不与点B,C重合).(1)直接写出抛物线的解析式;(2)小唐探究点P的位置时发现:当动点N在对称轴l上时,存在PB⊥NB,且PB=NB的关系,请求出点P的坐标;(3)是否存在点P使得四边形PBAC的面积最大?若存在,请求出四边形PBAC面积的最大值;若不存在,请说明理由.4.(2017·某某模拟)如图①,已知抛物线y=ax2+bx-3的对称轴为x=1,与x轴分别交于A、B两点,与y轴交于点C,一次函数y=x+1经过A,且与y轴交于点D.(1)求该抛物线的解析式.(2)如图②,点P为抛物线B、C两点间部分上的任意一点(不含B,C两点),设点P的横坐标为t,设四边形DCPB的面积为S,求出S与t的函数关系式,并确定t为何值时,S取最大值?最大值是多少?(3)如图③,将△ODB沿直线y=x+1平移得到△O′D′B′,设O′B′与抛物线交于点E,连接ED′,若ED′恰好将△O′D′B′的面积分为1∶2两部分,请直接写出此时平移的距离.类型三二次函数与线段问题1.(2017·某某)如图,已知抛物线y=ax2-23ax-9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△PAD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,1AM +1AN均为定值,并求出该定值.2.(2017·某某模拟)如图①,直线y =34x +m 与x 轴、y 轴分别交于点A 和点B(0,-1),抛物线y =12x 2+bx +c 经过点B ,点C 的横坐标为4.(1)请直接写出抛物线的解析式;(2)如图②,点D 在抛物线上,DE ∥y 轴交直线AB 于点E ,且四边形DFEG 为矩形,设点D 的横坐标为x(0<x <4),矩形DFEG 的周长为l ,求l 与x 的函数关系式以及l 的最大值;(3)将△AOB 绕平面内某点M 旋转90°或180°,得到△A 1O 1B 1,点A 、O 、B 的对应点分别是点A 1、O 1、B 1.若△A 1O 1B 1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A 1的横坐标.3.(2017·某某)已知点A(-1,1),B(4,6)在抛物线y=ax2+bx上.(1)求抛物线的解析式;(2)如图①,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,,连接FH、AE,求证:FH∥AE;(3)如图②,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒2个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.类型四二次函数与三角形相似1.(2016·某某)如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x-2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.2.(2017·某某模拟)如图,抛物线y=ax2+bx+1与直线y=-ax+c相交于坐标轴上点A(-3,0),C(0,1)两点.(1)直线的表达式为__________;抛物线的表达式为__________;(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交直线AC于点F,求线段DF长度的最大值,并求此时点D的坐标;(3)P为抛物线上一动点,且P在第四象限内,过点P作PN垂直x轴于点N,使得以P、A、N为顶点的三角形与△ACO相似,请直接写出点P的坐标.3.如图①,二次函数y =ax 2+bx +33经过A(3,0),G(-1,0)两点. (1)求这个二次函数的解析式;(2)若点M 是抛物线在第一象限图象上的一点,求△ABM 面积的最大值;(3)抛物线的对称轴交x 轴于点P ,过点E(0,233)作x 轴的平行线,交AB 于点F ,是否存在着点Q ,使得△FEQ∽△BEP?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.4.(2017·某某)抛物线y =ax 2+bx +3经过点A(1,0)和点B(5,0). (1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=错误!x+3相交于C、D两点,点P是抛物线上的动点且位于x 轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连接PC、PD,如图①,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连接PB,过点C作CQ⊥PM,垂足为点Q,如图②,是否存在点P,使得△Q与△PBM 相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.题型六第23题二次函数与几何图形综合题类型一二次函数与图形判定1.解:(1)∵C1、C2关于y轴对称,∴C1与C2的交点一定在y轴上,且C1与C2的形状、大小均相同,∴a=1,n=-3,∴C1的对称轴为x=1,∴C2的对称轴为x=-1,∴m=2,∴C1的函数表示式为y=x2-2x-3,C2的函数表达式为y=x2+2x-3;(2)在C2的函数表达式为y=x2+2x-3中,令y=0可得x2+2x-3=0,解得x=-3或x=1,∴A(-3,0),B(1,0);(3)存在.设P(a ,b),则Q(a +4,b)或(a -4,b), ①当Q(a +4,b)时,得:a 2-2a -3=(a +4)2+2(a +4)-3, 解得a =-2,∴b =a 2-2a -3=4+4-3=5, ∴P 1(-2,5),Q 1(2,5). ②当Q(a -4,b)时,得:a 2-2a -3=(a -4)2+2(a -4)-3, 解得a =2.∴b =4-4-3=-3, ∴P 2(2,-3),Q 2(-2,-3).综上所述,所求点的坐标为P 1(-2,5),Q 1(2,5); P 2(2,-3),Q 2(-2,-3). 2.解:(1)∵抛物线y =-233x 2-433x +23, ∴其梦想直线的解析式为y =-233x +233,联立梦想直线与抛物线解析式可得⎩⎪⎨⎪⎧y =-233x +233y =-233x 2-433x +23,解得⎩⎨⎧x =-2y =23或⎩⎪⎨⎪⎧x =1y =0,∴A(-2,23),B(1,0);(2)当点N 在y 轴上时,△AMN 为梦想三角形, 如解图①,过A 作AD ⊥y 轴于点D ,则AD =2,在y =-233x 2-433x +23中,令y =0可求得x =-3或x =1,∴C(-3,0),且A(-2,23), ∴AC =(-2+3)2+(23)2=13, 由翻折的性质可知AN =AC =13,在Rt △AND 中,由勾股定理可得DN =AN 2-AD 2=13-4=3, ∵OD =23,∴ON =23-3或ON =23+3,当ON =23+3时,则MN >OD >CM ,与MN =CM 矛盾,不合题意, ∴N 点坐标为(0,23-3);当M 点在y 轴上时,则M 与O 重合,过N 作NP ⊥x 轴于点P ,如解图②,在Rt △AMD 中,AD =2,OD =23,∴tan ∠DAM =MDAD =3,∴∠DAM =60°,∵AD ∥x 轴,∴∠AMC =∠DAM =60°, 又由折叠可知∠NMA =∠AMC =60°, ∴∠NMP =60°,且MN =CM =3, ∴MP =12MN =32,NP =32MN =332,∴此时N 点坐标为(32,332);综上可知N 点坐标为(0,23-3)或(32,332);(3)①当AC 为平行四边形的边时,如解图③,过F 作对称轴的垂线FH ,过A 作AK ⊥x 轴于点K ,则有AC ∥EF 且AC =EF ,∴∠ACK =∠EFH , 在△ACK 和△EFH 中,⎩⎪⎨⎪⎧∠ACK =∠EFH ∠AKC =∠EHF AC =EF,∴△ACK ≌△EFH(AAS ), ∴FH =CK =1,HE =AK =23,∵抛物线对称轴为x =-1,∴F 点的横坐标为0或-2,∵点F 在直线AB 上,∴当F 点横坐标为0时,则F(0,233),此时点E 在直线AB 下方,∴E 到x 轴的距离为EH -OF =23-233=433,即E 点纵坐标为-433,∴E(-1,-433); 当F 点的横坐标为-2时,则F 与A 重合,不合题意,舍去; ②当AC 为平行四边形的对角线时, ∵C(-3,0),且A(-2,23), ∴线段AC 的中点坐标为(-52,3),设E(-1,t),F(x ,y),则x -1=2×(-52),y +t =23,∴x =-4,y =23-t ,代入直线AB 解析式可得23-t =-233×(-4)+233,解得t =-433,∴E(-1,-433),F(-4,1033);综上可知存在满足条件的点F ,此时E(-1,-433)、F(0,233)或E(-1,-433)、F(-4,1033).3.解:(1)由题意,得⎩⎪⎨⎪⎧0=16a -8a +c 4=c ,解得⎩⎪⎨⎪⎧a =-12c =4, ∴所求抛物线的解析式为y =-12x 2+x +4;(2) 设点Q 的坐标为(m ,0),如解图①,过点E 作EG ⊥x 轴于点G. 由-12x 2+x +4=0,得x 1=-2,x 2=4,∴点B 的坐标为(-2,0),∴AB =6,BQ =m +2,∵QE ∥AC ,∴△BQE ∽△BAC ,∴EG CO =BQ BA ,即EG 4=m +26,∴EG =2m +43,∴S △CQE =S △CBQ -S △EBQ =12BQ·CO-12BQ·EG=12(m +2)(4-2m +43)=-13m 2+23m +83=-13(m-1)2+3,又∵-2≤m ≤4,∴当m =1时,S △CQE 有最大值3,此时Q(1,0);图①图②(3)存在.在△ODF 中. (ⅰ)若DO =DF ,∵A(4,0),D(2,0),∴AD =OD =DF =2, 又∵在Rt △AOC 中,OA =OC =4,∴∠OAC =45°, ∴∠DFA =∠OAC =45°,∴∠ADF =90°,此时,点F 的坐标为(2,2), 由-12x 2+x +4=2,得x 1=1+5,x 2=1-5,此时,点P 的坐标为P(1+5,2)或P(1-5,2); (ⅱ)若FO =FD ,如解图②,过点F 作FM ⊥x 轴于点M , 由等腰三角形的性质得:OM =MD =1,∴AM =3, ∴在等腰直角△AMF 中,MF =AM =3,∴F(1,3), 由-12x 2+x +4=3,得x 1=1+3,x 2=1-3,此时,点P 的坐标为:P(1+3,3)或P(1-3,3); (ⅲ)若OD =OF ,∵OA =OC =4,且∠AOC =90°,∴AC =42,∴点O 到AC 的距离为22,而OF =OD =2<22,与OF ≥22矛盾, ∴AC 上不存在点使得OF =OD =2,此时,不存在这样的直线l ,使得△ODF 是等腰三角形. 综上所述,存在这样的直线l ,使得△ODF 是等腰三角形.所求点P 的坐标为(1+5,2)或(1-5,2)或(1+3,3)或(1-3,3). 4.解:(1)∵点C(0,4)在直线y =-43x +n 上,∴n =4,∴y =-43x +4,令y =0,解得x =3,∴A(3,0),∵抛物线y =23x 2+bx +c 经过点A ,交y 轴于点B(0,-2),∴c =-2,6+3b -2=0,解得b =-43,∴抛物线的解析式为y =23x 2-43x -2;(2)∵点P 的横坐标为m ,且点P 在抛物线上, ∴P(m ,23m 2-43m -2),∵PD ⊥x 轴,BD ⊥PD ,∴点D 坐标为(m ,-2), ∴|BD|=|m|,|PD|=|23m 2-43m -2+2|,当△BDP 为等腰直角三角形时,PD =BD , ∴|m|=|23m 2-43m -2+2|=|23m 2-43m|.∴m 2=(23m 2-43m)2,解得:m 1=0(舍去),m 2=72,m 3=12,∴当△BDP 为等腰直角三角形时,线段PD 的长为72或12;(3)∵∠PBP′=∠OAC ,OA =3,OC =4,∴AC =5, ∴sin ∠PBP ′=45,cos ∠PBP ′=35,①当点P′落在x 轴上时,如解图①,过点D′作D′N⊥x 轴,垂足为N ,交BD 于点M ,∠DBD ′=∠ND′P′=∠PBP′,由旋转知,P ′D ′=PD =23m 2-43m ,在Rt △P ′D ′N 中,cos ∠ND ′P ′=ND′P′D′=cos ∠PBP ′=35,∴ND ′=35(23m 2-43m),在Rt △BD ′M 中,BD ′=-m ,sin ∠DBD ′=D′M BD′=sin ∠PBP ′=45,∴D ′M =-45m ,∴ND ′-MD′=2,∴35(23m 2-43m)-(-45m)=2, 解得m =5(舍去)或m =-5,如解图②, 同①的方法得,ND ′=35(23m 2-43m),MD ′=45m ,ND ′+MD′=2, ∴35(23m 2-43m)+45m =2, ∴m =5或m =-5(舍去),∴P(-5,45+43)或P(5,-45+43),②当点P′落在y 轴上时,如解图③,过点D′作D′M⊥x 轴,交BD 于M ,过点P′作P′N⊥y 轴,交MD′的延长线于点N , ∴∠DBD ′=∠ND′P′=∠PBP′,同①的方法得:P′N=45(23m 2-43m),BM =35m ,∵P ′N =BM ,∴45(23m 2-43m)=35m , 解得m =258或m =0(舍去),∴P(258,1132),∴P(-5,45+43)或P(5,-45+43)或P(258,1132).类型二 二次函数与图形面积1.解:(1)根据题意得A(-4,0),C(0,2), ∵抛物线y =-12x 2+bx +c 经过A 、C 两点,∴⎩⎪⎨⎪⎧0=-12×16-4b +c 2=c ,解得⎩⎪⎨⎪⎧b =-32c =2, ∴y =-12x 2-32x +2;(2)①令y =0,∴-12x 2-32x +2=0,解得x 1=-4,x 2=1,∴B(1,0),如解图①,过D 作DM ∥y 轴交AC 于M ,过B 作BN ⊥x 轴交AC 于N , ∴DM ∥BN ,∴△DME ∽△BNE ,∴S 1S 2=DE BE =DMBN ,设D(a ,-12a 2-32a +2),∴M(a ,12a +2),∵B(1,0),∴N(1,52),∴S 1S 2=DMBN =-12a 2-2a 52=-15(a +2)2+45; ∴当a =-2时,S 1S 2有最大值,最大值是45;②∵A(-4,0),B(1,0),C(0,2), ∴AC =25,BC =5,AB =5, ∵AC 2+BC 2=AB 2,∴△ABC 是以∠ACB 为直角的直角三角形,取AB 的中点P ,∴P(-32,0),∴PA =PC =PB =52,∴∠CPO =2∠BAC ,∴tan ∠CPO =tan (2∠BAC)=43,如解图②,过D 作x 轴的平行线交y 轴于R ,交AC 的延长线于G , 情况一:∠DCF =2∠BAC =∠DGC +∠CDG ,∴∠CDG =∠BAC , ∴tan ∠CDG =tan ∠BAC =12,即RC DR =12,令D(a ,-12a 2-32a +2),∴DR =-a ,RC =-12a 2-32a ,∴-12a 2-32a -a =12,解得a 1=0(舍去),a 2=-2, ∴x D =-2,情况二:∠FDC =2∠BAC , ∴tan ∠FDC =43,设FC =4k ,∴DF =3k ,DC =5k , ∵tan ∠DGC =3k FG =12,∴FG =6k ,∴CG =2k ,DG =35k ,∴RC =255k ,RG =455k , DR =35k -455k =1155k ,∴DR RC =1155k 255k =-a -12a 2-32a ,解得a 1=0(舍去),a 2=-2911, ∴点D 的横坐标为-2或-2911.2.解:(1)∵直线y =-x +3与x 轴、y 轴分别交于点B 、点C , ∴B(3,0),C(0,3),把B 、C 坐标代入抛物线解析式可得⎩⎪⎨⎪⎧9+3b +c =0c =3,解得⎩⎪⎨⎪⎧b =-4c =3,∴抛物线的解析式为y =x 2-4x +3; (2)∵y =x 2-4x +3=(x -2)2-1, ∴抛物线对称轴为x =2,P(2,-1), 设M(2,t),且C(0,3),∴MC =22+(t -3)2=t 2-6t +13,MP =|t +1|,PC =22+(-1-3)2=25, ∵△CPM 为等腰三角形,∴有MC =MP 、MC =PC 和MP =PC 三种情况,①当MC =MP 时,则有t 2-6t +13=|t +1|,解得t =32,此时M(2,32);②当MC =PC 时,则有t 2-6t +13=25,解得t =-1(与P 点重合,舍去)或t =7,此时M(2,7);③当MP =PC 时,则有|t +1|=25,解得t =-1+25或t =-1-25,此时M(2,-1+25)或(2,-1-25);综上可知存在满足条件的点M ,其坐标为(2,32)或(2,7)或(2,-1+25)或(2,-1-25);(3)如解图,在0<x <3对应的抛物线上任取一点E ,过E 作EF ⊥x 轴,交BC 于点F ,交x 轴于点D ,设E(x ,x 2-4x +3),则F(x ,-x +3), ∵0<x <3,∴EF =-x +3-(x 2-4x +3)=-x 2+3x ,∴S △CBE =S △EFC +S △EFB =12EF·OD+12EF·BD=12EF·OB=12×3(-x 2+3x)=-32(x -32)2+278,∴当x =32时,△CBE 的面积最大,此时E 点坐标为(32,-34),即当E 点坐标为(32,-34)时,△CBE 的面积最大.3.解:(1)∵A(1,0),对称轴l 为x =-1,∴B(-3,0),∴⎩⎪⎨⎪⎧a +b -3=09a -3b -3=0,解得⎩⎪⎨⎪⎧a =1b =2, ∴抛物线的解析式为y =x 2+2x -3; (2)如解图①,过点P 作PM ⊥x 轴于点M ,设抛物线对称轴l 交x 轴于点Q. ∵PB ⊥NB ,∴∠PBN =90°, ∴∠PBM +∠NBQ =90°.∵∠PMB =90°,∴∠PBM +∠BPM =90°, ∴∠BPM =∠NBQ.又∵∠BMP =∠BQN =90°,PB =NB ,∴△BPM ≌△NBQ ,∴PM =BQ.∵抛物线y =x 2+2x -3与x 轴交于点A(1,0)和点B ,且对称轴为x =-1, ∴点B 的坐标为(-3,0),点Q 的坐标为(-1,0), ∴BQ =2,∴PM =BQ =2.∵点P 是抛物线y =x 2+2x -3上B 、C 之间的一个动点, ∴结合图象可知点P 的纵坐标为-2,将y =-2代入y =x 2+2x -3,得-2=x 2+2x -3, 解得x 1=-1-2,x 2=-1+2(舍去), ∴此时点P 的坐标为(-1-2,-2); (3) 存在.如解图②,连接AC ,PC.可设点P 的坐标为(x ,y)(-3<x <0),则y =x 2+2x -3, ∵点A(1,0),∴OA =1.∵点C 是抛物线与y 轴的交点,∴令x =0,得y =-3,即点C(0,-3),∴OC =3. 由(2)可知S四边形PBAC=S △BPM +S四边形PMOC+S △AOC =12BM·PM+12(PM +OC)·OM+12OA·OC=12(x+3)(-y)+12(-y +3)(-x)+12×1×3=-32y -32x +32,将y =x 2+2x -3代入可得S 四边形PBAC =-32(x 2+2x -3)-32x +32=-32(x +32)2+758.∵-32<0,-3<x <0,∴当x =-32时,S 四边形PBAC 有最大值758,此时,y =x 2+2x -3=-154.∴当点P 的坐标为(-32,-154)时,四边形PBAC 的面积最大,最大值为758.4.解:(1)把y =0代入直线的解析式得x +1=0,解得x =-1,∴A(-1,0). ∵抛物线的对称轴为x =1,∴B 的坐标为(3,0). 将x =0代入抛物线的解析式得y =-3,∴C(0,-3).设抛物线的解析式为y =a(x +1)(x -3),将C(0,-3)代入得-3a =-3,解得a =1, ∴抛物线的解析式为y =(x +1)(x -3)=x 2-2x -3; (2)如解图①,连接OP.将x =0代入直线AD 的解析式得y =1,∴OD =1. 由题意可知P(t ,t 2-2t -3). ∵S 四边形DCPB =S △ODB +S △OBP +S △OCP ,∴S =12×3×1+12×3×(-t 2+2t +3)+12×3×t ,整理得S =-32t 2+92t +6,配方得:S =-32(t -32)2+758,∴当t =32时,S 取得最大值,最大值为758;(3)如解图②,设点D′的坐标为(a ,a +1),O ′(a ,a).当△D′O′E 的面积∶△D′EB′的面积=1∶2时,则O′E∶EB ′=1∶2. ∵O ′B ′=OB =3,∴O ′E =1, ∴E(a +1,a).将点E 的坐标代入抛物线的解析式得(a +1)2-2(a +1)-3=a ,整理得:a 2-a -4=0,解得a =1+172或a =1-172,∴O ′的坐标为(1+172,1+172)或(1-172,1-172),∴OO ′=2+342或OO′=34-22, ∴△DOB 平移的距离为2+342或34-22, 当△D′O′E 的面积∶△D ′EB ′的面积=2∶1时,则O′E∶EB ′=2∶1. ∵O ′B ′=OB =3,∴O ′E =2,∴E(a +2,a).将点E 的坐标代入抛物线的解析式得:(a +2)2-2(a +2)-3=a ,整理得:a 2+a -3=0,解得a =-1+132或a =-1-132.∴O ′的坐标为(-1+132,-1+132)或(-1-132,-1-132).∴OO′=-2+262或OO′=2+262.∴△DOB 平移的距离为-2+262或2+262.综上所述,当△D′O′B′沿DA 方向平移2+342或2+262单位长度,或沿AD 方向平移34-22或-2+262个单位长度时,ED ′恰好将△O′D′B′的面积分为1∶2两部分. 类型三 二次函数与线段问题1.(1)解:∵C(0,3),∴-9a =3,解得a =-13.令y =0,得ax 2-23ax -9a =0,∵a ≠0,∴x 2-23x -9=0,解得x =-3或x =3 3. ∴点A 的坐标为(-3,0),点B 的坐标为(33,0),∴抛物线的对称轴为x =3; (2)解:∵OA =3,OC =3, ∴tan ∠CAO =3,∴∠CAO =60°. ∵AE 为∠BAC 的平分线,∴∠DAO =30°, ∴DO =33AO =1,∴点D 的坐标为(0,1), 设点P 的坐标为(3,a).∴AD 2=4,AP 2=12+a 2,DP 2=3+(a -1)2. 当AD =PA 时,4=12+a 2,方程无解.当AD =DP 时,4=3+(a -1)2,解得a =0或a =2, ∴点P 的坐标为(3,0)或(3,2).当AP =DP 时,12+a 2=3+(a -1)2,解得a =-4. ∴点P 的坐标为(3,-4).综上所述,点P 的坐标为(3,0)或(3,-4)或(3,2);(3)证明:设直线AC 的解析式为y =mx +3,将点A 的坐标代入得-3m +3=0,解得m =3,∴直线AC 的解析式为y =3x +3. 设直线MN 的解析式为y =kx +1.把y =0代入y =kx +1,得kx +1=0,解得:x =-1k ,∴点N 的坐标为(-1k ,0),∴AN =-1k +3=3k -1k.将y =3x +3与y =kx +1联立,解得x =2k -3,∴点M 的横坐标为2k -3.如解图,过点M 作MG ⊥x 轴,垂足为G.则AG =2k -3+ 3.∵∠MAG =60°,∠AGM =90°, ∴AM =2AG =4k -3+23=23k -2k -3.∴1AM +1AN =k -323k -2+k 3k -1=k -323k -2+2k 23k -2=3k -323k -2=3(3k -1)2(3k -1)=32. 2.解:(1)∵直线l :y =34x +m 经过点B(0,-1),∴m =-1,∴直线l 的解析式为y =34x -1,∵直线l :y =34x -1经过点C ,且点C 的横坐标为4,∴y =34×4-1=2,∵抛物线y =12x 2+bx +c 经过点C(4,2)和点B(0,-1),∴⎩⎪⎨⎪⎧12×42+4b +c =2c =-1,解得⎩⎪⎨⎪⎧b =-54c =-1, ∴抛物线的解析式为y =12x 2-54x -1;(2)令y =0,则34x -1=0,解得x =43,∴点A 的坐标为(43,0),∴OA =43,在Rt △OAB 中,OB =1,∴AB =OA 2+OB 2=(43)2+12=53, ∵DE ∥y 轴,∴∠ABO =∠DEF ,在矩形DFEG 中,EF =DE·cos ∠DEF =DE·OB AB =35DE ,DF =DE·sin ∠DEF =DE·OA AB =45DE ,∴l =2(DF +EF)=2×(45+35)DE =145DE ,∵点D 的横坐标为t(0<t <4), ∴D(t ,12t 2-54t -1),E(t ,34t -1),∴DE =(34t -1)-(12t 2-54t -1)=-12t 2+2t ,∴l =145×(-12t 2+2t)=-75t 2+285t ,∵l =-75(t -2)2+285,且-75<0,∴当t =2时,l 有最大值285;(3)“落点”的个数有4个,如解图①,解图②,解图③,解图④所示.如解图③,设A 1的横坐标为m ,则O 1的横坐标为m +43,∴12m 2-54m -1=12(m +43)2-54(m +43)-1, 解得m =712,如解图④,设A 1的横坐标为m ,则B 1的横坐标为m +43,B 1的纵坐标比A 1的纵坐标大1,∴12m 2-54m -1+1=12(m +43)2-54(m +43)-1,解得m =43, ∴旋转180°时点A 1的横坐标为712或43.3.(1)解:将点A(-1,1),B(4,6)代入y =ax 2+bx 中, 得⎩⎪⎨⎪⎧a -b =116a +4b =6,解得⎩⎪⎨⎪⎧a =12b =-12, ∴抛物线的解析式为y =12x 2-12x ;(2)证明:设直线AF 的解析式为y =kx +m , 将点A(-1,1)代入y =kx +m 中,即-k +m =1, ∴k =m -1,∴直线AF 的解析式为y =(m -1)x +m. 联立直线AF 和抛物线解析式成方程组,⎩⎪⎨⎪⎧y =(m -1)x +m y =12x 2-12x ,解得⎩⎪⎨⎪⎧x 1=-1y 1=1,⎩⎪⎨⎪⎧x 2=2my 2=2m 2-m , ∴点G 的坐标为(2m ,2m 2-m). ∵GH ⊥x 轴,∴点H 的坐标为(2m ,0). ∵抛物线的解析式为y =12x 2-12x =12x(x -1),∴点E 的坐标为(1,0).设直线AE 的解析式为y =k 1x +b 1,将A(-1,1),E(1,0)代入y =k 1x +b 1中,得⎩⎪⎨⎪⎧-k 1+b 1=1k 1+b 1=0,解得⎩⎪⎨⎪⎧k 1=-12b 1=12,∴直线AE 的解析式为y =-12x +12.设直线FH 的解析式为y =k 2x +b 2,将F(0,m)、H(2m ,0)代入y =k 2x +b 2中,得⎩⎪⎨⎪⎧b 2=m 2mk 2+b 2=0,解得:⎩⎪⎨⎪⎧k 2=-12b 2=m, ∴直线FH 的解析式为y =-12x +m.∴FH ∥AE ;(3)解:设直线AB 的解析式为y =k 0x +b 0,将A(-1,1),B(4,6)代入y =k 0x +b 0中,⎩⎪⎨⎪⎧-k 0+b 0=14k 0+b 0=6,解得⎩⎪⎨⎪⎧k 0=1b 0=2, ∴直线AB 的解析式为y =x +2.当运动时间为t 秒时,点P 的坐标为(t -2,t),点Q 的坐标为(t ,0).当点M 在线段PQ 上时,过点P 作PP′⊥x 轴于点P′,过点M 作MM′⊥x 轴于点M′,则△PQP′∽△MQM′,如解图所示.∵QM =2PM , ∴QM′QP′=MM′PP′=23,∴QM ′=43,MM ′=23t ,∴点M 的坐标为(t -43,23t),又∵点M 在抛物线y =12x 2-12x 上,∴23t =12(t -43)2-12(t -43), 解得t =15±1136,当点M 在线段QP 的延长线上时, 同理可得出点M 的坐标为(t -4,2t), ∵点M 在抛物线y =12x 2-12x 上,∴2t =12×(t -4)2-12(t -4),解得t =13±892.综上所述:当运动时间为15-1136秒、15+1136秒、13-892秒或13+892秒时,QM =2PM.类型四 二次函数与三角形相似 1.(1)解:∵顶点坐标为(1,1), ∴设抛物线解析式为y =a(x -1)2+1,又∵抛物线过原点,∴0=a(0-1)2+1,解得a =-1, ∴抛物线的解析式为y =-(x -1)2+1,即y =-x 2+2x ,联立抛物线和直线解析式可得⎩⎪⎨⎪⎧y =-x 2+2x y =x -2,解得⎩⎪⎨⎪⎧x =2y =0或⎩⎪⎨⎪⎧x =-1y =-3, ∴B(2,0),C(-1,-3);(2)证明:如解图,分别过A 、C 两点作x 轴的垂线,交x 轴于D 、E 两点, 则AD =OD =BD =1,BE =OB +OE =2+1=3,EC =3, ∴∠ABO =∠CBO =45°,即∠ABC =90°, ∴△ABC 是直角三角形;(3)解:假设存在满足条件的点N ,设N(x ,0),则M(x ,-x 2+2x), ∴ON =|x|,MN =|-x 2+2x|,由(2)在Rt △ABD 和Rt △CEB 中,可分别求得AB =2,BC =32, ∵MN ⊥x 轴于点N ∴∠MNO =∠ABC =90°,∴当△MNO 和△ABC 相似时有MN AB =ON BC 或MN BC =ONAB,①当MN AB =ON BC 时,则有|-x 2+2x|2=|x|32,即|x|×|-x +2|=13|x|,∵当x =0时M 、O 、N 不能构成三角形, ∴x ≠0,∴|-x +2|=13,即-x +2=±13,解得x =53或x =73,此时N 点坐标为(53,0)或(73,0),②当MN BC =ON AB 时,则有|-x 2+2x|32=|x|2,即|x|×|-x +2|=3|x|,∴|-x +2|=3,即-x +2=±3,解得x =5或x =-1, 此时N 点坐标为(-1,0)或(5,0),综上可知存在满足条件的N 点,其坐标为(53,0)或(73,0)或(-1,0)或(5,0).2.解:(1)把A 、C 两点坐标代入直线y =-ax +c 可得⎩⎪⎨⎪⎧3a +c =0c =1,解得⎩⎪⎨⎪⎧a =-13c =1, ∴直线的表达式为y =13x +1,把A 点坐标和a =-13代入抛物线解析式可得9×(-13)-3b +1=0,解得b =-23,∴抛物线的表达式为y =-13x 2-23x +1;(2)∵点D 为抛物线在第二象限部分上的一点,∴可设D(t ,-13t 2-23t +1),则F(t ,13t +1),∴DF =-13t 2-23t +1-(13t +1)=-13t 2-t =-13(t +32)2+34.∵-13<0,∴当t =-32时,DF 有最大值,最大值为34,此时D 点坐标为(-32,54);(3)设P(m ,-13m 2-23m +1),如解图,∵P 在第四象限,∴m >0,-13m 2-23m +1<0,∴AN =m +3,PN =13m 2+23m -1,∵∠AOC =∠ANP =90°,∴当以P 、A 、N 为顶点的三角形与△ACO 相似时有△AOC ∽△PNA 和△AOC ∽△ANP ,①当△AOC ∽△PNA 时,则有OC NA =AO PN ,即1m +3=313m 2+23m -1,解得m =-3或m =10,经检验当m =-3时,m +3=0(舍去), ∴m =10,此时P 点坐标为(10,-39);②当△AOC ∽△ANP 时,则有OC NP =AO AN ,即113m 2+23m -1=3m +3,解得m =2或m =-3,经检验当m =-3时,m +3=0(舍去), ∴m =2,此时P 点坐标为(2,-53);综上可知P 点坐标为(10,-39)或(2,-53).3.解:(1)将A 、G 点坐标代入函数解析式,得⎩⎨⎧9a +3b +33=0,a -b +33=0,解得⎩⎨⎧a =-3b =23,∴抛物线的解析式为y =-3x 2+23x +33; (2)如解图①,作ME ∥y 轴交AB 于E 点, 当x =0时,y =33,即B 点坐标为(0,33), 直线AB 的解析式为y =-3x +33,设M(n ,-3n 2+23n +33),E(n ,-3n +33), ME =-3n 2+23n +33-(-3n +33)=-3n 2+33n , S △ABM =12ME·AO=12(-3n 2+33n)×3=-332(n -32)2+2738,当n =32时,△ABM 面积的最大值是2738;(3)存在;理由如下:OE =233,AP =2,OP =1,BE =33-233=733,当y =233时,-3x +33=233,解得x =73,即EF =73,将△BEP 绕点E 顺时针方向旋转90°,得到△B′EC(如解图②), ∵OB ⊥EF ,∴点B′在直线EF 上,∵C 点横坐标绝对值等于EO 长度,C 点纵坐标绝对值等于EO -PO 长度, ∴C 点坐标为(-233,233-1),如解图,过F 作FQ ∥B′C,交EC 于点Q , 则△FEQ ∽△B′EC,由BE EF =B′E EF =CEEQ =3,可得Q 的坐标为(-23,-33);根据对称性可得,Q 关于直线EF 的对称点Q′(-23,533)也符合条件.4.解:(1)∵抛物线y =ax 2+bx +3经过点A(1,0)和点B(5,0), ∴⎩⎪⎨⎪⎧a +b +3=025a +5b +3=0,解得⎩⎪⎨⎪⎧a =35b =-185, ∴该抛物线对应的函数解析式为y =35x 2-185x +3;(2)①∵点P 是抛物线上的动点且位于x 轴下方,∴可设P(t ,35t 2-185t +3)(1<t <5),∵直线PM ∥y 轴,分别与x 轴和直线CD 交于点M 、N , ∴M(t ,0),N(t ,35t +3),∴PN =35t +3-(35t 2-185t +3)=-35(t -72)2+14720,联立直线CD 与抛物线解析式可得⎩⎪⎨⎪⎧y =35x +3y =35x 2-185x +3,解得⎩⎪⎨⎪⎧x =0y =3或⎩⎪⎨⎪⎧x =7y =365,∴C(0,3),D(7,365),分别过C 、D 作直线PN 的垂线,垂足分别为E 、F ,如解图①,则CE =t ,DF =7-t ,∴S △PCD =S △P +S △PDN =12PN·CE+12PN·DF=72PN =72[-35(t -72)2+14720]=-2110(t -72)2+102940, ∴当t =72时,△PCD 的面积最大,最大值为102940;②存在.∵∠CQN =∠PMB =90°, ∴当△Q 与△PBM 相似时,有NQ CQ =PM BM 或NQ CQ =BMPM两种情况, ∵CQ ⊥PN ,垂足为Q ,∴Q(t ,3),且C(0,3),N(t ,35t +3),∴CQ =t ,NQ =35t +3-3=35t ,∴NQ CQ =35,∵P(t ,35t 2-185t +3),M(t ,0),B(5,0),∴BM =5-t ,PM =0-(35t 2-185t +3)=-35t 2+185t -3,当NQ CQ =PM BM 时,则PM =35BM ,即-35t 2+185t -3=35(5-t),解得t =2或t =5(舍去),此时P(2,-95);当NQ CQ =BM PM 时,则BM =35PM ,即5-t =35(-35t 2+185t -3),解得t =349或t =5(舍去),此时P(349,-5527);综上可知存在满足条件的点P ,其坐标为(2,-95)或(349,-5527).。
专题二:新定义阅读型问题(学生版)★考点一:规律题型中的新定义◆典例一:定义: a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是=-1,-1的差倒数是= .已知a1=-,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,a2009=.◆典例二:古希腊数学家把1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第二个三角形数,6是第三个三角形数,…,依此类推,第100个三角形数是__5_050__.★考点二:运算题型中的新定义◆典例一:对于两个不相等的实数a、b ,定义一种新的运算如下,a*b= (a+b>0),如: 3*2==,那么6*(5*4)= 1◆典例二:对于任意实数m,n,定义一种运算m※n=mn-m-n+3,等式的右边是通常的加减和乘法运算.例如:3※5=3×5-3-5+3=10.请根据上述定义解决问题:若a<2※x<7,且解集中有两个整数解,则a的取值范围是__4≤a<5__.★考点三:探索题型中的新定义◆典例一:设a,b是任意两个实数,用max{a,b}表示a,b两数中较大者,例如:max{-1,-1}=-1,max{1,2}=2,max{4,3}=4,参照上面的材料,解答下列问题:(1)max{5,2}=__5__,max{0,3}=__3__;(2)若max{3x+1,-x+1}=-x+1,求x的取值范围;(3)求函数y=x2-2x-4与y=-x+2的图象的交点坐标,函数y=x2-2x-4的图象如图1-1-2所示,请你在图中作出函数y=-x+2的图象,并根据图象直接写出max{-x+2,x2-2x+4}的最小值.◆典例二:定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.如图①,等腰直角四边形ABCD ,AB =BC ,∠ABC =90°. ①若AB =CD =1,AB ∥CD ,求对角线BD 的长. ②若AC ⊥BD ,求证:AD =CD .针对训练1. 定义一种新的运算:x *y =x +2y x ,如:3*1=3+2×13=53,则(2*3)*2=____.2. 如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”,下列各组数据中,能作为一个智慧三角形三边长的一组是( ) A .1,2,3 B .1,1, 2 C .1,1, 3D .1,2, 33. 我们定义:当m ,n 是正实数,且满足m +n =mn 时,就称P ⎝⎛⎭⎫m ,mn 为“完美点”,已知点A (0,5)与点B 都在直线y =-x +b 上,且B 是“完美点”,若C 也是“完美点”且BC =2,则点C 的坐标可以是( )A .(1,2)B .(2,1)C .(3,4)D .(2,4)4. 如果关于x 的一元二次方程ax 2+bx +c =0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的是____(写出所有正确说法的序号). ①方程x 2-x -2=0是倍根方程;②若(x -2)(mx +n )=0是倍根方程,则4m 2+5m n +n 2=0;③若点(p ,q )在反比例函数y =2x的图象上,则关于x 的方程px 2+3x +q =0是倍根方程;④若方程ax 2+bx +c =0是倍根方程,且相异两点M (1+t ,s ),N (4-t ,s )都在抛物线y =ax 2+bx +c 上,则方程ax 2+bx +c =0的一个根为54.5. 若抛物线L :y =ax 2+bx +c (a ,b ,c 是常数,abc ≠0)与直线l 都经过y 轴上的一点P ,且抛物线L 的顶点Q 在直线l 上,则称此直线l 与该抛物线L 具有“一带一路”关系.此时,直线l 叫做抛物线L 的“带线”,抛物线L 叫做直线l 的“路线”.(1)若直线y =mx +1与抛物线y =x 2-2x +n 具有“一带一路”关系,求m ,n 的值;(2)若某“路线”L 的顶点在反比例函数y =6x的图象上,它的“带线”l 的表达式为y =2x -4,求此“路线”L 的表达式;(3)当常数k 满足12≤k ≤2时,求抛物线L :y =ax 2+(3k 2-2k +1)x +k 的“带线”l 与x 轴,y 轴所围成的三角形的面积的取值范围.1.考点解析所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.2.考点分类:考点分类见下表考点分类考点内容考点分析与常见题型常考热点三角形三角形的性质与定理一般考点二次函数结合高中二次函数的内容冷门考点圆圆,曲线的新定义【方法点拨】“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.一、中考题型分析“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力。
2020北京市中考数学专题复习---新定义问题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN二、重难专题突破专题九新定义问题(必考)类型一新定义点与函数问题(8年4考:2017.29、2015.29、2014.25、2013.25)1. (2019房山区一模)在平面直角坐标系xOy中,⊙C的半径为r,给出如下定义:若点P的横、纵坐标均为整数,且到圆心C的距离d≤r,则称P为⊙C的关联整点.(1)当⊙O的半径r=2时,在点D(2,-2),E(-1,0),F(0,2)中,为⊙O的关联整点的是;(2)若直线y=-x+4上存在⊙O的关联整点,且不超过7个,求r的取值范围;(3)⊙C的圆心在x轴上,半径为2,若直线y=-x+4上存在⊙C的关联整点.求圆心C的横坐标t的取值范围.第1题图2. (2019丰台区二模)对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:若⊙C 上存在两个点A ,B ,使得点P 在射线BC 上,且∠APB =14∠ACB (0°<∠ACB <180°),则称P 为⊙C 的依附点.(1)当⊙O 的半径为1时,①已知点D (-1,0),E (0,-2),F (2.5,0),在点D ,E ,F 中,⊙O 的依附点是 ;②点T 在直线y =-x 上,若T 为⊙O 的依附点,求点T 的横坐标t 的取值范围;(2)⊙C 的圆心在x 轴上,半径为2,直线y =-x +2与x 轴、y 轴分别交于点M ,N .若线段MN 上的所有点都是⊙C 的依附点,直接写出圆心C 的横坐标m 的取值范围.3. (2019西城区一模)在平面直角坐标系xOy中,对于两个点P,Q和图形W,如果在图形W上存在点M,N(M,N可以重合)使得PM=QN,那么称点P与点Q是图形W的一对平衡点.第3题图①(1)如图①,已知点A (0,3),B (2,3).①设点O 与线段AB 上一点的距离为d ,则d 的最小值是 ,最大值是 ;②在P 1(32,0),P 2(1,4),P 3(-3,0)这三个点中,与点O 是线段AB 的一对平衡点的是 ; (2)如图②,已知⊙O 的半径为1,点D 的坐标为(5,0).若点E (x ,2)在第一象限,且点D 与点E 是⊙O 的一对平衡点,求x 的取值范围;(3)如图③,已知点H (-3,0),以点O 为圆心,OH 长为半径画弧交x 轴的正半轴于点K .点C (a ,b )(其中b ≥0)是坐标平面内一个动点,且OC =5,⊙C 是以点C 为圆心,半径为2的圆.若HK ︵上的任意两个点都是⊙C 的一对平衡点,直接写出b 的取值范围.第3题图② 第3题图③4. (2019朝阳区二模)M (-1,-12),N (1,-12)是平面直角坐标系xOy 中的两点,若平面内直线MN 上方的点P 满足:45°≤∠MPN ≤90°,则称点P 为线段MN 的可视点.(1)在点A 1(0,12),A 2(12,0),A 3(0,2),A 4(2,2)中,线段MN 的可视点为 ; (2)若点B 是直线y =x +12上线段MN 的可视点,求点B 的横坐标t 的取值范围; (3)直线y =x +b (b ≠0)与x 轴交于点C ,与y 轴交于点D ,若线段CD 上存在线段MN 的可视点,直接写出b 的取值范围.第4题图类型二 新定义距离与函数问题(8年2考:2018.28、2012.25)1. (2012北京)在平面直角坐标系xOy 中,对于任意两点P 1(x 1,y 1)与P 2(x 2,y 2)的“非常距离”,给出如下定义:若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的“非常距离”为|x 1-x 2|;若|x 1-x 2|<|y 1-y 2|,则点P 1与点P 2的“非常距离”为|y 1-y 2|.例如:点P 1(1,2),点P 2(3,5),因为|1-3|<|2-5|,所以点P 1与点P 2的“非常距离”为|2-5|=3,也就是图①中线段P 1Q 与线段P 2Q 长度的较大值(点Q 为垂直于y 轴的直线P 1Q 与垂直于x 轴的直线P 2Q 的交点).第1题图①(1)已知点A (-12,0),B 为y 轴上的一个动点, ①若点A 与点B 的“非常距离”为2,写出一个满足条件的点B 的坐标;②直接写出点A 与点B 的“非常距离”的最小值;(2)已知C 是直线y =34x +3上的一个动点, ①如图②,点D 的坐标是(0,1),求点C 与点D 的“非常距离”的最小值及相应的点C 的坐标; ②如图③,E 是以原点O 为圆心,1为半径的圆上的一个动点,求点C 与点E 的“非常距离”的最小值及相应的点E 和点C 的坐标.第1题图2. (2019东城区一模)在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到x、y轴的距离中的最大值等于点Q到x、y轴的距离中的最大值,则称P,Q两点为“等距点”.下图中的P,Q两点即为“等距点”.第2题图(1)已知点A的坐标为(-3,1),①在点E(0,3),F(3,-3),G(2,-5)中,为点A的“等距点”的是;②若点B在直线y=x+6上,且A,B两点为“等距点”,则点B的坐标为;(2)直线l:y=kx-3(k>0)与x轴交于点C,与y轴交于点D,①若T1(-1,t1),T2(4,t2)是直线l上的两点,且T1与T2为“等距点”,求k的值;②当k=1时,半径为r的⊙O上存在一点M,线段CD上存在一点N,使得M,N两点为“等距点”,直接写出r的取值范围.备用图3.(2018北京)对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q 为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离”,记作d(M,N).已知点A(-2,6),B(-2,-2),C(6,-2).(1)求d(点O,△ABC);(2)记函数y=kx(-1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.4.(2019石景山一模)在平面直角坐标系xOy中,正方形ABCD的顶点分别为A(0,1),B(-1,0),C(0,-1),D(1,0).对于图形M,给出如下定义:P为图形M上任意一点,Q为正方形ABCD边上任意一点,如果P,Q两点间的距离有最大值,那么称这个最大值为图形M的“正方距”,记作d(M).(1)已知点E(0,4),①直接写出d(点E)的值;②直线y=kx+4(k≠0)与x轴交于点F,当d(线段EF)取最小值时,求k的取值范围;(2)⊙T的圆心为T(t,3),半径为1,若d(⊙T)<6,直接写出t的取值范围.类型三新定义图形与函数问题(仅2016.29考查)1.(2019石景山区二模)对于平面直角坐标系xOy中的点P,Q,给出如下定义:若P,Q为某个三角形的顶点,且边PQ上的高h,满足h=PQ,则称该三角形为点P,Q的“生成三角形”.(1)已知点A(4,0).①若以线段OA为底的某等腰三角形恰好是点O,A的“生成三角形”,求该三角形的腰长;②若Rt△ABC是点A,B的“生成三角形”,且点B在x轴上,点C在直线y=2x-5上,则点B的坐标为;(2)⊙T的圆心为点T(2,0),半径为2,点M的坐标为(2,6),N为直线y=x+4上一点,若存在Rt△MND,是点M,N的“生成三角形”,且边ND与⊙T有公共点,直接写出点N的横坐标x N的取值范围.2.(2018平谷区一模)在平面直角坐标系xOy中,点M的坐标为(x1,y1),点N的坐标为(x2,y2),且x1≠x2,y1≠y2,以MN为边构造菱形,若该菱形的两条对角线分别平行于x轴,y轴,则称该菱形为边的“坐标菱形”.(1)已知点A(2,0),B(0,23),则以AB为边“坐标菱形”的最小内角为°;(2)若点C(1,2),点D在直线y=5上,以CD为边的“坐标菱形”为正方形,求直线CD表达式;(3)⊙O的半径为2,点P的坐标为(3,m).若在⊙O上存在一点Q,使得以QP为边的“坐标菱形”为正方形,求m的取值范围.图①图②第2题图类型四 新定义几何问题(2019.28新考查)1. (2019北京)在△ABC 中,D ,E 分别是△ABC 两边的中点,如果DE ︵上的所有点都在△ABC 的内部或边上,则称DE ︵为△ABC 的中内弧.例如,如图①中DE ︵是△ABC 的一条中内弧.第1题图① 第1题图②(1)如图②,在Rt △ABC 中,AB =AC =22,D ,E 分别是AB ,AC 的中点,画出△ABC 的最长的中内弧DE ︵,并直接写出此时DE ︵的长;(2)在平面直角坐标系中,已知点A (0,2),B (0,0),C (4t ,0)(t >0).在△ABC 中,D ,E 分别是AB ,AC 的中点.①若t =12,求△ABC 的中内弧DE ︵所在圆的圆心P 的纵坐标的取值范围; ②若在△ABC 中存在一条中内弧DE ︵,使得DE ︵所在圆的圆心P 在△ABC 的内部或边上,直接写出t 的取值范围.2.P是⊙O内一点,过点P作⊙O的任意一条弦AB,我们把P A·PB的值称为点P关于⊙O的“幂值”.第2题图(1)⊙O的半径为6,OP=4.①如图,若点P恰为弦AB的中点,则点P关于⊙O的“幂值”为;②判断当弦AB的位置改变时,点P关于⊙O的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点P关于⊙O的“幂值”的取值范围;(2)若⊙O的半径为r,OP=d,请参考(1)的思路,用含r、d的式子表示点P关于⊙O的“幂值”或“幂值”的取值范围;(3)在平面直角坐标系xOy中,C(1,0),⊙C的半径为3,已知点M(t,0),N(0,-t),若在直线MN 上存在点P,使得点P关于⊙C的“幂值”为6,请直接写出t的取值范围.参考答案类型一新定义点与函数问题1. 解:(1)E,F;【解法提示】∵D(2,-2),E(-1,0),F(0,2),O(0,0),∴OD=22+22=22>2,OE=1<2,OF=2,∴E,F为⊙O的关联整点;(2)如解图①,当⊙O与直线y=-x+4相切时,切点为G(2,2),则r=OG=22+22=22.当⊙O过点Q(-2,6)时,则r=OQ=22+62=210,结合图象,当直线y=-x+4上存在⊙O的关联整点,且不超过7个时,r的取值范围为22≤r<210;第1题解图①(3)如解图②,当⊙C过点M(3,1)时,CM=2,ME=1,则CE=3,此时点C的横坐标t=3-3,当⊙C′过点N(5,-1)时,则FC′=3,此时点C′的横坐标t=5+3,结合函数图象,圆心C的横坐标t的取值范围为3-3≤t≤5+3.第1题解图②2. 解:(1)①E、F;【解法提示】如解图①,根据P为⊙O的依附点,可知:当r<OP<3r(r为⊙O的半径)时,点P为⊙O的依附点.第2题解图①∵D(-1,0),E(0,-2),F(2.5,0),∴OD=1,OE=2,OF=2.5,∴1<OE<3,1<OF<3,∴点E,F是⊙O的依附点,故答案为:E、F;②如解图②,第2题解图②当点T 在第四象限,OT ′=1时,作T ′N ⊥x 轴于点N ,易知N (22,0),OT =3时,作TM ⊥x 轴于点M ,易知M (322 ,0),∴满足条件的点T 的横坐标t 的取值范围为22 <t <322. 当点T 在第二象限时,同理可得满足条件的t 的取值范围为-322 <t <-22, 综上所述,满足条件的t 的值的范围为22 <t <322 或-322 <t <-22. (2)4<m <42 或-4<m <2-22 .【解法提示】如解图③,当点C 在点M 的右侧时,第2题解图③由题意M (2,0),N (0,2),当CN =6时,OC =CN 2-ON 2 =42 ,此时C (42 ,0),当CM =2时,此时C (4,0),∴满足条件的m 的值的范围为4<m <42 .如解图④,当点C 在点M 的左侧时,第2题解图④当⊙C 与直线MN 相切时,易知C ′(2-22 ,0),当CM =6时,C (-4,0),∴满足条件的m 的值的范围为-4<m <2-22 ,综上所述,满足条件的m 的值的范围为:4<m <42 或-4<m <2-22 . 3. 解:(1)① 3,13 ;【解法提示】d 的最小值=OA =3,d 的最大值=OB =22+32 =13 . ②P 1;【解法提示】由题图①可知,P 1到线段AB 的最小距离=OA =3,最大距离=P 1A =(32)2+32 =352,则线段AB 上存在点M ,N ,使得P 1M =ON ;P 2到线段AB 的最大距离=12+12 =2 ,∵2 <3,∴P 2不符合题意;P 3到线段AB 的最小距离=32+32 =32 ,∵32 >13 ,∴P 3不符合题意.(2)第3题解图①由题意得,点D 到⊙O 的最近距离是4,最远距离是6,点D 与点E 是⊙O 的一对平衡点,此时需要满足E 1到⊙O 的最大距离是4,即OE 1=3,根据OE 1=3解出此时x =5 ;同理当E 2到圆O 的最小距离是6,即OE 2=7, 根据OE 2=7,解得此时x =35 , ∴5 ≤x ≤35 ; (3)4143≤b ≤5.【解法提示】点C 在以O 为圆心,半径为5的上半圆上运动,以C 为圆心,半径为2的圆刚好与弧HK 相切,此时要想弧HK 上的任意两点都是⊙C 的平衡点,需要满足CK ≤6,如解图②,当CK =6,此时a =-13 ,b =4143 ,同理,当CH =6时,a =13 ,b =4143 .在两者中间时,如解图③所示,此时a =0,b =5,∴4143≤b ≤5.第3题解图②第3题解图③4. 解:(1)A 1,A 3;【解法提示】如解图①,以MN 为直径的半圆交y 轴于点E ,以E 为圆心,EM 长为半径的⊙E 交y 轴于点F ,∵MN 是⊙G 的直径,M (-1,-12 ),N (1,-12 ),∴∠MA 1N =90°,MN ⊥EG ,EG =1,MN =2.∴EF =EM =2 ,∴∠MFN =12 ∠MEN =45°,∵45°≤∠MPN ≤90°,∴点P 应落在⊙E 内部,且落在⊙G 外部(包含边界),且不与点M 、N 重合.∴线段MN 的可视点为A 1,A 3.第4题解图①(2)如解图②,以(0,-12 )为圆心,MN 为直径作⊙G ,以(0,12 )为圆心,2 为半径作⊙E ,两圆在直线MN 上方的部分与直线y =x +12分别交于点E ,F .如解图②,过点F 作FQ ⊥x 轴于点Q ,过点E 作EH ⊥FQ 于点H ,∵FQ ⊥x 轴, ∴FQ ∥y 轴,∴∠EFH =∠MEG =45°. ∵∠EHF =90°,EF =2 , ∴EH =FH =1. ∵E (0,12 ),∴F (1,32).只有当点B 在线段EF 上时,满足45°≤∠MBN ≤90°,点B 是线段MN 的可视点. ∴点B 的横坐标t 的取值范围是0≤t ≤1;第4题解图②(3)-32 <b ≤-32 或12 ≤b ≤52;【解法提示】如解图③,⊙G 与x 轴交于点H ,与y 轴交于点E ,连接GH ,OG =12 ,GH =1,∴OH =GH 2-OG 2 =12-(12)2 =32,∴H (32 ,0),E (0,12). 当直线y =x +b (b ≠0)与x 轴交于点C ,与y 轴交于点D ,若线段CD 上存在线段MN 的可视点, ①当直线y =x +b 与y 轴交点在y 负半轴上,将H (32 ,0)代入y =x +b 得32 +b =0,解得b 1=-32, 将N (1,-12 )代入y =x +b 得1+b =-12 ,解得b 2=-32 ,∴-32 <b ≤-32;②当直线y =x +b 与y 轴交点在y 正半轴上, 将 E (0,12 )代入得b =12,当直线y =x +b 与⊙E 相切于T 时交y 轴于Q ,连接ET ,则ET ⊥TQ , ∵∠EQT =45°, ∴TQ =ET =EM =2 ,∴EQ =ET 2+TQ 2 =(2)2+(2)2 =2. ∴OQ =OE +EQ =12 +2=52 .∴12 ≤b ≤52. 综上所述:-32 <b ≤-32 或12 ≤b ≤52.第4题解图③类型二 新定义距离与函数问题1. 解:(1)①B (0,2)或B (0,-2)(写出一个答案即可); ②12; (2)①设C 点坐标为(m ,34m +3),D (0,1);于是当非常距离最小时有|m |=|34 m +3-1|,解得 m 1=-87 ,m 2=8(舍去),于是点C 的坐标为(-87 ,157);②平移直线y =34 x +3与⊙O 相切,切点为点E ,与x 轴、y 轴交点分别为点A 、B ,由切线的性质可知点E 即为最接近直线y =34x +3的点,亦为题中所求的点.第1题解图如解图,过点E 作EF ⊥x 轴于点F . 设点E 的坐标为E (x 0,y 0),x 0<0; 易知:Rt △EFO ∽ Rt △AOB , ∴FO EF =OB AO =34 ,即-x 0y 0 =34, 又∵点E 为⊙O 上的点,∴可得方程组:⎩⎪⎨⎪⎧x 20 +y 20 =1,4x 0+3y 0=0,解得:x 0=-35 ,y 0=45 ,∴点E 的坐标为(-35 ,45).设点C 的坐标为C (a ,34 a +3),由①可知:当|-35 -a |=|(34 a +3)-45 |时有最小值,∴a =-85 或325(舍去),∴点C 的坐标为C (-85 ,95 ),此时最小值为-35 -(-85 )=1.2. 解:(1)①E ,F ;【解法提示】点A 到x ,y 轴的距离中的最大值等于3,点E 到x ,y 轴的距离中的最大值等于3,点F 到x ,y 轴的距离中的最大值等于3,点G 到x ,y 轴的距离中的最大值等于5;∴点E ,F 是点A 的“等距点”.②(-3,3);【解法提示】∵点A 到x ,y 轴的距离中的最大值等于3,A ,B 两点为“等距点”,∴点B 到x ,y 轴的距离中的最大值等于3,∵点B 在直线y =x +6上,∴设B (a ,a +6),当a =3时,a +6=9,不符合题意,当a +6=3时,a =-3,符合题意,∴B (-3,3).(2)①∵T 1(-1,t 1),T 2(4,t 2)是直线l 上的两点, ∴t 1=-k -3,t 2=4k -3. ∵k >0,∴|-k -3|=k +3>3,4k -3>-3, 依题意可得:当-3<4k -3<4时,k +3=4,解得k =1; 当4k -3≥4时,k +3=4k -3,解得k =2. 综上所述,k 的值为1或2; ②32≤r ≤32 . 【解法提示】当k =1时,y =x -3,则点C 的坐标为(3,0),点D 的坐标为(0,-3);如解图,过点O 作OE ⊥CD 于点E ,过点E 作EF ⊥x 轴于点F ,∵CD =32+32 =32 ,∴OE =CE =322 .∴EF =22×322 =32 .则线段CD 上的点到x ,y 轴的距离中的最小值等于32 ,∴半径r 的最小值为32;线段CD 到x ,y 轴的距离中的最大值等于3,∴半径为r 的⊙O 上存在一点M ,使得点M 到x ,y 轴的距离中的最大值等于3,如解图,过点G (3,3)作x 轴的垂线,垂足为点C ,连接OG ,则OG =32+32 =32 ,∴⊙O 的半径r 的最大值为32 ;综上所述,r 的取值范围是32≤r ≤32 .第2题解图3. 解:(1)如解图①,d (点O ,△ABC )=2; (2)-1≤k ≤1且k ≠0;【解法提示】如解图①,y =kx (k ≠0)经过原点,在-1≤x ≤1范围内,函数图象为线段.第3题解图①当y =kx (-1≤x ≤1,k ≠0)经过(1,-1)时,k =-1, 此时d (G ,△ABC )=1,当y =kx (-1≤x ≤1,k ≠0)经过(-1,-1)时,k =1, 此时d (G ,△ABC )=1, ∴-1≤k ≤1, ∵k ≠0,∴-1≤k≤1且k≠0.(3)如解图②,⊙T与△ABC的位置关系分三种情况:①⊙T在△ABC的左侧时,d(⊙T,△ABC)=1,此时,t=-4;②⊙T在△ABC的内部时,d(⊙T,△ABC)=1,此时,0≤t≤4-22;③⊙T在△ABC的右侧时,d(⊙T,△ABC)=1,此时,t=4+22;综上,t=-4或0≤t≤4-22或t=4+22.第3题解图②4. 解:(1)①5;【解法提示】∵正方形ABCD的顶点分别为A(0,1),B(-1,0),C(0,-1),D(1,0),点E(0,4)在y轴上,∴点E到正方形ABCD边上C点间的距离有最大值,EC=5,即d(点E)的值为5.②如解图①所示:∵d(点E)=5,∴d(线段EF)的最小值是5,∴符合题意的点F满足d(点F)≤5,当d(点F)=5时,BF1=DF2=5,∴点F1的坐标为(4,0),点F2的坐标为(-4,0),将点F1的坐标代入y=kx+4得:0=4k+4,解得:k=-1,将点F2的坐标代入y=kx+4得:0=-4k+4,解得:k=1,∴k=-1或k=1.∴当d(线段EF)取最小值时,EF1直线y=kx+4中k≤-1,EF2直线y=kx+4中k≥1,∴当d(线段EF)取最小值时,k的取值范围为:k≤-1或k≥1;(2)t的取值范围为-3<t<3.【解法提示】⊙T的圆心为T(t,3),半径为1,当d(⊙T)=6时,如解图②所示:CM=CN=6,OH=3,∴T1C=TC=5,CH=OC+OH=1+3=4,∴T1H=T1C2-CH2=52-42=3,TH=TC2-CH2=52-42=3,∴d(⊙T)<6,t的取值范围为-3<t<3.图①图②第4题解图类型三 新定义图形与函数问题1. 解:(1)①如解图①,不妨设满足条件的三角形为等腰△OAR ,则OR =AR .过点R 作RH ⊥OA 于点H ,∴OH =HA =12OA =2,∵以线段OA 为底的等腰△OAR 恰好是点O ,A 的“生成三角形”, ∴RH =OA =4.∴OR =OH 2+RH 2 =25 . 即该三角形的腰长为25 ;第1题解图①②(1,0),(3,0)或(7,0)【解法提示】如解图②所示:若A 为直角顶点时,点B 的坐标为(1,0)或(7,0); 若B 为直角顶点时,点B 的坐标为(1,0)或(3,0). 综上,点B 的坐标为(1,0),(3,0)或(7,0).第1题解图②(2)如解图③可得:若N 为直角顶点:-1-2 ≤x N ≤0;第1题解图③如解图④可得:若M 为直角顶点:-6≤x N ≤-2;第1题解图④综上,点N 的横坐标x N 的取值范围为:-6≤x N ≤0. 2. 解:(1)60;【解法提示】如解图①所示,∵点A (2,0),B (0,23 ), ∵OA =2,OB =23 ,在Rt △AOB 中,由勾股定理得:AB =22+(23)2 =4, ∵OA =12 AB ,∠AOB =90°,∴∠ABO =30°, ∵四边形ABCD 是菱形,∴∠ABC=2∠ABO=60°,∵AB∥CD,∴∠DCB=180°-60°=120°,∴以AB为边的“坐标菱形”的最小内角为60°;第2题解图①(2)如解图②,第2题解图②∵以CD为边的“坐标菱形”为正方形,∴直线CD与直线y=5的夹角是45°.过点C作CE⊥DE于点E.∴D(4,5)或(-2,5).∴直线CD的表达式为:y=x+1或y=-x+3;(3)分两种情况:①先作直线y=x,再作圆的两条切线,且平行于直线y=x,如解图③,第2题解图③∵⊙O的半径为2,且△OQ′D是等腰直角三角形,∴OD=2 OQ′=2,∴BD=3-2=1,∵△P′DB是等腰直角三角形,∴P′B=BD=1,∴P′(3,1),同理可得:OA=2,∴AB=3+2=5,∵△ABP是等腰直角三角形,∴PB=5,∴P(3,5),∴当1≤m≤5时,以QP为边的“坐标菱形”为正方形;②先作直线y=-x,再作圆的两条切线,且平行于直线y=-x,如解图④,∵⊙O的半径为2,且△OQ′D是等腰直角三角形,∴OD=2 OQ′=2,∴BD=3-2=1,∵△P′DB是等腰直角三角形,∴P′B=BD=1,∴P′(3,-1),同理可得:OA=2,∴AB=3+2=5,∵△ABP是等腰直角三角形,∴PB=5,∴P(3,-5),∴当-5≤m≤-1时,以QP为边的“坐标菱形”为正方形;综上所述,m的取值范围是1≤m≤5或-5≤m≤-1.第2题解图④类型四 新定义几何问题1. 解:(1)画出DE ︵如解图①所示,DE ︵与BC 相切时,△ABC 的中内弧最长.此时DE ︵的长为以DE 长为直径的半圆.∵在Rt △ABC 中,AB =AC =22,∴BC =2AB =2·22=4.∵D 、E 分别为AB 、AC 的中点,∴DE =12BC =12×4=2.∴lDE ︵=180π360×2=π;第1题解图①(2)①当t =12时,C (2,0).连接DE ,当DE ︵在DE 的下方时,点P 的纵坐标最小时点P 为DE 的中点,如解图②所示.∵A (0,2),∴BA =2.∵点D 是BA 的中点,∴BD =1.∵点D 、E 分别为AB 、AC 的中点,∴DE =12BC =12×2=1.∴⊙P 的半径PD =12.∵12<1,∴DE ︵是△ABC 的中内弧.∴y P ≥1.第1题解图②第1题解图③当DE ︵在DE 的上方时,点P 的纵坐标最大时,⊙P 与AC 相切于点E .如解图③所示,作DE 的垂直平分线FG 交DE 于点F ,交x 轴于点G ,则四边形DBGF 是矩形,圆心P 在FG 上.∵C (2,0),A (0,2),∴BC =BA =2.∴Rt △ABC 是等腰直角三角形.∴∠ACB =45°.∵点D 、E 分别为AB 、AC 的中点,∴DE ∥BC .∴∠AED =∠ACB .∴∠AED =45°.连接PE ,∵⊙P 与AC 相切于点E ,∴PE ⊥AC .∴∠PEA =90°.∴∠PEF =∠PEA -∠AED =45°.∵PF ⊥DE ,∴∠FPE =45°.∴∠PEF =∠FPE .∴PF =EF .∵FG 平分DE ,∴DF =EF =12DE =12×1=12.∴PF =12.∵FG =BD =1,∴PG =FG -PF =1-12=12.∴P (12,12).∴y P ≤12.综上,圆心P 的纵坐标y P 的取值范围为y P ≥1或y P ≤12 ;②0<t ≤2 .【解法提示】ⅰ. 当P 在DE 上方时,如解图④所示,圆心P 在边AC 上且DE ︵与边BC 相切于点F 时,符合题意.∵C (4t ,0),∴BC =4t .∵D 、E 分别为AB 、AC 的中点,∴DE ∥BC ,DE =12 BC =12 ×4t =2t .连接PF .∵⊙P 与BC 相切于点F ,∴PF ⊥BC .∵DE ∥BC ,∴DE ⊥PF .∴DG =12 DE =12 ×2t =t .∵PF ⊥BC ,∴PF ∥y 轴.∴△EPG ∽△EAD .∴PG AD =EG ED =12 .∴PG =12 AD =12 ×1=12.又∵GF =BD =1,∴PF =PG +GF =12 +1=32 .∴DP =32 .在Rt △PDG 中,由勾股定理得DP 2=DG 2+GP 2,即(32 )2=t 2+(12 )2.解得t =±2 .∵t >0,∴t =2 .∴t 的取值范围是0<t ≤2 .第1题解图④ⅱ. 当P 在DE 下方时,如解图⑤.⊙P 与AC 相切于点E 为临界状态,过P 作PM ⊥DE 于点M ,DE 为△ABC 的中内弧,只需PM ≤1即可.此时易得△EMP ∽△ABC ,∴PM CB =EM AB ,即PM 4t =t2 .得PM =2t 2,故0<t ≤22.第1题解图⑤综上,t 的取值范围为0<t ≤2 .2. 解:(1)①20;【解法提示】如解图①所示:连接OA、OB、OP.∵OA=OB,P为AB的中点,∴OP⊥AB.∵在Rt△PBO中,由勾股定理得:PB=OB2-OP2=62-42=25,∴P A=PB=25.∴⊙O的“幂值”=25×25=20.第2题解图①②当弦AB的位置改变时,点P关于⊙O的“幂值”为定值.证明:如解图②,AB为⊙O中过点P的任意一条弦,且不与OP垂直.过点P作⊙O的弦A′B′⊥OP,连接AA′、BB′,OA′.第2题解图②∵在⊙O中,∠AA′P=∠B′BP,∠AP A′=∠BPB′,∴△AP A′∽△B′PB.∴P APB′=P A′PB.∴P A·PB=P A′·PB′=20.∴当弦AB的位置改变时,点P关于⊙O的“幂值”为定值.(2)r2-d2;【解法提示】如解图③所示,连接OP,过点P作AB⊥OP,交圆O与A、B两点,连接OA,OB.第2题解图③∵AO=OB,PO⊥AB,∴AP=PB.∴点P关于⊙O的“幂值”=AP·PB=P A2.在Rt△APO中,AP2=OA2-OP2=r2-d2.∴点P关于⊙O的“幂值”=r2-d2.(3)1-6≤t≤6+1.【解法提示】如解图④所示:过点C作CP⊥AB交AB于点P.第2题解图④∵点P关于⊙C的“幂值”为6,若⊙O半径为r,CP=d,则由(2)可知r2-d2=6.∴d2=3,即d=3.如解图⑤,以点C为圆心,3为半径作辅助圆⊙C′,∵点P在直线MN上,∴当直线MN与⊙C′相交即可满足条件.当点M在x轴正半轴时,直线MN与⊙C′相切如解图⑤,∵M(t,0)、N(0,-t),∴ON=OM=t,∵OM=ON,∴∠OMN=45°.∴在直角三角形CPM中,PM=CP=3.则CM=CP2+PM2=6,∴OM=6+1.∴t=6+1.同理当点M在x轴负半轴时,解得t=1-6,结合函数图象,t的取值范围为1-6≤t≤6+1.第2题解图⑤。
2024中考数学新定义及探究题专题《二次函数及新定义》(学生版)【类型1二次函数问题中的新定义问题】1.(2023春·山东济南·九年级统考期末)新定义:若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点.若二次函数(c为常数)在的图象上存在两个二倍点,则c的取值范围是()A.B.C.D.2.(2023春·湖北咸宁·九年级统考期中)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.若互异二次函数的对称轴为直线x=1且图象经过点(﹣1,0),则这个互异二次函数的二次项系数是()A.B.C.1D.﹣13.(2023春·广西南宁·九年级统考期中)新定义:在平面直角坐标系中,对于点P(m,n)和点P′(m,n′),若满足m≥0时,n′=n-4;m<0时,n′=-n,则称点P′(m,n′)是点P(m,n)的限变点.例如:点P1(2,5)的限变点是P1′(2,1),点P2(-2,3)的限变点是P2′(-2,-3).若点P(m,n)在二次函数y=-x2+4x+2的图象上,则当-1≤m≤3时,其限变点P′的纵坐标n'的取值范围是()A.B.C.D.4.(2023春·湖南长沙·九年级长沙市开福区青竹湖湘一外国语学校校考期末)定义:我们不妨把纵坐标是横坐标2倍的点称为“青竹点”.例如:点、……都是“青竹点”.显然,函数的图象上有两个“青竹点”:和.(1)下列函数中,函数图象上存在“青竹点”的,请在横线上打“√”,不存在“青竹点”的,请打“×”.①________;②________;③________.(2)若抛物线(m为常数)上存在两个不同的“青竹点”,求m的取值范围;(3)若函数的图象上存在唯一的一个“青竹点”,且当时,a的最小值为c,求c的值.5.(2023春·江苏泰州·九年级统考期中)定义:两个二次项系数之和为,对称轴相同,且图像与轴交点也相同的二次函数互为友好同轴二次函数.例如:的友好同轴二次函数为.(1)函数的友好同轴二次函数为.(2)当时,函数的友好同轴二次函数有最大值为,求的值.(3)已知点分别在二次函数及其友好同轴二次函数的图像上,比较的大小,并说明理由.6.(2023春·浙江金华·九年级校考期中)定义:若抛物线y=ax2+bx+c与x轴两交点间的距离为4,称此抛物线为定弦抛物线.(1)判断抛物线y=x2+2x﹣3是否是定弦抛物线,请说明理由;(2)当一定弦抛物线的对称轴为直线x=1,且它的图像与坐标轴的交点间的连线所围成的图形是直角三角形,求该抛物线的表达式;(3)若定弦抛物线y=x2+bx+c(b<0)与x轴交于A、B两点(A在B左边),当2≤x≤4时,该抛物线的最大值与最小值之差等于OB之间的距离,求b的值.7.(2023春·浙江·九年级期末)定义:若抛物线与抛物线.同时满足且,则称这两条抛物线是一对“共轭抛物线”.(1)已知抛物线与是一对共轭抛物线,求的解析式;(2)如图1,将一副边长为的正方形七巧板拼成图2的形式,若以BC中点为原点,直线BC为x轴建立平面直角坐标系,设经过点A,E,D的抛物线为,经过A、B、C的抛物线为,请立接写出、的解析式并判断它们是否为一对共轭抛物线.8.(2023春·湖南长沙·九年级校联考期末)定义:如果抛物线与轴交于点,,那么我们把线段叫做雅礼弦,两点之间的距离称为抛物线的雅礼弦长.(1)求抛物线的雅礼弦长;(2)求抛物线的雅礼弦长的取值范围;(3)设,为正整数,且,抛物线的雅礼弦长为,抛物线的雅礼弦长为,,试求出与之间的函数关系式,若不论为何值,恒成立,求,的值.9.(2023春·河南濮阳·九年级统考期中)小明在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0)与y=a2x2+b2x+c2(a2≠0)满足a1+a2=0,b1=b2,c1+c2=0,则称这两个函数互为“旋转函数”.求函数y=x2-3x-2的“旋转函数”.小明是这样思考的:由函数y=x2-3x-2可知,a1=1,b1=-3,c1=-2,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2,就能确定这个函数的“旋转函数”.请参考小明的方法解决下面问题:(1)直接写出函数y=x2-3x-2的“旋转函数”;(2)若函数与y=x2-2nx+n互为“旋转函数”,求(m+n)2020的值;(3)已知函数的图象与x轴交于点A、B两点(A在B的左边),与y轴交于点C,点A、B、C关于原点的对称点分别是A1,B1,C1,试证明经过点A1,B1,C1的二次函数与函数互为“旋转函数”10.(2023春·山西大同·九年级统考期中)请阅读下列材料,并完成相应的任务:定义:我们把自变量为的二次函数与(,)称为一对“亲密函数”,如的“亲密函数”是.任务:(1)写出二次函数的“亲密函数”:______;(2)二次函数的图像与轴交点的横坐标为1和,它的“亲密函数”的图像与轴交点的横坐标为______,猜想二次函数()的图像与轴交点的横坐标与其“亲密函数”的图像与轴交点的横坐标之间的关系是______;(3)二次函数的图像与轴交点的横坐标为1和,请利用(2)中的结论直接写出二次函数的图像与轴交点的横坐标.【类型2二次函数与一次函数综合问题中的新定义问题】1.(2023春·九年级课时练习)定义:由a,b构造的二次函数叫做一次函数y=ax+b的“滋生函数”,一次函数y=ax+b叫做二次函数的“本源函数”(a,b为常数,且).若一次函数y=ax+b的“滋生函数”是,那么二次函数的“本源函数”是.2.(2023春·浙江湖州·九年级统考期中)定义:如果函数图象上存在横、纵坐标相等的点,则称该点为函数的不动点.例如,点是函数的不动点.已知二次函数(是实数).(1)若点是该二次函数的一个不动点,求的值;(2)若该二次函数始终存在不动点,求的取值范围.3.(2023·安徽·模拟预测)已知函数与函数,定义“和函数”.(1)若,则“和函数”;(2)若“和函数”为,则,;(3)若该“和函数”的顶点在直线上,求.4.(2023·北京·模拟预测)城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系,对两点和,用以下方式定义两点间距离:.(1)①已知点,则______.②函数的图象如图①所示,是图象上一点,,求点的坐标.(2)函数的图象如图②所示,是图象上一点,求的最小值及对应的点的坐标.5.(2023春·上海·九年级上海市民办新复兴初级中学校考期中)我们定义【,,】为函数的“特征数”,如:函数的“特征数”是【2,,5】,函数的“特征数”是【0,1,2】(1)若一个函数的“特征数”是【1,,1】,将此函数图像先向左平移2个单位,再向上平移1个单位,得到一个图像对应的函数“特征数”是______;(2)将“特征数”是【0,,】的图像向上平移2个单位,得到一个新函数,这个函数的解析式是______;(3)在(2)中,平移前后的两个函数图像分别与轴交于A、两点,与直线分别交于、两点,在给出的平面直角坐标系中画出图形,并求出以A、、、四点为顶点的四边形的面积;(4)若(3)中的四边形与“特征数”是【1,,】的函数图像有交点,求满足条件的实数的取值范围.6.(2023春·福建龙岩·九年级校考期末)定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等.我们称这样的两个函数互为相关函数.例如:一次函数,它的相关函数为(1)已知点A(-2,1)在一次函数的相关函数的图象上时,求a的值.(2)已知二次函数.当点B(m,)在这个函数的相关函数的图象上时,求m的值.7.(2023春·江苏南通·九年级统考期末)定义:若图形与图形有且只有两个公共点,则称图形与图形互为“双联图形”,即图形是图形的“双联图形”,图形是图形的“双联图形”.(1)若直线与抛物线互为“双联图形”,且直线不是双曲线的“双联图形”,求实数的取值范围;(2)如图2,已知,,三点.若二次函数的图象与互为“双联图形”,直接写出的取值范围.8.(2023春·北京·九年级北京市第三中学校考期中)定义:在平面直角坐标系中,图形G 上点P(x,y)的纵坐标y与其横坐标x的差y﹣x称为P点的“坐标差”,而图形G上所有点的“坐标差”中的最大值称为图形G的“特征值”.(1)①点A(1,3)的“坐标差”为;②抛物线y=﹣x2+3x+3的“特征值”为;(2)某二次函数y=﹣x2+bx+c(c≠0)的“特征值”为1,点B(m,0)与点C分别是此二次函数的图象与x轴和y轴的交点,且点B与点C的“坐标差”相等.①直接写出m=;(用含c的式子表示)②求b的值.9.(2023春·北京·九年级人大附中校考期中)对某一个函数给出如下定义:若存在实数,对于任意的函数值,都满足,则称这个函数是有界函数,在所有满足条件的中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是.(1)直接写出有界函数的边界值;(2)已知函数是有界函数,且边界值为3,直接写出的最大值;(3)将函数的图象向下平移个单位,得到的函数的边界值是,直接写出的取值范围,使得.10.(2023春·湖南长沙·九年级校考期中)若定义:若一个函数图像上存在纵坐标是横坐标2倍的点,则把该函数称为“明德函数”,该点称为“明德点”,例如:“明德函数”,其“明德点”为(1,2).(1)①判断:函数__________“明德函数”(填“是”或“不是”);②函数的图像上的明德点是___________;(2)若抛物线上有两个“明德点”,求m的取值范围;(3)若函数的图像上存在唯一的一个“明德点”,且当时,的最小值为,求的值.【类型3二次函数与几何图形综合问题中的新定义问题】1.(2023春·四川绵阳·九年级统考期末)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形中,点,点,则互异二次函数与正方形有交点时的最大值和最小值分别是()A.4,-1B.,-1C.4,0D.,-1 2.(2023春·山东济南·九年级统考期末)定义:关于x轴对称且对称轴相同的两条抛物线叫作“同轴对称抛物线”.例如:y1=(x﹣1)2﹣2的“同轴对称抛物线”为y2=﹣(x﹣1)2+2.(1)请写出抛物线y1=(x﹣1)2﹣2的顶点坐标;及其“同轴对称抛物线”y2=﹣(x﹣1)2+2的顶点坐标;(2)求抛物线y=﹣2x2+4x+3的“同轴对称抛物线”的解析式.(3)如图,在平面直角坐标系中,点B是抛物线L:y=ax2﹣4ax+1上一点,点B的横坐标为1,过点B作x轴的垂线,交抛物线L的“同轴对称抛物线”于点C,分别作点B、C关于抛物线对称轴对称的点、,连接BC、、、.①当四边形为正方形时,求a的值.②当抛物线L与其“同轴对称抛物线”围成的封闭区域内(不包括边界)共有11个横、纵坐标均为整数的点时,直接写出a的取值范围.3.(2023春·北京门头沟·九年级大峪中学校考期中)定义:对于平面直角坐标系上的点和抛物线,我们称是抛物线的相伴点,抛物线是点的相伴抛物线.如图,已知点,,.(1)点的相伴抛物线的解析式为______;过,两点的抛物线的相伴点坐标为______;(2)设点在直线上运动:①点的相伴抛物线的顶点都在同一条抛物线上,求抛物线的解析式.②当点的相伴抛物线的顶点落在内部时,请直接写出的取值范围.4.(2023春·浙江绍兴·九年级校联考期中)定义:如图1,抛物线与x轴交于A,B两点,点P在该抛物线上(P点与A.B两点不重合),如果△ABP中PA与PB两条边的三边满足其中一边是另一边倍,则称点P为抛物线的“好”点.(1)命题:P(0,3)是抛物线的“好”点.该命题是_____(真或假)命题.(2)如图2,已知抛物线C:与轴交于A,B两点,点P(1,2)是抛物线C的“好”点,求抛物线C的函数表达式.=S△AB P的Q点(异于点P)的(3)在(2)的条件下,点Q在抛物线C上,求满足条件S△ABQ坐标.5.(2023·安徽安庆·九年级统考期末)在平面直角坐标系中,我们定义直线y=ax-a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形”.已知抛物线y=-与其“梦想直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.(1)填空:该抛物线的“梦想直线”的解析式为______,点A的坐标为______,点B的坐标为______.(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点M的坐标.6.(2023春·湖南长沙·九年级统考期中)定义:在线段MN上存在点P、Q将线段MN分为相等的三部分,则称P、Q为线段MN的三等分点.已知一次函数y=﹣x+3的图象与x、y轴分别交于点M、N,且A、C为线段MN的三等分点(点A在点C的左边).(1)直接写出点A、C的坐标;(2)①二次函数的图象恰好经过点O、A、C,试求此二次函数的解析式;②过点A、C分别作AB、CD垂直x轴于B、D两点,在此抛物线O、C之间取一点P(点P不与O、C重合)作PF⊥x轴于点F,PF交OC于点E,是否存在点P使得AP=BE?若存在,求出点P的坐标?若不存在,试说明理由;(3)在(2)的条件下,将△OAB沿AC方向移动到△O'A'B'(点A'在线段AC上,且不与C重合),△O'A'B'与△OCD重叠部分的面积为S,试求当S=时点A'的坐标.7.(2023春·安徽合肥·九年级统考期中)定义:在平面直角坐标系中,图形G上点P(x,y)的纵坐标y与其横坐标x的差y﹣x称为点P的“坐标差”,而图形G上所有点的“坐标差”中的最大值称为图形G的“特征值”.(1)求点A(2,1)的“坐标差”和抛物线y=﹣x2+3x+4的“特征值”.(2)某二次函数=﹣x2+bx+c(c≠0)的“特征值”为﹣1,点B与点C分别是此二次函数的图象与x轴和y轴的交点,且点B与点C的“坐标差”相等,求此二次函数的解析式.(3)如图所示,二次函数y=﹣x2+px+q的图象顶点在“坐标差”为2的一次函数的图象上,四边形DEFO是矩形,点E的坐标为(7,3),点O为坐标原点,点D在x轴上,当二次函数y=﹣x2+px+q的图象与矩形的边有四个交点时,求p的取值范围.8.(2023·浙江杭州·九年级统考期中)新定义:我们把两个面积相等但不全等的三角形叫做偏等积三角形.(1)初步尝试如图1,已知等腰直角△ABC,∠ACB=90°,请将它分成两个三角形,使它们成为偏等积三角形.(2)理解运用如图2,已知△ACD为直角三角形,∠ADC=90°,以AC,AD为边向外作正方向ACFB和正方形ADGE,连接BE,求证:△ACD与△ABE为偏等积三角形.(3)综合探究如图3,二次函数y=x2–x–5的图象与x轴交于A,B两点,与y轴交于点C,在二次函数的图象上是否存在一点D,使△ABC与△ABD是偏等积三角形?若存在,请求出点D的坐标;若不存在,请说明理由.9.(2023春·江西赣州·九年级统考期末)我们给出如下定义:在平面直角坐标系xOy中,如果一条抛物线平移后得到的抛物线经过原抛物线的顶点,那么这条抛物线叫做原抛物线的过顶抛物线.如下图,抛物线F2都是抛物线F1的过顶抛物线,设F1的顶点为A,F2的对称轴分别交F1、F2于点D、B,点C是点A关于直线BD的对称点.(1)如图1,如果抛物线y=x2的过顶抛物线为y=ax2+bx,C(2,0),那么①a=,b=.②如果顺次连接A、B、C、D四点,那么四边形ABCD为()A.平行四边形B.矩形C.菱形D.正方形(2)如图2,抛物线y=ax2+c的过顶抛物线为F2,B(2,c-1).求四边形ABCD的面积.(3)如果抛物线的过顶抛物线是F2,四边形ABCD的面积为,请直接写出点B的坐标.10.(2023春·江西赣州·九年级校考期末)定义:在平面直角坐标系中,抛物线y=a+bx+c (a≠0)与直线y=m交于点A、C(点C在点A右边)将抛物线y=a+bx+c沿直线y=m翻折,翻折前后两抛物线的顶点分别为点B、D.我们将两抛物线之间形成的封闭图形称为惊喜线,四边形ABCD称为惊喜四边形,对角线BD与AC之比称为惊喜度(Degreeofsurprise),记作|D|=.(1)图①是抛物线y=﹣2x﹣3沿直线y=0翻折后得到惊喜线.则点A坐标,点B 坐标,惊喜四边形ABCD属于所学过的哪种特殊平行四边形,|D|为.(2)如果抛物线y=m﹣6m(m>0)沿直线y=m翻折后所得惊喜线的惊喜度为1,求m的值.(3)如果抛物线y=﹣6m沿直线y=m翻折后所得的惊喜线在m﹣1≤x≤m+3时,其最高点的纵坐标为16,求m的值并直接写出惊喜度|D|2024中考数学新定义及探究题专题《二次函数及新定义》(解析版)【类型1二次函数问题中的新定义问题】1.(2023春·山东济南·九年级统考期末)新定义:若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点.若二次函数(c为常数)在的图象上存在两个二倍点,则c的取值范围是()A.B.C.D.【答案】D【分析】由点的纵坐标是横坐标的2倍可得二倍点在直线上,由可得二倍点所在线段的端点坐标,结合图象,通过求抛物线与线段的交点求解.【详解】解:由题意可得二倍点所在直线为,将代入得,将代入得,设,,如图,联立与,得方程,即抛物线与直线有两个交点,,解得,当直线和直线与抛物线交点在点A,上方时,抛物线与线段有两个交点,把代入,得,把代入得,,解得,.故选D.【点睛】本题考查二次函数图象与正比例函数图象的交点问题,解题关键掌握函数与方程及不等式的关系,将代数问题转化为图形问题求解.2.(2023春·湖北咸宁·九年级统考期中)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.若互异二次函数的对称轴为直线x=1且图象经过点(﹣1,0),则这个互异二次函数的二次项系数是()A.B.C.1D.﹣1【答案】B【分析】根据函数的对称轴和互异二次函数的特点计算即可;【详解】由题可知:此函数的横坐标与纵坐标互为相反数,且对称轴为直线x=1且图象经过点(﹣1,0),设此函数为,∴,解得:,∴此函数的二次项系数为;故选B.【点睛】本题主要考查了二次函数的性质,准确计算是解题的关键.3.(2023春·广西南宁·九年级统考期中)新定义:在平面直角坐标系中,对于点P(m,n)和点P′(m,n′),若满足m≥0时,n′=n-4;m<0时,n′=-n,则称点P′(m,n′)是点P(m,n)的限变点.例如:点P1(2,5)的限变点是P1′(2,1),点P2(-2,3)的限变点是P2′(-2,-3).若点P(m,n)在二次函数y=-x2+4x+2的图象上,则当-1≤m≤3时,其限变点P′的纵坐标n'的取值范围是()A.B.C.D.【答案】D【分析】根据新定义得到当m≥0时,n′=-m2+4m+2-4=-(m-2)2+2,在0≤m≤3时,得到-2≤n′≤2;当m<0时,n′=m2-4m-2=(m-2)2-6,在-1≤m<0时,得到-2≤n′≤3,即可得到限变点P′的纵坐标n'的取值范围是-2≤n′≤3.【详解】解:由题意可知,当m≥0时,n′=-m2+4m+2-4=-(m-2)2+2,∴当0≤m≤3时,-2≤n′≤2,当m<0时,n′=m2-4m-2=(m-2)2-6,∴当-1≤m<0时,-2<n′≤3,综上,当-1≤m≤3时,其限变点P′的纵坐标n'的取值范围是-2≤n′≤3,故选:D.【点睛】本题主要考查了二次函数图象上点的坐标特征,解题的关键是根据限变点的定义得到n′关于m的函数.4.(2023春·湖南长沙·九年级长沙市开福区青竹湖湘一外国语学校校考期末)定义:我们不妨把纵坐标是横坐标2倍的点称为“青竹点”.例如:点、……都是“青竹点”.显然,函数的图象上有两个“青竹点”:和.(1)下列函数中,函数图象上存在“青竹点”的,请在横线上打“√”,不存在“青竹点”的,请打“×”.①________;②________;③________.(2)若抛物线(m为常数)上存在两个不同的“青竹点”,求m的取值范围;(3)若函数的图象上存在唯一的一个“青竹点”,且当时,a的最小值为c,求c的值.【答案】(1)×;√;×(2)(3)【分析】(1)根据“青一函数”的定义直接判断即可;(2)根据题意得出关于的一元二次方程,再根据根的判别式得出关于m的不等式,即可求解;(3)根据题意得出关于的一元二次方程,再根据根的判别式得出关于a的二次函数,利用二次函数最值求解即可.【详解】(1)解:①令,方程无解,∴函数图像上不存在“青竹点”,故答案为:×;②令,解得:,,∴函数图像上存在“青竹点”和,故答案为:√;③令,方程无解,∴函数图像上不存在“青竹点”,故答案为:×;(2)解:由题意得,整理,得,∵抛物线(m为常数)上存在两个不同的“青竹点”,∴,解得;(3)解:由题意得整理,得∵函数的图像上存在唯一的一个“青竹点”,∴整理,得∴当时,a的最小值为,∵当时,a的最小值为c,∴∴,【点睛】本题属于函数背景下新定义问题,主要考查二次函数的性质,二次函数与一元二次方程的关系,解题关键是掌握二次函数图象与系数的关系,掌握二次函数与方程的关系,一元二次方程根的判别式.5.(2023春·江苏泰州·九年级统考期中)定义:两个二次项系数之和为,对称轴相同,且图像与轴交点也相同的二次函数互为友好同轴二次函数.例如:的友好同轴二次函数为.(1)函数的友好同轴二次函数为.(2)当时,函数的友好同轴二次函数有最大值为,求的值.(3)已知点分别在二次函数及其友好同轴二次函数的图像上,比较的大小,并说明理由.【答案】(1);(2);(3)当时,;当时,;当时,【分析】(1)根据友好同轴二次函数的定义,找出的友好同轴二次函数即可;(2)根据友好同轴二次函数的定义,找出的友好同轴二次函数,判断函数图像开口方向,利用函数的对称轴和自变量范围进行最大值讨论;(3)先根据友好同轴二次函数的定义,找出的友好同轴二次函数,再把两点代入,作差后比较大小,为含参数的二次不等式,求解的范围即可.【详解】(1)设友好同轴二次函数为,由函数可知,对称轴为直线,与轴交点为,,,对称轴为直线,,友好同轴二次函数为;(2)由函数可求得,该函数的友好同轴二次函数为;①当时,时,,解得:;②当时,时,,解得:;综上所述,;(3)由函数可求得,该函数的友好同轴二次函数为,把分别代入可得,,,则,,,①当时,,即,,解得:;②当时,,即,,解得:;③当时,,即,,解得:;综上所述,当时,;当时,;当时,.【点睛】本题考查二次函数的性质以及新定义问题,掌握二次函数的基本性质以及研究手段,准确根据题意求出符合要求的友好同轴二次函数是解题关键.6.(2023春·浙江金华·九年级校考期中)定义:若抛物线y=ax2+bx+c与x轴两交点间的距离为4,称此抛物线为定弦抛物线.(1)判断抛物线y=x2+2x﹣3是否是定弦抛物线,请说明理由;(2)当一定弦抛物线的对称轴为直线x=1,且它的图像与坐标轴的交点间的连线所围成的图形是直角三角形,求该抛物线的表达式;(3)若定弦抛物线y=x2+bx+c(b<0)与x轴交于A、B两点(A在B左边),当2≤x≤4时,该抛物线的最大值与最小值之差等于OB之间的距离,求b的值.【答案】(1)是定弦抛物线,理由见解析(2)或(3)b=﹣4或【分析】(1)令y=0,求出与x轴的交点坐标,可判断;(2)分开口向上向下讨论,利用定弦抛物线的定义和对称轴可求出与x轴交点坐标,用相似求出与y轴交点坐标,代入可得答案;(3)根据对称轴和所给范围分情况讨论即可.【详解】(1)解:当y=0时,x2+2x﹣3=0,解得:x1=1,x2=﹣3,则|x1-x2|=4,即该抛物线是定弦抛物线;(2):当该抛物线开口向下时,如图所示.∵该定弦抛物线的对称轴为直线x=1,设则解得:∴C(﹣1,0),D(3,0),∵△CED为直角三角形∴由题意可得∠CED=90°,∵EO⊥CD,∴△CEO∽△EDO,∴OE2=OC·OD=3,∴E(0,)设该定弦抛物线表达式为,把E(0,)代入求得∴该定弦抛物线表达式为,当该抛物线开口向上时,同理可得该定弦抛物线表达式为,∴综上所述,该定弦抛物线表达式为或;(3)解:若≤2,则在2≤x≤4中,当x=4时该定弦抛物线取最大值,当x=2时该定弦抛物线取最小值.∴l6+4b+c-(4+2b+c)=+2,解得:b=﹣4,∵≤2,∴b≥﹣4,即b=﹣4,若≤3,则在2≤x≤4中,当x=4时该定弦抛物线取最大值,当x=时该定弦抛物线取最小值.∴16+4b+c﹣=+2,解得:b1=﹣4,b2=﹣14,∵2≤≤3,∴﹣6≤b≤﹣4,∴b1=﹣4,b2=﹣14(舍去),若≤4,则在2≤x≤4中,当x=2时该定弦抛物线取最大值,当x=时该定弦抛物线取最小值.∴4+2b+c﹣=+2,解得:b=﹣5,∵≤4,∴﹣8≤b<﹣6,∴b=﹣5不合题意,舍去,若>4,则在2≤x≤4中,当x=2时该定弦抛物线取最大值,当x=4时该定弦抛物线取最小值.∴4+2b+c-(16+4b+c)=+2,解得:b=-,∵>4,∴b<﹣8,∴b=﹣,∴综上所述b=﹣4或.【点睛】本题考查了二次函数的综合性质,包括与x轴交点问题,最值问题,以及和相似的结合,准确地理解定弦抛物线的定义以及分类讨论是解决本题的关键.7.(2023春·浙江·九年级期末)定义:若抛物线与抛物线.同时满足且,则称这两条抛物线是一对“共轭抛物线”.(1)已知抛物线与是一对共轭抛物线,求的解析式;(2)如图1,将一副边长为的正方形七巧板拼成图2的形式,若以BC中点为原点,直线BC为x轴建立平面直角坐标系,设经过点A,E,D的抛物线为,经过A、B、C的抛物线为,请立接写出、的解析式并判断它们是否为一对共轭抛物线.【答案】(1)(2),,、是一对共轭抛物线【分析】(1)将化作顶点式,可求出,和的值,根据“共轭抛物线”的定义可求出,和的值,进而求出的解析式;(2)根据七巧板各个图形之间的关系可求出各个图形的边长,进而可表示点,,,,的坐标,分别求出和的解析式,再根据“共轭抛物线”的定义可求解.【详解】(1)解:,∴,,,∵抛物线与是一对共轭抛物线,∴,且,.(2)解:如图,由题意得,,则,,,,,∵点为的中点,∴,∴,,,,,∴可设抛物线,与抛物线,∴,,解得:,,∴抛物线,抛物线,∴,,,,,,∵,,∴满足且,∴、是一对共轭抛物线.【点睛】本题属于二次函数的新定义类问题,主要考查利用待定系数法求函数表达式,二次函数的顶点式,一般式及交点式三种方式的变换,熟知相关运算是解题关键.8.(2023春·湖南长沙·九年级校联考期末)定义:如果抛物线与轴交于点,,那么我们把线段叫做雅礼弦,两点之间的距离称为抛物线。
中考数学专题复习专题二新型定义问题
一、中考专题诠释
所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力
二、解题策略和解法精讲
“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.
(1)如图,过点B作
(
A.2 B.3 C.4 D.5
思路分析:“距离坐标”是(1,2)的点表示的含义是该点到直线l1、l2的距离分别为1、2.由于到直线l1的距离是1的点在与直线l1平行且与l1的距离是1的两条平行线a1、a2上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线b1、b2上,它们有4个交点,即为所求.
解:如图,
∵到直线l1的距离是1的点在与直线l1平行且与l1的距离是1的两条平行线a1、a2上,
到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线b1、b2上,
∴“距离坐标”是(1,2)的点是M1、M2、M3、M4,一共4个.
故选C.
点评:本题考查了点到直线的距离,两平行线之间的距离的定义,理解新定义,掌握到一条直线的距离等于定长k的点在与已知直线相距k的两条平行线上是解题的关键.
的度数.
6三种情况运用等边三角形的性质,正方形的性质和30°的直角三角形性质就可以求出∠BCD的度数.
解:(1)∵AD∥BC,
∴∠ABC+∠BAD=180°,∠ADB=∠DBC.
∵∠BAD=120°,
∴∠ABC=60°.
∵BD平分∠ABC,
∴∠ABD=∠DBC=30°,
∴∠ABD=∠ADB,
∴△ADB是等腰三角形.
在△BCD中,∠C=75°,∠DBC=30°,
∴∠BDC=∠C=75°,
∴△BCD为等腰三角形,
∴BD是梯形ABCD的和谐线;
(2)由题意作图为:图2,图3
(3)∵AC是四边形ABCD的和谐线,
∴△ACD是等腰三角形.
∵AB=AD=BC,
如图4,当AD=AC时,
∴AB=AC=BC,∠ACD=∠ADC
A.在同一条直线上
B.在同一条抛物线上
C.在同一反比例函数图象上
D.是同一个正方形的四个顶点
思路分析:如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),先根据新定义运算得出(x3+x4)+(y3+y4)=(x4+x5)+(y4+y5)=(x5+x6)+(y5+y6)=(x4+x6)+(y4+y6),
则x3+y3=x4+y4=x5+y5=x6+y6,若令x3+y3=x4+y4=x5+y5=x6+y6=k,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线y=-x+k上.
解:∵对于点A(x1,y1),B(x2,y2),A⊕B=(x1+x2)+(y1+y2),
如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),
那么C⊕D=(x3+x4)+(y3+y4),
D⊕E=(x4+x5)+(y4+y5),
E⊕F=(x5+x6)+(y5+y6),
F⊕D=(x4+x6)+(y4+y6),
又∵C⊕D=D⊕E=E⊕F=F⊕D,
∴(x3+x4)+(y3+y4)=(x4+x5)+(y4+y5)=(x5+x6)+(y5+y6)=(x4+x6)+(y4+y6),∴x3+y3=x4+y4=x5+y5=x6+y6,
令x3+y3=x4+y4=x5+y5=x6+y6=k,
则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线y=-x+k上,
∴互不重合的四点C,D,E,F在同一条直线上.
故选A.
点评:本题考查了一次函数图象上点的坐标特征,以及学生的阅读理解能力,有一定难度.对应训练
5.一张矩形纸片,剪下一个正方形,剩下一个矩形,称为第一次操作;在剩下的矩形纸片中再剪下一个正方形,剩下一个矩形,称为第二次操作;…;若在第n次操作后,剩下的矩形为正方形,则称原矩形为n阶奇异矩形.如图1,矩形ABCD中,若AB=2,BC=6,则称矩形ABCD为2阶奇异矩形.
(1)判断与操作:
如图2,矩形ABCD长为5,宽为2,它是奇异矩形吗?如果是,请写出它是几阶奇异矩形,并在图中画出裁剪线;如果不是,请说明理由.
(2)探究与计算:
已知矩形ABCD的一边长为20,另一边长为a(a<20),且它是3阶奇异矩形,请画出矩形ABCD及裁剪线的示意图,并在图的下方写出a的值.
(3)归纳与拓展:
已知矩形ABCD两邻边的长分别为b,c(b<c),且它是4阶奇异矩形,求b:c(直接写出结果).
7.解:(1)矩形ABCD是3阶奇异矩形,裁剪线的示意图如下:
(2)裁剪线的示意图如下:
四、中考真题演练
一、选择题
1.在平面直角坐标系中,下列函数的图象经过原点的是()
5
C.y=2x D.y=-2x2+x-7
A.y=-x+3 B.y=
x
1.C
2.若圆锥的轴截图为等边三角形,则称此圆锥为正圆锥,则正圆锥的侧面展开图的圆心角是()
A.90°B.120°C.150°D.180°
A.40 B.45 C.51 D.56
3.C
4.对平面上任意一点(a,b),定义f,g两种变换:f(a,b)=(a,-b).如f(1,2)=(1,-2);g(a,b)=(b,a).如g(1,2)=(2,1).据此得g(f(5,-9))=()A.(5,-9)B.(-9,-5)C.(5,9)D.(9,5)
4.D
5.连接一个几何图形上任意两点间的线段中,最长的线段称为这个几何图形的直径,根据此定义,图(扇形、菱形、直角梯形、红十字图标)中“直径”最小的是()
A.B.C.
D.
5.C
二、填空题
1,四边形ABCD即为“准等腰梯形”.其中∠B=∠C.
梯形BCDE和一个三角形ADE;。