111任意角的概念
- 格式:ppt
- 大小:796.00 KB
- 文档页数:21
《高中任意角知识点总结》在高中数学的学习中,任意角是一个重要的概念,它为我们进一步研究三角函数等知识奠定了基础。
下面我们就来对高中任意角的知识点进行全面总结。
一、角的定义角可以看作是由一条射线绕着它的端点旋转而成的图形。
旋转开始时的射线叫做始边,旋转终止时的射线叫做终边,端点叫做角的顶点。
二、任意角的概念1. 正角、负角和零角- 按逆时针方向旋转形成的角叫做正角;- 按顺时针方向旋转形成的角叫做负角;- 如果一条射线没有作任何旋转,我们称它形成了一个零角。
2. 象限角- 使角的顶点与坐标原点重合,角的始边与 x 轴的非负半轴重合。
那么,角的终边在第几象限,就说这个角是第几象限角。
- 例如,角的终边在第一象限,我们就称这个角为第一象限角。
3. 终边相同的角- 所有与角α终边相同的角,连同角α在内,可构成一个集合S = {β|β = α + k·360°,k∈Z}。
- 即终边相同的角相差360°的整数倍。
三、任意角的度量1. 角度制- 把圆周分成 360 等份,每一份所对的圆心角叫做 1 度的角,记作1°。
- 角度制下的角的度量单位是度、分、秒。
1° = 60′,1′ = 60″。
2. 弧度制- 长度等于半径长的弧所对的圆心角叫做 1 弧度的角,记作 1rad。
- 在弧度制下,角的大小与半径的大小无关。
- 弧度与角度的换算:180° = π rad,即1° = π/180 rad,1 rad = (180/π)°。
四、弧长公式与扇形面积公式1. 弧长公式- 在半径为 r 的圆中,圆心角α(α 为弧度制)所对的弧长l = αr。
2. 扇形面积公式- S = 1/2αr²(α 为弧度制),也可以表示为 S = 1/2lr (其中 l 为弧长)。
五、任意角的三角函数1. 定义- 设角α的终边上任意一点 P 的坐标为(x,y),它与原点的距离为 r(r = √(x² + y²)>0)。
高一数学必修一任意角知识点数学是一门抽象而又实用的学科,对于高中生来说,数学的学习也是必不可少的一部分。
高一数学必修一中,一个重要的知识点就是任意角。
1. 任意角的定义任意角是指角的度数可以是任意实数的角。
在数轴上,我们可以将角的初始边和终边表示出来,并且角的顶点可以位于坐标系的任意位置。
这种角被称为任意角。
2. 任意角的度数我们知道,角度的度数是以度(°)为单位来衡量的。
对于任意角而言,它的度数可以是正数、负数或者是大于360°的数。
例如,一个角度为-45°,它的终边在数轴上逆时针旋转45°。
又例如,一个角度为420°,它的终边在数轴上顺时针旋转360°再继续旋转60°。
3. 任意角的弧度在数学中,角度的另一种衡量单位是弧度(rad)。
任意角的弧度可以是正数、负数或者是大于2π的数。
我们知道,一个完整的圆的周长是2π,而弧度就是以圆的半径为单位来衡量角度的单位。
一个角度为60°的任意角转换成弧度表示就是π/3,一个角度为-π/4的任意角即为逆时针旋转π/4。
4. 任意角的初标准位置对于任意角,我们可以将它们的终边旋转到一个特定的位置,这个位置称为初标准位置。
在初标准位置下,任意角的终边与坐标轴正向的夹角范围是0到360°或者0到2π弧度。
我们可以利用初标准位置来计算任意角的三角函数值,从而解决一些实际问题。
5. 任意角的三角函数在数学中,三角函数是任意角的重要属性之一。
任意角的三角函数包括正弦、余弦、正切、余切等。
我们可以通过观察任意角在坐标轴上的投影来计算这些三角函数值。
例如,对于角度为30°的任意角,它的正弦值是1/2,余弦值是√3/2,正切值是√3/3。
6. 任意角的三角函数的周期性三角函数在数轴上是周期性的。
对于正弦函数和余弦函数而言,它们的周期是2π。
对于正切函数和余切函数而言,它们的周期是π。
1. 任意角的概念(1)角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)正角:按逆时针方向旋转形成的角.(3)负角:按顺时针方向旋转形成的角.(4)零角:一条射线没有做任何旋转,我们称它为零角(5)注意:①角度的范围再不限于.360~0︒︒②角的概念是通过角的终边的运动来推广的,根据角的终边的旋转“方向”,得到正角、负角和零角,由此我们应当意识到角的终边位置的重要性.③当角的始边相同时,角相等,则终边相同;终边相同,而角不一定相等.2. 象限角与轴线角使角α的顶点与原点重合,始边与x 轴正半轴重合,终边落在第几象限,则称α为第几象限角;终边落在坐标轴上的角α被称为轴线角.3. 终边相同的角(1)与角α终边相同的角为),(360Z k k ∈+︒⋅=αβ连同角α,可构成一个集合}.,360{z k k S ∈+︒⋅==αββ(2)注意:①α为任意角.②︒⋅360k 与α之间是“+”号,α-︒⋅360k 可理解为).(360α-+︒⋅k③相等的角,终边一定相同;终边相同的角不一定相等,终边相同的角有无数个,它们相差︒360的整数倍.④Z k ∈这一条件必不可少.4. 弧度制(1)定义:长度等于半径长的弧所对的圆心角叫做1弧度的角;用弧度作为单位来度量角的单位制叫做弧度制;在弧度制下,1弧度记作1rad .(2)度量:①一般地,正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是零.②角α的弧度数的绝对值r l =α(其中l 是以角α作为圆心角时所对的弧的长,r 是圆的半径).5. 扇形的弧长与面积公式若扇形的圆心角为α(α为弧度制),半径为R ,弧长为l ,面积为S ,则有αR l =,22121R lR S α==.。