最新GPS控制网设计
- 格式:ppt
- 大小:8.71 MB
- 文档页数:82
关于建设林州GPS控制网的设计研究目前GPS布网技术已广泛应用在城市建设的各个领域,其优越性在于很大程度上逐步取代常规仪器测量定位控制方法。
在我市利用GPS卫星定位技术建立测量控制网、进行细部测图和工程放样等测量工程具有精度高、速度快、操作简便等优越性。
我市区1:1000航测数字化成图于2003年。
当时我市总规2001—2020市区约面积50km2,规划区范围196km2。
现在我市总体规划又做了重新调整和布局,即我市总规2010—2030。
中心城区发展由原来的50km2发展至137km2,城市规划区控制范围增至为约360km2,即中心城区、北部产业集聚区和控制区。
林州在“十二五”期间有鹤辉、林长高速公路和长兖铁路通过;诸多工业大项目、水利设施等投资近数十亿元分布林州范围。
鉴于此境,为林州整体规划、科学布局和各级领导提供科学决策和优化发展目的,所以对GPS网布设尤为重要。
1 GPS网技术设计和基础材料根据现行国家标准《全球定位系统(GPS)测量规范》(GB/T18314-2009),A级网是卫星定位连续运行基准站,本节GPS网设计则主要指GPS B、C、D、E级。
GPSB、C、E级网主要是为建立国家二、三、四等大地控制网,以及测图控制点。
由于点位多,布设工作量大,布设前应进行技术设计,以获取量优的布测方案。
在技术设计前应根据任务的需要,收集测区范围已有的卫星定位连续运行基准站、各种大地点位资料、各种图件,地质资料,以及测区总体建设规模和近期发展方向的资料。
1.1 我市测区内外有国家二、三等三角点成果计五点,可作测区四等GPS 起算点;1.2 我市有合涧—安阳二等水准路线经过测区外,其中二等水准点合安2、合安5距测区甚近,可作测区三、四等水准网的起算点;1.3 现有1∶5000彩印地形图,可作基础控制网设计之用;在开始进行GPS布网技术设计时,应对上述资料分析研究、勘察,然后进行图上设计。
图上设计主要依据任务GPS网布设的目的、等级、边长、观测精度等要求,综合考虑测区已有的资料、测区地形、地质以及作业效率等情况,按照优化设计原则在设计图上标出新设计的GPS点的点位、点名、点号和级别,还应标出相关的各类测量站点、水准路级及主要的交通路线、水系和居民地等。
E级GPS平面控制网技术设计书1、概述本次gps平面控制测量任务和作业容是位于北部松花江主航道北侧,为配合本次控制测量课程设计任务,需在江心岛开发区约4.2平方公里的测区围建立E级GPS平面控制网。
2、测区自然地理概况和已有资料2.1、测区自然地理概况测区位于省市北部松花江主航道北侧,是松花江泛洪区自然形成的梭形岛,为河漫滩湿地。
该岛地理位置优越,南北与市区相望,西隔宾洲铁路桥与太阳岛相望。
测区东西长约4.5公里,南北最宽约1.3公里,面积达4.2平方公里,平均海拔115米,位于松花江中游,属中温带大陆性季风气候,冬长夏短,全年平均降水量569.1毫米,降水主要集中在6-9月,夏季占全年降水量的60%。
四季分明,冬季1月平均气温约零下19度;夏季7月的平均气温约23度。
测区围:测区地理坐标为东经:126度37分—126度40分北纬:45度48分实测围呈不规则形状,围面积约4.2平方公里。
2.2、测区已有资料成果情况测区有google earth卫星遥感图一幅,该图可供图上选点。
此外,测区有校区控制三角点2个,其数据如下:3、测量技术设计依据(1)GB-T-18314-2009《全球定位系统(GPS)测量规》(2)CJJ 73-97《全球定位系统城市测量技术规程》(3)CH 1002-95《测绘产品检查验收规定》(4)CH 1003-95《测绘产品质量评定标准》(5)CH / T1004《测绘技术设计规定》(5)CJJ -8-99《城市测量规》4、使用仪器本次测量采用的GPS接收机型号是南方北极星GPS 9600,该GPS仪接受的信号是L1-C/A码。
其平面精度:5mm+1ppm ,高程精度:10mm+2ppm 。
5、布网方案5.1、布网要求GPS 网相邻点间基线中误差按下式计算:式中(mm)为固定误差;(ppm)为比例误差系数;(km)为相邻点间的距离。
GPS-E 级网的主要技术要求应符合表1规定。
GPS静态测量控制网设计一、概述GPS(全球定位系统)已经成为现代测量技术中不可或缺的重要工具,GPS静态测量控制网是GPS测量的基础。
设计一个合理的GPS静态测量控制网是确保测量精度和可靠性的关键。
二、控制网的选择在设计GPS静态测量控制网时,首先需要选择合适的控制网。
控制网的选择应考虑以下几个因素:1.网格密度:控制网的网格密度应根据测量任务的要求来确定。
一般情况下,密集网络可以提高测量精度,但也会增加测量成本。
2.控制点的分布:控制点的分布应考虑地形地貌的特点和监测要求,避免林木、建筑物等对测量结果的影响。
3.控制网形状:控制网形状的选择应根据工程特点和测量任务来确定,一般情况下选择长方形或正方形网格。
三、测量基线的设置测量基线是控制网的基础,其合理设置对测量结果的精度和可靠性有重要影响。
在设置测量基线时,应考虑以下几点:1.基线长度:基线长度应根据地质地形条件、测量精度要求等因素选择合适的长度。
一般情况下,短基线适用于地形平坦、视线通畅的地区,长基线适用于山区、密林等复杂地形。
2.基线方向:基线方向应考虑测量任务的要求和地形地貌特点,避免遮挡物对测量结果的影响。
3.基线标记:基线标记应清晰明确,便于测量人员进行测量操作。
四、控制点的设置控制点是控制网的关键,其合理设置对测量结果的精度和可靠性起着决定性作用。
在设置控制点时,应考虑以下几点:1.控制点的选取:控制点的选取应根据测量任务的要求和地形地貌条件来确定,避免地形高低起伏、建筑物等对测量结果的影响。
2.控制点的标记:控制点的标记应清晰明确,确保测量人员可以准确找到控制点进行测量操作。
3.控制点的互测:控制点应进行互测,以验证控制点的准确性和可靠性。
五、数据处理数据处理是GPS测量的重要环节,其正确性和高效性对测量结果的精度和可靠性有着至关重要的影响。
在数据处理过程中,应注意以下几点:1.数据的准确性:数据的准确性是保证测量结果准确的前提,应根据实际情况采取合适的方法和工具确保数据的准确性。
gps控制网的布设流程与实践论文2万字在经典测量中,控制网的优化十分重要,它直接影响到最后成果的精度。
GPS出现后,控制图的结构概念起了重大变化,原来的一些控制网方案的优化已不再适用,如何分析和讨论GPS网观测方案优化问题,便出现在测量工作者面前,本文就GPS网的布设作一简要分析。
简述了GPS测量技术的发展状态,及GPS工程网的布设,介绍了GPS测量所具有特点,GPS测量在公路中的应用,最后对GPS测量作出了展望。
1、GPS技术的发展概况全球定位系统(GlobalPositioningSystem简称GPS)是美国国防部从上世纪70年代开始研制的新一代卫星导航与定位系统,历时20年,耗资200亿美元,于1994年全面建成。
该系统利用导航卫星进行测时和测距,有在海、陆、空进行全方位实时三维导航与定位能力。
GPS是继阿波罗登月计划、航天飞机后的美国第三大航天工程,如今,它已成为当今世界上最实用,也是应用最广泛的全球精密导航、指挥和调度系统。
1.1GPS系统的结构组成GPS系统主要包括三大组成部分:即空间星座部分、地面监控部分和用户设备部分。
(1)空间星座部分由21颗工作卫星和3颗在轨备用卫星组成GPS卫星星座,亦即(21+3)GPS 星座。
24颗卫星均匀分布在6个轨道平面内,各个轨道平面之间交角60度。
卫星距地面的平均高度为20200km,卫星绕地球运行周期为11小时58分。
地面观测者每天至少可以观测到4颗卫星,最多还可观测到11颗卫星。
(2)地面监控部分GPS工作卫星的地面监控系统主要由分布在全球的1个主控站、3个注入站和5个监测站组成。
对于导航定位来说,GPS卫星是一动态已知点。
卫星的位置是依据卫星发射的星历,即描述卫星运动及其轨道的参数算得的。
每颗GPS 卫星所播发的星历,是由地面监控系统提供的。
卫星上的各种设备是否正常工作,以及卫星是否一直沿着预定轨道运行,都要由地面设备进行监测和控制。
地面监控系统另一重要作用是保持各颗卫星处于同一时间标准――GPS时间系统。
3 大同矿区GPS控制网设计实例3.1 任务来源及工作量大同矿区为全国最大的煤炭企业大同矿物局所属,并且预测煤炭储量丰富,工业前景可观。
但是该矿区原有测量控制网为90年代建立,历经十几年的采矿影响,认为破坏及地貌变化,使原有控制点大部分失去控制作用,使得服务于日常生产的多项测量工作难以正常进行,远远不能满足矿山生产和工程建设的需要。
因此,该矿区急需建立新的测量控制网。
该网不但要满足日常采矿生产需要,而且还要顾及远景规划及预测区,控制面积约600 KM2,测量范围(如图3-1)为:图3-1 已知点分布图东至:550km(大同矿区独立坐标系)南至:4415km西至:534km北至:4439km3.2 测区概况大同矿区位于山西省大同市西南,地跨大同、朔州两市,地处东经112度53分─113度12分,北纬39度55分─40度零8分,距市区12。
5公里,辖区与大同市南郊区交叉,总面积约90平方公里,号称百里矿区。
区内为平缓的丘陵地貌,西南高,东北低。
尖口山最高,标高1835.9米,口泉沟最低,标高1093.6米。
境内主要山脉有七峰山、鸡爪山、大钟山、马武山等;主要河流有口泉河、十里河,均为季节性河流。
该区厂矿企业主要分布在口泉─黑流水(口泉沟),马军营─燕子山(云岗沟)两条狭长的山沟里。
通往矿区的铁路有大同—王村、大同—燕子山两条矿区专用线,各煤矿集运站都分散在两条专用线周围。
以横穿矿区东西向的109国道、沿矿区东侧穿行的南北向大运公路为骨干线,配以矿区内专用公路,交通十分方便。
矿区供水水源以第四系潜水为主,现有大同市的白马城水源地以及时庄水源地,供水量严重不足,需另找新的水源。
矿区电源主要来自大同市第一热电厂和神头电厂。
矿区现有生产煤矿55处,其中国有重点煤矿18处,设计能力3645万吨/年。
截至1996年末,大同矿区保有探明储量386。
43亿吨,其中生产矿井保有储量77。
41亿吨。
矿区原有国家二等三角网8个,经野外踏勘,发现有3个已明显被破坏或受采动影响;现只有代家沟、孙家沟、羊坊、怀仁、土台山5个点的标石保存完好(如图3-1)。
GPS测量控制网的技术设计【摘要】随着 gps 测量技术的迅速发展及其在测绘领域的广泛应用,gps 测量控制网的优化设计越来越受到重视。
gps控制网在布网方案和平差模型方面都不同于经典控制网。
本文在总结了 gps 网特点及优化设计原则,如可靠性、精度及经济性等方面特点,提出了 gps控制网的优化设计的措施。
【关键词】gps 测量控制网;原则;优化设计;精度近年来,gps 技术被广泛应用到测量领域,是现代测绘工程建设项目中一项非常重要的技术进步。
与传统控制测量方法相比,gps 技术具有点位精度高、观测时间短、操作简便、可全球全天候作业等优点,但并不等于gps 测量控制网就无需像传统控制测量方法那样进行控制网的优化设计。
gps网优化设计是实施 gps测量的基础性工作,在网的精确性、可靠性和经济性等方面,寻求设计的最佳方案。
一、gp s控制网的特点1、网形与卫星空间分布的几何图形相关。
gps控制网的精度与网中的点所构成的几何图形没有关系,与观测权相关程度不大,与边和边所构成的角度无关,主要取决于网中个点发出基线的数目及基线的权阵。
2、具有非层次结构性。
根据采用仪器类型和作业模式不同,得到不同精度的观测值,这与经典控制网的“逐级控制”、“分级施测”没有关系,gps 网可用相同精度一次扩展达到所需的密度设计要求。
3、没有误差积累且分布均匀。
误差积累是经典控制网存在特性之一,而 gps 网则没有误差的积累,而且误差分布比较均匀,各边的方位和边长的相对精度基本是相同的。
4、简单易行的必要基准条件。
gps 网的观测数据(基线向量)中包含了尺度和方位信息,理论上只需要一个已知点的坐标即可确定gps 网的平移。
二、gp s控制网布设应坚持的原则1、效率优先原则。
在进行 gps网的设计时,应采用效率指标来衡量设计方案的效率,以及在采用布网方案作业中所需要的时间、消耗等问题。
2、高精度性原则。
gps 测量控制网的高精度性是工程测量的基石,也是其最明显的优势之一。
GPS静态控制网布设【1】GPS网形设计的一般原则:1、GPS网中不应该存在自由基线。
2、GPS网中的闭合条件中基线不可过多。
3、GPS网中应以“每个点至少独立设站观测两次”的原则布网。
4、为了实现GPS网与地面网之间的坐标转换,GPS网至少应与地面网有2个重合点。
5、为了便于观测,GPS点应选择在交通便利,视野开阔、容易到达的地方。
下图是我国全球定位系统测量规范中有关GPS网等级的有关内容:GPS基线向量网的布网形式:GPS网常用的布网形式有以下几种:跟踪站式、会战式、多基准站式(枢纽点式)、同步图形扩展式、单基准站式1、跟踪站式:布网形式:若干台接收机长期固定安放在测站上,进行常年、不间断的观测,即一年观测365天,一天观测24小时,这种观测方式很象是跟踪站,因此,这种布网形式被称为跟踪站式。
2、会战式:布网形式:在布设GPS网时,一次组织多台GPS接收机,集中在一段不太长的时间内,共同作业。
在作业时,所有接收机在若干天的时间里分别在同一批点上进行多天、长时段的同步观测,在完成一批点的测量后,所有接收机又都迁移到另外一批点上进行相同方式的观测,直至所有的点观测完毕,这就是所谓的会战式的布网。
3、多基准站式布网形式:所谓多基准站式的布网形式就是有若干台接收机在一段时间里长期固定在某几个点上进行长时间的观测,这些测站称为基准站,在基准站进行观测的同时,另外一些接收机则在这些基准站周围相互之间进行同步观测。
4、同步图形扩展式布网形式:同步图形扩展式就是多台接收机在不同测站上进行同步观测,在完成一个样时段的同步观测后,迁移到其它的测站上进行同步观测,每次同步观测都可以形成一个同步图形,在测量过程中,不同的同步图形间一般有若干个公共点相连,整个GPS网由这些同步图形构成。
采用同步图形扩展式布设GPS基线向量网时的观测作业方式主要以下几种式:点连式、边连式、网连式、混连式。
(1)点连式:观测作业方式:所谓点连式就是在观测作业时,相邻的同步图形间只通过一个公共点相连。