组合导航系统设计解析
- 格式:ppt
- 大小:347.50 KB
- 文档页数:47
中等精度惯性/卫星组合导航系统设计王超一 ZY1203209张天钧 ZY1203233张鑫 ZY1203234一、系统功能1)惯性/卫星组合系统简介组合导航是弹道导弹等大型空间飞行器导航定位技术主要的发展方向之一。
应用具有完全自主性的惯性导航系统和高精度卫星导航系统构成惯性/ 卫星组合导航系统,是最具有应用前景的组合导航架构。
全球定位系统(Globe Position System,GPS)和捷联惯性导航系统(SINS)都是目前世界上应用广泛的导航方法之一。
GPS易受地形地物的影响而导致定位中断,并且受制于人,而SINS定位误差随时间而积累,若将它们组合起来可形成优势互补并且在短期和长期上都有保证。
随着现代电子信息技术的发展.嵌人式技术的应用越来越广泛,尤其是在导航领域,导航设备正朝小型化、微型化应用发展,而且对系统精度和实时性要求也越来越高。
SINS/GPS组合导航能够增强导航系统容错能力和余度能力,研究高精度、高可靠性、小体积、低成本的SINS/GPS组合导航系统具有重要意义。
在飞机、舰船或其他对导航系统体积和性能有严格要求的领域具有潜在的应用价值。
为克服GPS和SINS各自的缺点,根据SINS和GPS的导航功能互补的特点,取长补短,构成一个有机的整体,提高系统的整体导航精度及导航性能以及空中对准和再对准的能力。
GPS接收机在惯导位置和速度信息的辅助下,也将改善捕获、跟踪和再捕获能力,并在卫星分布条件差或可见星少的情况下导航精度不致下降过大。
由于优点显著,SINS /GPS组合系统被一致认为是飞行载体最理想的组合导航系统。
2)系统基本构成组合导航系统的基本组成如图 1 所示。
在图 1 中,只保留惯性导航系统、卫星导航系统与信息融合系统,就构成惯性/ 卫星组合导航系统的基本组成。
其中惯性导航系统有陀螺稳定平台导航系统与捷联惯性测量组合导航系统 2 种类型。
捷联惯性测量组合精度较低,一般仅在中近程空间飞行器上使用。
INS/GPS组合导航算法设计1 引言目前单一导航系统难以满足实际要求,把两种或多种导航系统组合起来,应用最优估计理论,形成最优组合导航系统,使组合后的导航系统在精度和可靠性都有所提高。
本课题研究飞行器GPS/INS组合导航算法,通过对飞行器INS/GPS 组合导航算法设计,以VC++6.0为平台组建INS/GPS组合导航仿真系统,对组合导航算法进行实现。
并对飞行器的飞行状态进行仿真,仿真前预先设定飞行器的飞行参数(包括平飞、加速、减速、上升、下降、转弯等飞行动作以及每个动作开始结束的时间),通过设计的组合导航仿真系统得到飞行器的位置、速度、姿态角信息。
并通过MATLAB对INS/GPS组合导航解算出来的数据与预先设定的实际飞行数据进行比较分析。
惯性导航系统的优点是:(1)自主性强,它可以不依赖任何外界系统得支持,单独进行导航。
(2)不受环境、载体运动和无线电干扰的影响,可连续输出包括基准在内的全部导航参数,实时导航数据更新率高。
(3)具备很好的短期精度和稳定性。
其主要缺点是导航定位误差随时间增长,难以长时间的独立工作。
全球定位系统是一种高精度的全球三维实时导航的卫星导航系统,其导航定位的全球性、高精度、误差不随实践积累的优点,但是GPS系统也存在一些不足之处,主要是:GPS接收机的工作受飞行机动影响,当载体的机动超过GPS接收机的动态范围时,GPS接收机会失锁,从而不能工作,或者动态误差过大,超过允许值,不能使用。
且GPS接收机的更新频率较低(1HZ),难以满足实时控制的要求。
抗干扰能力差。
此外GPS导航受制于人。
因此GPS系统一般作为理想的辅助导航设备使用。
GPS/惯性组合导航,克服了各自的缺点,取长补短,可以构成一个比较理想的导航系统,GPS/惯性组合导航可以大大降低导航系统的成本。
随着MEMS技术的发展,惯导成本的降低都是组合导航系统发展的优势所在。
我们用组合导航算法将惯性导航单元的信息和GPS的信息进行综合,来补偿惯性元件的误差,修正速度、姿态信号,从而构成一个精度适中、结构紧凑、成本低廉的导航系统。
飞行器组合导航系统的设计与实现随着航空业的不断发展,飞行器的导航系统变得越来越复杂和精细。
如今,现代飞行器依赖于许多不同的导航系统,在航线规划和安全控制方面发挥着至关重要的作用。
其中,飞行器组合导航系统也成为了一项重要的技术。
飞行器组合导航系统是一种集成多个导航系统的技术,例如GPS(全球定位系统)、惯性导航系统(INS)、地面基准导航系统等等。
飞行员可以同时访问所有这些系统,以帮助他们在飞行中保持航向和高度。
与传统的单一导航系统相比,组合导航系统可以提供更高的精度和可靠性。
在设计和实现飞行器组合导航系统时,需要考虑多个因素。
下面将分别介绍这些因素。
1. GPS系统GPS是飞行器组合导航系统中的一个重要组成部分。
GPS可以提供精确的位置信息,有助于飞行员在飞行过程中准确地确定飞机的位置和目标航线。
在实际应用中,GPS通常需要与惯性导航系统相结合,以补充GPS在移动过程中的误差。
2. 惯性导航系统惯性导航系统采用陀螺仪和加速度计等仪器测量飞行器的位置和速度,没有外界支持就能提供垂直和水平方向的导航和位置数据。
由于惯性导航系统的误差是随时间积累的,因此在长时间飞行中,需要对系统进行校正和修正。
3. 地面基准导航系统地面基准导航系统是一种被动外部辅助导航系统,可以提供飞行器在地球表面上的准确位置和高度。
该系统使用地球表面上的接收器和天线接收GPS卫星的信号,并将信号地面位置与航班计划中的经纬度坐标进行比对,以确定飞行器的准确位置。
该系统通常用于在飞行离开GPS可用信号覆盖的区域时进行定位。
在实现飞行器组合导航系统时,需要考虑一些技术挑战和难点。
下面将列举这些挑战和难点。
1. 复杂的集成性飞行器组合导航系统需要将多个导航系统进行集成,这往往需要一定的软件工程技术。
此外,不同导航系统之间的数据传输也需要协调和管理,以保证数据的及时交换和正确性。
2. 高精度与高可靠性由于飞行器在飞行中面临风险和危险,因此要求导航系统具有高精度和高可靠性。
《基于嵌入式系统的北斗-GPS-SINS组合导航系统设计与实现》篇一基于嵌入式系统的北斗-GPS-SINS组合导航系统设计与实现一、引言随着科技的不断发展,导航技术在各行各业中的应用日益广泛。
作为现代社会的重要技术手段,导航系统的设计不仅涉及到多学科的知识融合,而且其实现过程的复杂性和精细度也在不断提升。
在众多的导航系统中,北斗/GPS/SINS(北斗卫星导航系统、全球定位系统、捷联式惯性测量系统)组合导航系统凭借其独特的优势和良好的互补性,逐渐成为了众多应用领域的首选。
本文将就基于嵌入式系统的北斗/GPS/SINS组合导航系统的设计与实现进行深入探讨。
二、系统设计概述(一)设计目标本系统设计的主要目标是实现北斗/GPS/SINS的组合导航,提高导航的精度和可靠性,满足各种复杂环境下的导航需求。
通过嵌入式系统的开发,将组合导航系统应用于各类设备中,实现高效、精准的定位和导航。
(二)设计原理本系统设计基于嵌入式系统技术,结合北斗/GPS/SINS的各自优势,通过数据融合算法实现组合导航。
其中,北斗和GPS提供全球定位信息,SINS提供高精度的姿态和速度信息,三者之间的数据通过算法进行融合,从而得到更准确、更稳定的导航信息。
三、系统硬件设计(一)处理器选择系统硬件的核心是处理器,本系统选择高性能的嵌入式处理器,具备强大的数据处理能力和良好的功耗控制能力。
(二)模块设计系统硬件包括北斗/GPS接收模块、SINS测量模块、数据传输模块等。
其中,北斗/GPS接收模块负责接收卫星信号并转换为数字信号;SINS测量模块负责测量姿态和速度信息;数据传输模块负责将处理后的数据传输给上位机或其它设备。
四、系统软件设计(一)操作系统选择本系统选择适用于嵌入式系统的实时操作系统,以保证系统的稳定性和实时性。
(二)软件开发环境搭建为方便开发,搭建了包括编译器、调试器等在内的软件开发环境。
同时,为保证软件的兼容性和可移植性,采用模块化设计方法进行软件开发。
多传感器融合的智能车定位导航系统设计随着科技的发展和智能车的应用,智能车的定位和导航系统也变得越来越重要。
传统的GPS导航系统虽然能够提供车辆位置信息,但在一些特殊的环境下,如高楼密集区域、隧道、室内停车场等,GPS信号的覆盖不足以满足定位和导航的需求。
为了解决这个问题,多传感器融合的智能车定位导航系统应运而生。
多传感器融合的智能车定位导航系统,是通过集成GPS、惯性导航系统(Inertial Navigation System,INS)、车载传感器、激光雷达、摄像头等多种传感器,利用数据融合和算法优化技术,实现对车辆位置和运动状态的精准定位和导航。
下面我们将从传感器选择、数据融合和算法优化等方面,介绍一下多传感器融合的智能车定位导航系统设计。
一、传感器选择2. 惯性导航系统(INS):惯性导航系统利用加速度计和陀螺仪等传感器,通过积分计算车辆位置和姿态信息,能够在短期内提供高精度的定位和导航信息。
但由于惯性导航系统存在漂移问题,长期使用会导致位置和姿态信息的累积误差,因此需与其他传感器进行组合使用。
3. 车载传感器:车载传感器包括车速传感器、转向传感器、车辆倾斜传感器等,能够提供车辆的运动状态信息,如车速、转向角度、横摆角等,对于车辆的精准定位和导航非常重要。
4. 激光雷达和摄像头:激光雷达和摄像头能够提供车辆周围环境的三维点云和图像信息,通过对周围环境进行感知和识别,能够帮助智能车更准确地定位和导航。
二、数据融合在多传感器融合的智能车定位导航系统中,不同传感器所产生的数据需要经过融合处理,以提高定位精度和鲁棒性。
数据融合主要包括信息融合和决策融合两个方面。
1. 信息融合:通过对不同传感器数据进行融合,得到更准确的车辆位置和姿态信息。
信息融合主要包括传感器数据的预处理、配准、融合和滤波等步骤。
通过信息融合,可以弥补不同传感器之间的精度差异,提高整体系统的定位精度。
2. 决策融合:通过对融合后的信息进行决策分析和优化,实现对车辆位置和导航路径的精确控制。
《基于嵌入式平台北斗-SINS组合导航设计与实现》篇一基于嵌入式平台北斗-SINS组合导航设计与实现一、引言随着科技的发展,导航技术已经成为人们日常生活和军事应用中不可或缺的一部分。
其中,北斗导航系统和SINS (Strapdown Inertial Navigation System,捷联式惯性导航系统)各自具有独特的优势和局限性。
为了充分利用两种技术的优点并弥补其不足,本文提出了基于嵌入式平台的北斗/SINS组合导航设计与实现方案。
二、北斗导航系统与SINS的基本原理与特点1. 北斗导航系统:北斗导航系统是我国自主研发的全球卫星导航系统,具有高精度、全天候、全球覆盖等特点。
其工作原理是通过接收多个卫星的信号,利用三角测量法确定用户的位置和时间信息。
2. SINS:SINS是一种基于陀螺仪和加速度计的惯性导航系统,能够自主工作、无需外部信号输入即可提供实时位置、速度和姿态信息。
但随着时间的推移,SINS的误差会逐渐累积,导致导航精度降低。
三、北斗/SINS组合导航系统设计1. 系统架构:本设计采用嵌入式平台作为硬件基础,将北斗导航系统和SINS进行集成,形成一套完整的组合导航系统。
系统主要由嵌入式处理器、北斗接收模块、SINS模块、电源模块等组成。
2. 数据融合算法:为了充分利用北斗和SINS的优点,本设计采用数据融合算法,将两种系统的数据进行融合处理。
当SINS 出现误差累积时,北斗的高精度定位信息可以对其进行校正;反之,当北斗信号被遮挡或干扰时,SINS可以提供连续的导航信息。
3. 嵌入式平台选择:本设计选用高性能的嵌入式处理器作为核心部件,具有高运算速度、低功耗等特点,满足组合导航系统的实时性和可靠性要求。
四、系统实现1. 硬件实现:根据系统架构设计,完成嵌入式处理器、北斗接收模块、SINS模块等硬件设备的选型和连接。
同时,设计合理的电源模块,保证系统的稳定供电。
2. 软件实现:编写嵌入式平台的软件程序,实现数据采集、处理、传输等功能。
第6章组合导航系统6.1引言从惯性导航的工作原理和误差分析可以看出,惯导系统的自主性很强,它可以连续地提供包括姿态基准在内的全部导航参数,并且具有非常好的短期精度和稳定性。
在航空、航天、航海和许多民用领域都得到了广泛的应用,成为目前各种航行体上应用的一种主要导航设备。
其主要缺点是导航定位误差随时间增长,导航误差积累的速度主要由初始对准的精度、导航系统使用的惯性传感器的误差以及主运载体运动轨迹的动态特性决定。
因而长时间独立工作后误差会增加[1]。
解决这一问题的途径有两个,一是提高惯导系统本身的精度。
主要依靠采用新材料、新工艺、新技术,提高惯性器件的精度,或研制新型高精度的惯性器件。
实践已经证明,这需要花费很大的人力和财力,且惯性器件精度的提高是有限的。
另一个途径是采用组合导航技术。
主要是使用惯性系统外部的某些附加导航信息源,用以改善惯性系统的精度,通过软件技术来提高导航精度。
在实际应用中有多种不同原理的其它导航系统,它们具有不同的特点:如多普勒导航系统,系统的误差和工作时间长短无关,但保密性不好;天文导航系统,位置精度高,但受观测星体可见度的影响;卫星导航的精度高,容易做到全球、全天候导航,但它需要一套复杂的定位设备,当载体做机动飞行时,导航性能下降,尤其重要的是,卫星导航在战时将受到导航星发射国家的制约。
于是,人们设想把具有不同特点的导航系统组合在一起,取长补短,用以提高导航系统的精度。
实践证明,这是一种很有效的方法。
现在可以利用的各种现代辅助导航手段结合估算处理技术和高速计算机的进展,使组合导航系统在近年来获得了广泛的应用。
组合导航技术是目前导航技术发展的重要方向。
6.2 组合导航系统的基本原理和方法6.2.1 组合导航系统基本原理在辅助的惯性导航系统中,一个或多个惯性导航系统的输出信号与独立测量的由外部源导出的相同的量进行比较。
然后根据这些测量值的差异导出对惯性导航系统的修正。
适当组合这些信息,就有可能获得比独立使用惯性系统更高的导航精度[2]。
组合导航系统综合设计总结报告姓名:030810521 金鹏030810523 卞晓永030810511 毛槿健班级:0308105日期:2011/11/29一、引言...............................................1.1陀螺和加表的发展概况...................................................1.2 GPS的发展概况.........................................................1.3 捷联惯导的现状 ........................................................二、组合导航原理........................................2.1 组合导航的工作原理 ....................................................2.2 INS/GPS组合模式分析...................................................三、组合导航综合设计....................................3.1IMU误差建模及补偿......................................................3.2GPS信息提取............................................................3.3组合导航结果分析.......................................................四、小结与体会 .........................................一、引言、1.1陀螺和加表的发展概况惯性导航系统是一种自主式导航系统,自问世以来,广泛应用在航海、航空、航天和军事等领域中;陀螺仪作为一种重要的惯性敏感器,是构成INS的基础核心器件,INS的性能在很大程度上取决于陀螺仪的性能。
Technology Study技术研究DCW9数字通信世界2020.041 组合导航处理平台惯性导航系统的理论基础是牛顿力学定律—惯性定律,利用惯性敏感元件、基准方向和初值位置确定载体的位置、速度和姿态,为自主式导航系统。
但惯导系统会随着时间累积误差,严重时会影响导航精度,需引入外部数据对惯导系统进行定时校正,采用两种或两种以上的导航设备组合,构建组合导航系统,目前主流的组合方式为卫星导航系统(GNSS )和惯性导航系统(INS )相组合[1][2],组合导航系统中的导航处理平台一般采用FPGA+DSP 的架构实现,缺点是体积大、功耗高。
随着组合导航系统集成化程度的要求越来越高,我们提出一种基于Zynq 处理器构建组合导航处理平台的方案,充分利用平台优势,有效减小系统体积和功耗。
2 总体设计方案组合导航系统平台系统架构如图1所示:图1 组合导航处理平台系统架构图该处理平台由ZYNQ7020,ADC ,DDR3,eMMC ,UART ,网络及422/485等接口组成。
主要完成信号处理(对陀螺信号、加速度计信号、卫导信号等进行处理)、数据采集、导航解算、数据存储、数据传输等功能。
①陀螺仪和加速度计输出为TTL 信号,利用ZYNQ7020的PL 端采集两个TTL 脉冲信号,并进行计数。
②陀螺控制板与ZYNQ7020 PL 端采用UART TTL 通信,用于实现陀螺仪的抖频和稳频控制。
③卫星导航接收机通过RS422差分输入,经电平转换后与PL 端进行通信,用于卫星导航接收机的原始观测量数据和导航信息的采集。
④采用RS422接口输出导航解算结果至外部系统,提升通信可靠性和抗干扰能力。
⑤系统预留网络和RS485等接口,便于系统调试和软件升级。
⑥系统采用大容量的存储(eMMC )和运行内存(DDR3),PL 和PS 端共享内存,用于数据采集和解算处理。
Zynq7020作为平台核心,是基于Xilinx 所有可编程SOC (APSOC )架构,由PS 和PL 两大部分组成,两者之间通过AXI接口通信,AXI-HP 和AXI-ACP 协议下,PS 仅能读数据,在AXI-GP 模式下,PS 可以读写数据。
INS-DVL组合导航关键技术研究INS/DVL组合导航关键技术研究摘要:随着全球定位系统(GPS)在海洋环境中的局限性变得越来越明显,需要开发新的导航方法。
航行员在深海中的航行越来越需要高精度的导航支持,因此人们开始研究将惯性导航系统(INS)和多普勒速度测量装置(DVL)相结合的技术,以获得更为准确的位置和速度信息。
INS/DVL组合导航系统受到了广泛的关注,但其在复杂海洋环境下实现高精度导航仍面临一些问题。
本文对INS/DVL组合导航系统的技术原理、误差来源、错误补偿方法、导航滤波算法及其在复杂海洋环境中的应用进行了综述,旨在为航海领域研究者提供一些参考。
关键词:惯性导航系统、多普勒速度测量装置、组合导航、导航滤波算法、海洋环境。
正文:一、概述INS/DVL组合导航系统是利用惯性测量单位和多普勒速度测量仪的数据信息融合实现高精度导航的一种方法。
INS能够提供船舶的加速度和艏向角速度信息,而DVL则可测量船舶在流场中的速度。
许多研究表明INS/DVL组合导航系统具有高精度、持续性、自主性等优点,因而受到广泛的研究和应用。
但在应用过程中,INS/DVL组合导航系统仍会受到各种误差的干扰,包括INS的器件误差、DVL的测量误差、环境的干扰等。
这些误差会影响导航系统的性能,甚至导致导航失败。
因而,需要采取措施进行错误补偿和优化算法选择。
二、 INS/DVL组合导航系统技术原理一般而言,INS/DVL组合导航系统的技术原理可分为以下步骤:INS惯性测量单位和DVL装置同步输出数据,然后将二者数据融合并通过滤波处理,最终得到位置和速度信息。
(1)惯性测量单位惯性测量单位由加速计和陀螺仪两种传感器组成。
加速计可测量船舶的加速度,而陀螺仪可以测量艏向角速度。
INS系统将两种传感器的数据转换为三维坐标系下的位置和速度信息。
(2)多普勒速度测量装置多普勒速度测量装置能够测量船舶在流场中的速度。
将其输出的速度矢量信息转换成体坐标系下的船体速度信息,与INS计算得到的船体速度信息进行匹配。
《基于嵌入式系统的北斗-GPS-SINS组合导航系统设计与实现》篇一基于嵌入式系统的北斗-GPS-SINS组合导航系统设计与实现一、引言随着科技的不断进步,导航技术已经成为现代生活中不可或缺的一部分。
在众多导航系统中,北斗/GPS/SINS组合导航系统以其高精度、高稳定性和高可靠性等特点,在嵌入式系统中得到了广泛应用。
本文将详细介绍基于嵌入式系统的北斗/GPS/SINS 组合导航系统的设计与实现过程。
二、系统设计1. 硬件设计本系统硬件设计主要包括嵌入式处理器、北斗/GPS接收模块、SINS模块以及相关传感器等。
其中,嵌入式处理器负责数据处理和系统控制,北斗/GPS接收模块用于接收卫星信号,SINS模块则负责提供姿态和位置信息。
此外,还需配备温度传感器、压力传感器等,以实现环境参数的实时监测。
2. 软件设计软件设计包括操作系统、驱动程序、导航算法等部分。
操作系统选用实时性较强的嵌入式操作系统,以保障系统的稳定性和响应速度。
驱动程序负责与硬件设备进行通信,实现数据采集和传输。
导航算法则是本系统的核心,包括北斗/GPS定位算法、SINS算法以及组合导航算法等。
三、系统实现1. 数据采集与处理系统通过北斗/GPS接收模块和SINS模块采集卫星信号和环境参数。
数据经过预处理后,通过嵌入式处理器的运算和分析,提取出有用的导航信息。
2. 北斗/GPS定位算法实现北斗/GPS定位算法是实现系统定位功能的关键。
通过分析卫星信号的传播时间和角度等信息,计算出用户的位置。
本系统采用差分定位技术,进一步提高定位精度。
3. SINS算法实现SINS算法通过陀螺仪和加速度计等传感器获取姿态和速度信息,实现自主导航。
本系统采用三轴陀螺仪和三轴加速度计,通过卡尔曼滤波算法对数据进行融合和处理,得到精确的姿态和位置信息。
4. 组合导航算法实现组合导航算法将北斗/GPS定位信息和SINS导航信息进行有效融合,提高系统的定位精度和稳定性。