运算定律与简便计算整理复习
- 格式:ppt
- 大小:532.00 KB
- 文档页数:23
四则运算运算定律与简便计算复习教案一、教学目标1. 回顾加法、减法、乘法和除法的运算定律。
2. 掌握四则混合运算的运算顺序和运算法则。
3. 学会运用运算定律进行简便计算。
4. 培养学生的运算能力和逻辑思维能力。
二、教学内容1. 加法运算定律:交换律、结合律、单位相同直接相加。
2. 减法运算定律:减法交换律、减法结合律、单位相同直接相减。
3. 乘法运算定律:交换律、结合律、分配律、单位相同直接相乘。
4. 除法运算定律:除法交换律、除法结合律、商不变性质。
5. 四则混合运算顺序:先算乘除,后算加减;同级运算从左到右依次计算。
三、教学重点与难点1. 掌握四则运算的运算定律。
2. 运用运算定律进行简便计算。
四、教学方法采用讲解法、示例法、练习法、讨论法进行教学。
五、教学过程1. 导入:复习加法、减法、乘法和除法的运算定律。
2. 讲解四则混合运算的运算顺序和运算法则。
3. 示例:运用运算定律进行简便计算。
4. 练习:学生独立完成练习题,教师进行点评和讲解。
5. 讨论:学生分组讨论,分享解题方法和经验。
教学评价:1. 课后作业:布置相关的练习题,巩固所学知识。
2. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况。
3. 学习效果:通过课后作业和课堂练习,评估学生对四则运算运算定律与简便计算的掌握程度。
六、教学活动设计1. 设计意图:通过小组合作、讨论交流的方式,让学生在实践中掌握四则运算定律与简便计算的方法,提高学生的动手操作能力和团队协作能力。
2. 教学活动:(1)小组合作:学生分组,每组4人,每组选择一道复杂的四则混合运算题目。
(2)讨论交流:小组内成员分工合作,运用所学的运算定律和简便计算方法,尝试解决题目。
(3)分享成果:每组派代表向全班展示解题过程和答案,其他小组进行评价、提问。
(4)教师点评:总结每组的特点和优点,针对共性问题进行讲解和指导。
七、教学策略1. 针对不同学生的学习需求,提供多层次的练习题目,让学生在实践中提高运算速度和准确性。
一、小数的加减法运算定律:1.定位法:小数位数相同的小数相加或相减时,从小数点对齐,按列相加或相减。
2.零位法:小数位数不同的小数相加或相减时,将小数点对齐后,补齐小数位数,然后按列相加或相减。
例1:0.21+0.035=0.245例2:0.72-0.15=0.57二、小数的乘法运算定律:1.先把小数乘数和被乘数的数字按乘法运算,然后从右往左,逢十进一,保留小数点后与被乘数和乘数小数位数之和相同的位数。
例3:0.25×0.4=0.1例4:0.68×0.02=0.0136三、小数的除法运算定律:1.先将除数小数转化为整数,再进行整数除法运算,在商的末尾加上小数点,并在被除数的左边补零,使商的位数和余数小数位数相同。
然后把商转化为小数,即除法结果。
例5:0.72÷0.06=12例6:0.35÷0.07=5四、小数的转化与简便计算方法:1.小数转为分数:将小数去掉小数点,分数的分子是小数的数字,分母是10的幂次方。
例7:0.32=32/100=8/25例8:0.025=25/1000=1/402.分数转为小数:将分数的分子除以分母得到小数。
例9:3/5=0.6例10:7/8=0.8753.分数的四舍五入:当分数的小数部分大于或等于5时,进位;小于5时,舍去。
例11:6/7≈0.857例12:8/9≈0.8894.百分数转换为小数:将百分数去掉百分号,除以100得到小数。
例13:45%=45/100=0.45例14:75%=75/100=0.755.小数与整数的运算:每个整数位上的数加减小数点后的数时,不动小数点。
例15:2.3×4=9.2例16:1.25+6=7.25小数的运算定律与简便计算对于五年级学生来说是非常重要的知识点。
通过掌握以上知识点,学生能够准确地进行小数的加减乘除运算,并能够将小数与分数、百分数相互转化。
此外,简便计算方法可以帮助学生在进行小数运算时快速得到近似结果,提高计算效率。
运算定律与简便计算(一)加减法运算定律 1.加法交换律定义:两个加数交换位置,和不变字母表示:a b b a +=+ 例如:16+23=23+16 546+78=78+5462.加法结合律定义:先把前两个数相加,或者先把后两个数相加,和不变。
字母表示:)()(c b a c b a ++=++例1.用简便方法计算下式:(1)63+16+84 (2)76+15+24 (3)140+639+860举一反三:(1)46+67+54 (2)680+485+120 (3)155+657+2453.减法交换律、结合律注:减法交换律、结合律是由加法交换律和结合律衍生出来的。
减法交换律:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。
字母表示:b c a c b a --=--例2.简便计算:198-75-98减法的性质:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和。
字母表示:)(c b a c b a +-=--例3.简便计算:(1)369-45-155 (2)896-580-1204.拆分、凑整法简便计算拆分法:当一个数比整百、整千稍微大一些的时候,我们可以把这个数拆分成整百、整千与一个较小数的和,然后利用加减法的交换、结合律进行简便计算。
例如:103=100+3,1006=1000+6,…凑整法:当一个数比整百、整千稍微小一些的时候,我们可以把这个数写成一个整百、整千的数减去一个较小的数的形式,然后利用加减法的运算定律进行简便计算。
例如:97=100-3,998=1000-2,…注意:拆分凑整法在加、减法中的简便不是很明显,但和乘除法的运算定律结合起来就具有很大的简便了。
例4.计算下式,能简便的进行简便计算:(1)89+106 (2)56+98 (3)658+997练习:计算下式,怎么简便怎么计算(1)730+895+170 (2)820-456+280 (3)900-456-244(4)89+997 (5)103-60 (6)458+996(7)876-580+220 (8)997+840+260 (9)956—197-56(二)乘除法运算定律1.乘法交换律定义:交换两个因数的位置,积不变。
一、加法定律:1.加法交换律:a+b=b+a即,交换加数的位置,结果不变。
2.加法结合律:(a+b)+c=a+(b+c)即,按照顺序进行加法运算时,括号的位置可以改变,结果不变。
3.加零律:a+0=a即,任何数加0,结果都等于这个数本身。
二、减法定律:1.减法的定义:a-b=c如果b加上c的结果等于a,那么c就是a与b的差。
2.减法转换法则:a-b=a+(-b)即,把减法转化成加法,减去一个数等于加上这个数的相反数。
3.减零律:a-0=a即,任何数减0,结果都等于这个数本身。
三、乘法定律:1.乘法交换律:a×b=b×a即,交换因数的位置,结果不变。
2.乘法结合律:(a×b)×c=a×(b×c)即,按照顺序进行乘法运算时,括号的位置可以改变,结果不变。
3.乘一律:a×1=a即,任何数乘以1,结果都等于这个数本身。
四、除法定律:1.除法的定义:a÷b=c如果b乘以c的结果等于a,那么c就是a除以b的商。
2.除法转换法则:a÷b=a×(1÷b)即,把除法转化成乘法,除以一个数等于乘以这个数的倒数。
3.除以1律:a÷1=a即,任何数除以1,结果都等于这个数本身。
简便计算方法:1.乘法的简便计算方法:相乘有零则为零,相乘都是偶数则为偶数,相乘都是奇数则为奇数。
2.除法的简便计算方法:被除数和除数的个位数相同则商为1,被除数最后两位与除数互补则商为93.近似计算法:将数按单位位数相加,然后舍去不确定位。
4.同除同乘法则:当两个数都乘以或除以同一个数时,它们之间的大小关系不变。
综合运用运算定律和简便计算方法,可以更快速、准确地进行数学运算。
复习建议:1.通过练习题来巩固运算定律的记忆与理解,比如加法交换律、乘法交换律等。
2.制作卡片或使用在线学习工具来记忆定律的表达方式,便于复习和回忆。
3.在实际生活中找到与定律相关的例子,帮助理解定律的应用。
四则运算运算定律与简便计算复习教案第一章:四则运算回顾1.1 加法运算:两个数相加得到的结果称为和。
1.2 减法运算:一个数减去另一个数得到的结果称为差。
1.3 乘法运算:两个数相乘得到的结果称为积。
1.4 除法运算:一个数除以另一个数得到的结果称为商。
第二章:运算定律介绍2.1 加法结合律:三个或更多数相加,可以任意改变它们的组合方式,结果不变。
2.2 减法结合律:三个或更多数相减,可以任意改变它们的组合方式,结果不变。
2.3 乘法结合律:三个或更多数相乘,可以任意改变它们的组合方式,结果不变。
2.4 除法结合律:三个或更多数相除,可以任意改变它们的组合方式,结果不变。
第三章:运算定律的应用3.1 加法运算定律的应用:通过改变加数的组合方式,简化计算过程。
3.2 减法运算定律的应用:通过改变减数的组合方式,简化计算过程。
3.3 乘法运算定律的应用:通过改变乘数的组合方式,简化计算过程。
3.4 除法运算定律的应用:通过改变除数的组合方式,简化计算过程。
第四章:简便计算方法4.1 分配律:将一个数与两个数的和相乘,等于将这个数分别与这两个数相乘,将结果相加。
4.2 结合律:在进行乘法或除法运算时,可以任意改变计算的顺序。
4.3 分解法:将一个数分解成两个或多个数的和或差,简化计算过程。
4.4 交换律:在进行加法或乘法运算时,可以任意改变数的顺序。
第五章:综合练习5.1 选择合适的运算定律和简便计算方法,解决实际问题。
5.2 完成一些有关四则运算的练习题,巩固所学的知识。
5.3 进行小组讨论,互相交流解题方法和经验。
第六章:四则运算的顺序6.1 运算顺序规则:在没有括号的算式中,先进行乘除运算,再进行加减运算。
6.2 运算顺序的应用:解决含有多个运算的算式,按照正确的顺序进行计算。
第七章:括号的使用7.1 括号的作用:改变运算顺序,优先计算括号内的运算。
7.2 括号的运用规则:括号前面是加减号时,括号内的运算符号不变;括号前面是乘除号时,括号内的运算符号变相反数。
四年级下册数学运算定律与简便计算知识点四年级下册数学运算定律与简便计算知识点一、运算定律1. 加法交换律:交换加数的位置和不变。
[a+b=b+a](如:23+34=57与34+23=57)2.加法结合律:(a+b)+c=a+(b+c) 先把前两个数相加,或者先把后两个数相加,和不变。
3.乘法交换律:a×b=b×a交换因数的位置积不变。
4.乘法结合律:(a×b)×c=a×(b×c)先把前两个数相乘,或者先把后两个数相乘,积不变。
5.乘法分配律:(a+b)×c=a×c+b×c 两个数的和与一个数相乘,可以把他们与这个数相乘,再相加。
二、简便计算1.连加的简便计算:①使用加法结合律(把和是整十、整百、整千的数结合在一起)②个位:1与9,2与8,3与7,4与6,5与5,结合。
③十位:0与9,1与8,2与7,3与6,4与5,结合。
2.连减的简便计算:①连续减去几个数就等于减去这几个数的和。
如:106-26-74=106-(26+74)②减去几个数的和就等于连续减去这几个数。
如:106-(26+74)=106-26-743.加减混合的简便计算:第一个数的位置不变,其余的加数、减数可以交换位置(可以先加,也可以先减) 例如:123+38-23=123-23+38146-78+54=146+54-78 4.连乘的简便计算:使用乘法结合律:把常见的数结合在一起 25与4; 125与8 ;125与80等看见25就去找4,看见125就去找8; 5.连除的简便计算:①连续除以几个数就等于除以这几个数的积。
②除以几个数的积就等于连续除以这几个数。
6.乘、除混合的简便计算:第一个数的位置不变,其余的因数、除数可以交换位置。
(可以先乘,也可以先除) 例如:27×13÷9=27÷9×13 7.乘法分配律的应用:①类型一:(a+b)×c (a-b)×c= a×c+b×c = a×c-b×c②类型二: a×c+b×c a×c-b×c=(a+b)×c =(a-b)×c③类型三: a×99+a a×b-a= a×(99+1) = a×(b-1)④类型四: a×99 a×102= a×(100-1)= a×(100+2)= a×100-a×1 = a×100+a×2数学角的定义知识点(1)什么是角?从一点引出两条射线所组成的图形叫做角。
运算定律和简便计算归纳总结一、加法运算定律1、加法交换律任意两个加数相加,交换加数的位置,和不变,这就是加法交换律。
例如:0+200=200+011+66=66+11125+234=234+125若用字母a、b代表两个加数,则可以表示为:a+b=b+a小提示:若干个数相加,任意交换加数的位置,和不变。
在加减混合运算中,要带着数字前面的符号一起交换位置,运算结果才不变。
例:119+27-19=27-19+11988-46+12=88+12-4677+12-23=77-23+122、加法结合律三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,这就是加法结合律。
用字母表示为:(a+b)+c=a+(b+c)例:(23+34)+89=23+(34+89)25+45+18+22=(25+45)+(18+22)小提示:要改变运算顺序,如果不采用交换律,就要借助小括号来完成。
3、加法交换律和加法结合律的最大区别:交换律改变的是数的位置,结合律改变的是运算顺序。
4、简便运算在加法算式中,当某些加数可以凑成整十、整百数或多个相同数时,运用加法交换律、加法结合律改变加法的运算顺序,可以使计算简便。
二、乘法运算定律1、乘法交换律两个因数相乘,交换因数的位置,积不变,这叫做乘法交换律,用字母表示:a×b=b×a例:23×34=34×2356×67=67×562、乘法结合律三个数相乘,先乘前两个数,或先乘后两个数,积不变,这就是乘法结合律。
用字母表示:(a×b)×c=a×(b×c)例:(25×2)×3=25×(2×3)2×4×5×25=(2×5)×(4×25)3、乘法分配率两个数的和与一个数相乘,可以先把他们与这个数分别相乘,在相加。
运算定律与简便计算重点知识归纳(分数加、减、乘、除法)(一)加减法运算定律1.加法交换律定义:两个加数交换位置,和不变 字母表示:a +b=b +a 例如:54+83=83+54 2.加法结合律定义:先把前两个数相加,或者先把后两个数相加,和不变。
字母表示:(a +b )+c =a +(b +c )例如: 54+85+83=54+(85+83) 注意:加法结合律有着广泛的应用,如果其中有两个加数的和是整十、整百···或者同分母的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。
例1.用简便方法计算下式:154+135+138 75+125+127+721 74+(92+731) =154+(135+138) =(75+721)+(125+127) =(74+731)+92 = = == = =举一反三:2312+74+2311 135+75+138+72 187+2928+18113.减法的性质注:这些都是由加法交换律和结合律衍生出来的。
减法性质①:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。
字母表示:a -b -c =a -c -b例2.简便计算:2735-138-278 1352-119-135 =2735-278-138 =1352-135-119 = == =举一反三:1719-2512-172 2364-149-2361213+54-121 (同级运算带前符号交换)→ 817+2512-81+2513减法性质②:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和。
字母表示:a -b -c =a -(b +c )例3.简便计算:2529-1312-131 1719-2512-252-2511 =2529-(1312+131) =1719-(2512+252+2511) = == =举一反三:1719-85-83 154-73+1511-74(二)乘除法运算定律1.乘法交换律定义:交换两个因数的位置,积不变。
第一讲简便运算一、运算定律及性质1、加法交换律:a+b=b+a2、加法结合律:(a+b)+c=a+(b+c)3、乘法交换律:a×b=b×a4、乘法结合律:(a×b)×c=a×(b×c)5、乘法分配律:(a+b)×c=a×c+b×c6、减法的性质:a-b-c=a-(b+c)7、除法的性质:a÷b÷c=a÷(b×c)二、运算定律及性质讲解、应用第一节:加法、减法运算定律:(一)、加法结合律:先把前两个数相加,或者先把后两个数相加,和不变。
注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。
(1)63+16+84 (2)76+15+24 (3)140+639+860举一反三:(1)46+67+54 (2)680+485+120 +215 (3)655+257+245+143+121(二)减法运算定律减法性质1:如果一个数连续减去两个数,可以把后面两个减数的交换位置,结果不变。
例:198-75-98减法性质2:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和。
例: 369-45-155 896-580-120(三)加减混合运算添括号、去括号法则1、添括号635+437+263 635+437―237 848―126―374 24.3―33.7―66.72、去括号684 +(413―284) 719+(181+2564) 283―(245―217) 856―(477+256)3、带着运算符号搬家(同级运算中):417+165―217―265 6.78―34.3+3.22 633―243+367+3434.拆分、凑整法简便计算拆分法:当一个数比整百、整千稍微大一些的时候,我们可以把这个数拆分成整百、整千与一个较小数的和,然后利用加减法的交换、结合律进行简便计算。
在小学四年级数学学习中,运算定律和简便计算是非常重要的内容。
运算定律涉及到数学运算中的规律和性质,而简便计算则是通过一些技巧和方法来简化计算的过程。
下面是对小学四年级运算定律与简便计算的分类总结复习。
一、加法运算定律1.结合律:对于任意三个数a、b、c,有(a+b)+c=a+(b+c)。
2.交换律:对于任意两个数a、b,有a+b=b+a。
3.元素0:对于任意数a,有a+0=a。
4.逆元素:对于任意数a,有a+(-a)=0。
二、减法运算定律1.结合律:对于任意三个数a、b、c,有(a-b)-c=a-(b+c)。
2.交换律:对于任意两个数a、b,有a-b≠b-a。
3.元素0:对于任意数a,有a-0=a。
4.逆元素:对于任意数a,有a-(-a)=0。
三、乘法运算定律1.结合律:对于任意三个数a、b、c,有(a*b)*c=a*(b*c)。
2.交换律:对于任意两个数a、b,有a*b=b*a。
3.元素1:对于任意数a,有a*1=a。
4.元素0:对于任意数a,有a*0=0。
5.逆元素:对于任意非零数a,有a*(1/a)=1四、除法运算定律1.结合律:对于任意三个数a、b、c,有(a/b)/c=a/(b/c)。
2.交换律:对于任意两个数a、b,有a/b≠b/a。
3.元素1:对于任意数a,有a/1=a。
4.元素0:对于任意非零数a,有a/0=∞。
5.逆元素:对于任意非零数a,有a*(1/a)=1五、简便计算方法1.同余求和法:将一个较长的加法式化简为多个同余式,便于计算。
2. 消去法:简化乘法表达式,如ab+ac=a(b+c)。
3.倍数简化法:将一个乘法式中的一些因数换成较为便利的倍数。
4.四舍五入法:在进行除法运算时,保留特定位数的有效数字,并根据需要进行四舍五入。
5.近似数计算法:在进行复杂的计算时,可以将数值进行近似,简化计算过程。
综上所述,对小学四年级运算定律与简便计算进行分类总结复习,可以对这些重要的数学概念和技巧有一个清晰的了解。
《运算定律和简便计算》知识点总结运算定律和简便计算知识点总结随着现代科学技术的发展,人们对于数学运算的要求越来越高。
掌握运算定律和简便计算方法可以大大提高数学运算的效率。
本文将对运算定律和简便计算方法进行总结和归纳,帮助读者更好地掌握这些知识点。
一、加法的运算定律和简便计算1. 加法的交换律:a + b = b + a2. 加法的结合律:(a + b) + c = a + (b + c)3. 加法的零元素:a + 0 = a4. 加法的逆元素:a + (-a) = 0简便计算方法:1. 列竖式进行加法运算,从低位到高位逐位相加,进位。
2. 利用类加法法则,将较大的数拆分成更容易计算的数对进行运算。
二、减法的运算定律和简便计算1. 减法的定义:a - b = a + (-b)2. 减法的简便计算方法:a. 利用补数进行减法运算,即将减数的各位数与9的差补齐,再与被减数逐位相减。
b. 利用第二个数交换减法运算,即 b - a = -(a - b)。
三、乘法的运算定律和简便计算1. 乘法的交换律:a × b = b × a2. 乘法的结合律:(a × b) × c = a × (b × c)3. 乘法的分配律:a × (b + c) = a × b + a × c简便计算方法:1. 列竖式进行乘法运算,从低位到高位逐位相乘,进位。
2. 利用乘法法则分解数字,例如将乘 5 改为乘 10 再除以 2。
3. 利用倍分法进行乘法运算,即将一个乘数不断倍增,另一个乘数不断减半。
四、除法的运算定律和简便计算1. 除法的定义:a ÷ b = c 表示 a = b × c。
2. 除法的简便计算方法:a. 利用分解因式进行除法运算,将两个数都分解成质因数,然后进行约分。
b. 利用除法法则进行整除运算,即将除数不断倍增,被除数不断减半。
运算定律及简便运算:一、加法运算定律:1、加法交换律:两个数相加,交换加数的位置,和不变。
a+b=b+a2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。
(a+b)+c=a+(b+c) 加法的这两个定律往往结合起来一起使用。
如:165+93+35=93+(165+35)依据是什么?3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。
a-b-c=a-(b+c)二、乘法运算定律:1、乘法交换律:两个数相乘,交换因数的位置,积不变。
a×b=b×a2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。
(a×b )× c = a× (b×c )乘法的这两个定律往往结合起来一起使用。
如:125×78×8的简算3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。
(a+b)×c=a×c+b×c (a-b)×c=a×c-b×c乘法分配律的应用:①类型一:(a+b)×c (a-b)×c= a×c+b×c = a×c-b×c②类型二:a×c+b×c a×c-b×c=(a+b)×c =(a-b)×c③类型三:a×99+a a×b-a= a×(99+1) = a×(b-1)④类型四:a×99 a×102= a×(100-1) = a×(100+2)= a×100-a×1 = a×100+a×2三、简便计算1.连加的简便计算:①使用加法结合律(把和是整十、整百、整千、的结合在一起)②个位:1与9,2与8,3与7,4与6,5与5,结合。