底板突水系数概念及其应用
- 格式:pdf
- 大小:186.03 KB
- 文档页数:5
基于突水系数法的煤层底板突水危险性评价中国是煤矿开采大国,在煤矿开采过程中经常会有一些危险事故的发生,其中矿井水害是威胁我国煤矿安全开采的主要原因之一。
为有效控制煤层开采导致的煤层底板突水事故,以孙疃煤矿为例,通过对104采区10煤层底板岩性、隔水层特征以及太灰水富水性特征的研究,引入了突水系数法。
比较研究区突水前后的突水系数值,综合评价煤层底板突水危险性。
通过疏放水实验达到安全开采的目的。
结果表明疏放前底板存在突水威胁,疏水后研究区突水系数下降,达到了安全开采的目的。
标签:突水系数;底板突水;危险性评价0 引言近年来,煤矿开采受水害影响严重,尤其是煤层的底板突水,其突水机制复杂且难以预测。
为此,中国包括外国的研究人员通过实地考察,结合资料分析,试图寻找能够有效解决底板突水问题的方法[1]。
突水系数法是其中较为简单的也是使用最为普及的一种方法。
底板突水其实质是在众多的影响条件作用下,煤系地层原本的岩石结构及围岩体系遭到损坏从而导致的地下水动力场失去平衡的现象[2]。
煤层底板突水是一个牵涉到多方面原因的现象,其主要原因是由于水文地质,工程地质,开采条件等的影响所导致的[3]。
孙疃矿区开采煤层主要影响的含水层有太原组地下水岩溶化岩层及含煤沉积岩系砂岩含水层等。
本文在该矿区原有的灰岩水的前提上,通过突水系数法有效的提供了10煤层底板突水危害性的治理方法。
1 矿区概况孙疃煤矿位于安徽省淮北市,其主要的含煤岩层为石炭-二叠系。
整个采区从南至北长约10千米,东西宽约4千米。
其中104采区位于井田北部,其南北分别与102采区与杨柳煤矿相邻,整个采区约有6条勘探线经过,其钻孔主要揭露了太原组地层,以灰岩居多。
本采区构造发育较好,根据10煤层底板的主要岩石性质可知,其煤层底板主要为砂岩,隔水能力较弱。
同时据已有文件记载,104矿区煤层底板突水事件分析中太原组灰岩水和底板砂岩裂隙水是最重要的突水水源[4]。
2 底板突水影响因素分析导致底板突水的原因有很多,世界上很多国家的专家和研究人员都对导致底板突水的原因做了大量的分析与研究,目前认为导致底板突水的原因主要有矿山压力、地质构造、水压力、底板的隔水层特征、工作面开采的宽度和方法等[5]。
煤层底板突水理论现状研究我国的煤炭资源的开采受水害威胁严重,尤其是随着开采深度、开采强度、开采速度、开采规模的增加和扩大,来自底部灰岩发育的裂隙岩溶高承压水的威胁日趋严重,煤层底板在采动的影响下其破坏也日趋加剧,许多矿井突水事故与之密切相关。
矿井突水机制是一个涉及采矿工程、工程地质、水文地质、岩体力学、岩体水力学、渗流力学等多门学科的理论课题,弄清楚突水理论机制对于防范底板突水以及底板岩层控制与管理具有重要的理论意义和实际应用价值。
2.底板突水理论研究2.1底板相对隔水层[1]早在20世纪初,欧洲的一些学者就注意到煤矿开采过程中底板隔水层的作用,并从若干次底板突水资料中认识到,只要煤层底板有隔水层,突水次数就少,突水量也小,隔水层越厚则突水次数及突水量越少。
20世纪40年代至50年代,匈牙利韦格弗伦斯第一次提出“底板相对隔水层”的概念。
他指出,煤层底板突水不仅与隔水层厚度有关,而且还与水压力有关。
突水条件受相对隔水层厚度的制约。
相对隔水层厚度是等值隔水层厚度与水压力值之比。
同时提出,在相对隔水层厚度大于1.5m/atm的情况下,开采过程中基本不突水,而80%~88%的突水都是相对隔水层厚度小于此值。
由此,许多承压水上采煤的国家引用了相对隔水层厚度大于2m/atm就不会引起煤层底板突水的概念。
这期间前苏联学者B.斯列萨列夫将煤层底板视作两端固定的承受均布载荷作用的梁,并结合强度理论,推导出底板理论安全水压值的计算公式。
20世纪70年代至80年代末期,很多国家的岩石力学工作者在研究矿柱的稳定性时,研究了底板的破坏机理。
其中最有代表性的是C.F.Santos(桑托斯),Z.T.Bieniawski(宾尼威斯基)。
他们基于改进的Hoek-Brown岩体强度准则,引入临界能量释放点的概念分析了底板的承载能力。
2.2突水系数理论我国的底板突水规律研究始于20世纪60年代,当时注意到匈牙利底板相对隔水层理论在实践中的应用,在焦作矿区水文地质大会中,以煤科总院西安勘探分院为代表,提出了采用突水系数作为预测预报底板突水与否的标准。
第18卷第4期山东矿业学院学报(自然科学版)Vol.18№4 1999年12月Journal of Shandong Institute of Mining and T echnology(Natural Science)Dec.1999 文章编号:1000-2308(1999)04-0011-08预防矿井底板突水的“下三带”理论及其发展与应用Ξ李白英(山东科技大学特殊开采研究所)摘 要:总结了二十年来“下三带”理论的发展和应用,对“下三带”的概念、形成、确定方法、测定数据、效果评价等均作了系统深入的论述。
“下三带”理论经过二十余年的理论研究和生产实践已发展得日趋完善,该理论在承压水上安全开采评价及防治矿井底板突水灾害中起了重要作用。
本文旨在促进对该理论的深入理解,更好地推广应用,为矿井安全生产服务。
关键词:下三带;底板导水破坏深度;承压水导高;保护层;阻水带;底板突水中图分类号:TD745+.2 文献标识码:A 我国是世界上矿井水文地质条件中最复杂的国家,相应也是矿井突水灾害发生最频繁、突水量最大,危害最严重的国家。
我们与矿井水害已斗争了五十年,虽然在防治理论与技术上已取得很大进展,但岩溶承压水对矿井安全生产的威胁仍相当严重。
“下三带”理论就是为此而提出并在安全开采评价及指导水害防治中起了重要作用。
经过二十余年的深入研究和生产实践,该理论及其配套技术已日趋成熟和完善,并将收入规程指导生产应用。
为此,撰写此文,对该理论作较系统深入地论述,以便更好地掌握,促进推广应用。
1 “下三带”理论的概念自1979年开始,经过七年深入开采煤层底板内部进行综合观测,并结合模拟实验、电算分析等各项研究成果发现:开采煤层底板岩层也与采动覆岩类似存在着“三带”,故称之为“下三带”以示与覆岩中“三带”的区别。
“下三带”从煤层底面至含水层顶面分为:(1)底板导水破坏带(h1);(2)保护带(h2);(3)承压水导升带(h3)。
矿井水文地质常用计算公式目录一、突水系数公式: (1)二、底板安全隔水层厚度(斯列沙辽夫公式): (2)三、防水煤柱经验公式: (2)四、老空积水量估算公式: (3)五、明渠稳定均匀流计算公式: (4)六、矿井排水能力计算公式: (4)㈠矿井正常排水能力计算: (4)㈡抢险排水能力计算: (5)㈢排水扬程的计算: (5)㈣排水管径计算: (5)㈤排水时间计算: (6)㈥水仓容量: (6)七、矿井涌水量计算: (6)八、矿井水文点流量测定计算方法: (7)㈠容积法: (7)㈡淹没法: (7)㈢浮标法: (7)㈣堰测法: (7)九、浆液注入量预算公式: (8)十、常用注浆材料计算公式及参数: (9)㈠普通水泥主要性质: (9)㈡水泥浆配制公式: (9)㈢水玻璃浓度 (10)㈣粘土浆主要参数: (10)十一、钻探常用计算公式: (10)十二、单孔出水量估算公式: (11)十三、注浆压力计算公式: (11)十三、冒落带导水裂隙带最大高度经验公式表 (12)十四、煤层底板破坏深度计算公式 (12)十五、巷道洞室围岩塑性破坏圈厚度计算 (14)一、突水系数公式:㈠定义:每米有效隔水层厚度所能承受的最大水压值。
㈡公式:Ts=P/(M-Cp-Dg)式中:Ts—突水系数(MPa/m);P—隔水层承受的水压(MPa);M—底板隔水层厚度(m);Cp—采矿对底板隔水层的扰动破坏深度(m);Dg—隔水层中危险导高(m)。
㈢公式主要用途:1.确定安全疏降水头;2.反映工作面受水威胁程度。
富水区或底板受构造破坏块段Ts大于0.06MPa/m;正常块段大于0.1MPa/m为受水威胁。
㈣参数取值依据:Ts—常用工作面最大突水系数。
一般按工作面最高水压,最薄有效隔水层厚度计算,或者对工作面分块段计算最大突水系数,取最大一个值作为工作面的最大突水系数。
P—最大水压的取值,一般根据工作面内或附近井下或地面钻孔观测水位与工作面最低标高计算而得,水压值计算至含水层顶面。
突水系数法在煤矿工作中的应用与意义摘要:突水系数法作为较早的评价煤矿底板水害威胁程度的方法,具有其明显的适用性与局限性,本文详细介绍了突水系数法的重要性与该方法的产生和发展,并以平朔集团井工三矿为例,建立各个主采煤层的突水系数模型,更为直观的明确各个主采煤层底板受到的水害威胁,对于煤矿的一线工作具有重要的实际意义。
关键词:突水系数;煤层底板;煤矿安全开采与世界其他国家煤矿开采地质条件相比,我国煤矿开采地质条件较为复杂[1],存在“五大自然灾害”[2]。
近年来,随着深部煤层的开采,煤矿底板突水问题日益突出,严重制约着煤矿的安全生产。
因此,煤层底板突水机理的研究对煤矿的防治水工作具有重要意义。
1突水系数法的重要性在上个世纪50年代末期,受到匈牙利学者韦格弗伦斯提出的底板相对隔水层的影响,我国部分矿区开始采用突水系数的概念[3],并于1964年的焦作水文会战中,提出利用煤层底板隔水层所承受的水压值与底板隔水层有效厚度的比值来评价突水危险性,即现在的突水系数法[4]。
我国于2009年颁布了《煤矿防治水规定》用以指导煤矿防治水工作,其中明确提出了突水系数法的使用及其临界值[5]。
同时,在2018年颁布的《煤矿防治水细则》中再次强调了突水系数的作用,并有相应附表进行详细叙述[6]。
由此可见,无论是煤矿一线的防治水工作中还是国家官方指导文件中,突水系数都具有重要的意义,对煤矿防治水工作进一步研究的有很大的帮助。
2 突水系数公式的演化突水系数法从提出到目前的几十年时间内得到了极大的发展与补充,并根据含水层特性,隔水层特性以及采动破坏研究成果发展出不同的经验公式。
本文中,笔者主要介绍突水系数法发展中重要的三次修正[7-8]:1、第一次修正是由煤炭科学研究院西安煤田地质研究所于1979年提出的修改:T=P/(M-CP)。
主要变化内容为将隔水层的厚度替换为隔水层总厚度减去矿压破坏带深度CP后的厚度。
2、第二次修正出现在1992年《煤矿安全规程》修编中,突水系数修改为煤层底板隔水层所承受的水压值与底板隔水层有效厚度的比值,表达公式为T=P/(M-CP -Z),其中底板有效隔水层厚度为总厚度M减去煤层底板矿压破坏深度CP 和隔水层底板的自然承压导升高度Z后的值。
煤矿常用计算公式(地质、通风类)水文地质类一、突水系数公式:㈠定义:每米有效隔水层厚度所能承受的最大水压值。
㈡公式:Ts=P/(M-Cp-Dg)式中:Ts—突水系数(MPa/m);P—隔水层承受的水压(MPa);M—底板隔水层厚度(m);Cp—采矿对底板隔水层的扰动破坏深度(m);Dg—隔水层中危险导高(m)。
注Cp可采下式参考计算:h=0.0021H+0.0956L+0.4186Mh—煤层底板破坏深度(m);H—煤层埋藏深度(m);L—工作面倾斜长度(m);M—工作面回采高度(m)。
二、底板安全隔水层厚度(斯列沙辽夫公式):㈠公式:t=L(rL-)/4Kp或H=2Kpt2/L2+rt式中t—底板安全隔水层厚度(m);L—采掘工作面底板最大宽度(m);r—隔水层岩石的容重(t/m3);Kp—隔水层岩石的抗张强度(t/m2);H—隔水层底板承受的水头压力(t/m2)。
㈡公式参数取值依据:r—隔水层岩石的容重,取2.5~3.0t/m3。
H—隔水层底板承受的水头压力,此处为计算至含水层顶面的水头高度。
Kp—一般取4.26~10 t/m2。
三、防水煤柱经验公式:㈠公式:L 0.5=式中:L—煤柱留设宽度(m);K—安全系数(一般取2~5);M—煤层厚度或采高(m);P—水头压力(t/m2);Kp—煤的抗张强度(t/m2)。
㈡主要参数取值依据:Kp取值依据:河津矿区在设计太原群系煤柱留设时Kp取1.0 t/m2。
四、老空积水量估算公式:㈠公式:Q积=∑Q采+∑Q巷Q采=KMF/cosa=KMBh/sinaQ巷=WLK式中:Q积—相互连通的各积水区总积水量(m3);∑Q采—有水力联系采空区积水量之和(m3);∑Q巷—与采空区有联系的各种巷道积水量之和(m3);K—充水系数:采空区一般用0.25~0.5,煤巷充水系数一般取0.5~0.8,岩巷取0.8~1.0;M—采空区的平均采高或煤厚(m);F—采空积水区的水平投影面积(m2);a—煤层倾角;W—积水巷道原有断面(m2);L—不同断面巷道长度(m);B—老空走向长度(m);h—老空水头高度(m)。
矿井(区)底板突水临界水系数的确定矿井(区)底板突水临界水系数的确定一、|问题提出我国广大华北型、华南型石炭=迭系煤田,煤系假整合于原层石灰岩之上,在其上煤层开拓与回探过程中,频频发生底板薄层石灰岩和原层石灰岩透水事故,造成众多淹井事故,为探究其突水原因,掌握规律,做好底板突水预测、预报工作,保证煤矿安全生产,1964年煤炭部在焦作开展矿井水文地质会战,研讨了上述众多议题。
大量突水资料表明矿井底板突水是与该处的隔水层厚度、强度、隔水层的岩性及其组合方式、构造发育程度、水压大小、采动过程中的矿压等众多因素有关。
但主导因素为是含水层作用于隔水层上的水压力,它起着破坏作用,另一是隔水层的厚度及强度,它起着阻止水压力的破坏作用,而其它因素均可隐含于隔水层的厚度中,它们或是减弱隔水层的强度,或是减少隔水层的厚度。
故可以用它们的比值来刻划,隔水层的稳定程度即采场或巷道的平衡状态,帮以下式来表征:T V=式中,T V:称突水系数或阻力系数(Pa/m)P:作用于隔水层底界面上的水压力(PM:煤层底板至含水层顶界面间的隔水层厚度该比值即表征,巷道或采面下单位厚度隔水层所能承受的水压力。
岩体(隔水层)受力之后,依力的大小,所表现出来的变形与破坏有三个阶段,即弹性变形,塑性变形至永久变形。
当水压力值较小,隔水层厚度、强度较大时,该比值的数值较小,表现为处于弹性变形阶段,则反映在巷道掘进,工作面回采是处于安全状态,若比值大时,变形发展至破裂永久性变形阶段,则巷道掘进、采场回采时会出现突水事件。
该两种状态之间存在有塑性变形阶段,即处于极限平衡状态,则在工作面上会出底鼓现象。
上述诸现象在矿井(区)均可见,为此,我们可以把矿井(区)内、巷道掘进、工作面回采安全与不安全和极限状态的资料取各点上的水压力和隔水层原度值,分别标示于P——M图中,从中找出其临界点(线),该即为该矿井的临界突水系数值(线)以T V临示之。
二、具体做法选取一定数量的安全点和不安全点,将其数据展示在纵坐标表示隔水层原度(M):横坐标表示含水层水压力(pa或kg/cm2)计算纸上,且对掘进、回采不安全分别用符号□、○表示;安全点以符号表示。