江苏省南通市如皋市2020学年八年级(下)期末数学试卷(含解析)(001)
- 格式:doc
- 大小:385.04 KB
- 文档页数:25
2019~2020学年度第二学期八年级期末学业质量监测数学评分标准及参考答案说明:本评分标准每题只给出了一种解法供参考,如果考生的解法与本解答不同,参照本评分标准给分.一、选择题(本大题共10小题,每小题2分,共20分)题号12345678910答案B D C A C B D A D C二、填空题(本大题共8小题,每小题2分,共16分)11.110;12.(x-3)2=11;13.(5,-4);14.-2;15.24;16.x≤1;17.√342;18.12+2√3.三、解答题(本大题共8小题,共64分)19.(本小题满分8分)解:(1)x(2x-1)-(2x-1)=0.(2x-1)(x-1)=0.………………………………………………2分∴x1=12,x2=1.………………………………………………4分(2)∵a=1,b=-4,c=-3,∴△=b2-4ac=28.………………………………6分∴x1=4+√282=2+√7,x1=4−√282=2-√7.……………………………8分20.(本小题满分7分)解:(1)3800,3000;(每空2分,共4分)………………………4分(2)用中位数反映公司全体员工月收入水平更合适.除去收入为3800元的员工,一半员工收入高于3800元,另一半员工收入低于3800元.(或如果应聘公司员工一职,众数3000元能提供更为有用的信息.)………………………………7分21.(本小题满分7分)解:(1)23;………………………………………………………3分(2)画树状图如图所示:共有12个等可能的结果,其中有一天是星期二的结果有6个,…5分∴乙同学随机选择两天,其中有一天是星期二的概率为612=12.………7分22.(本小题满分8分)解:(1)添加的条件是BE=DF.…………………………………………………3分(2)证明:如图,连接AC交BD于点O,连接AF,CE.∵四边形ABCD是平行四边形,∴OB=OD,OA=OC.∵BE=DF,∴OB-BE=OD-DF,即OE=OF.∴四边形AECF是平行四边形.∴AE∥CF.……………………………………………8分(注:添加的条件及证明方法不唯一,合理即可.)23.(本小题满分8分)解:设矩形的边AB=x m,则边BC=(20-2x)m.根据题意,列方程得x(20-2x)=50,…………………………4分解得x1=x2=5.20-2x=10.…………………………5分围成一面靠墙,其它三边分别为5m,10m,5cm的矩形.…………………………6分答:不能围成面积为52m2的矩形场地.…………………………7分理由:若能围成,则可列方程x(20-2x)=52,此方程无实数解.…………………8分24.(本小题满分8分)解:(1)27.……………………………………………2分(2)设点P出发3秒后,y1与x之间的函数关系式为y1=kx+b(k≠0),观察图象可知,点P的运动速度为每秒2cm,由27÷2=13.5,可知y1=kx+b的图象过点(13.5,21).…………3分又因为y1=kx+b的图象过点(3,0),所以{13.5k+b=213k+b=0…………………………………………4分解方程组得{k=2b=−6∴y1与x的函数关系式为y1=2x-6.…………………………………………6分(3)由题意可得y2=-3x+21.…………………………………………7分解方程2x-6=-3x+21,得x=275.……………………………………………8分25.(本小题满分8分)解:(1)依题意画图如图1,…………1分证明:∵PQ垂直平分BE,∴QB=QE,OB=OE,∵四边形ABCD是矩形,∴AD∥BC,∴∠PEO=∠QBO,又∵∠BOQ=∠EOP,∴△BOQ≌△EOP(ASA),………………………………2分∴PE=QB,又∵AD∥BC,∴四边形BPEQ是平行四边形,……………………………………………3分又∵QB=QE,∴四边形BPEQ是菱形;…………………………………………4分(2)解:如图2,∵O ,F 分别为PQ ,AB 的中点, ∴AE+BE=2OF+2OB=18, 设AE=x ,则BE=18-x ,在Rt △ABE 中,62+x 2=(18-x)2, 解得x=8, …5分BE=18-x=10, ∴OB=12 BE=5,设PE=y ,则AP=8-y ,BP=PE=y ,在Rt △ABP 中,62+(8-y )2=y 2,解得y=254 , ……………………………………6分 在Rt △BOP 中,PO=√y 2−52=154, ……………………………………7分∴PQ=2PO=152 . ……………………………………8分 26.(本小题满分10分) 解:(1)∵−1+43=1,8−23=2,∴点D (1,2)是点C ,E 的三分点.……………2分(2)①由融合点定义知x =3+t 3,得t =3x -3,又∵y =0+(2t+3)3 ,得t =3y−32,∴3x -3=3y−32,化简得y =2x -1. ………… …………………4分②当四边形MTBN 是平行四边形时,BT ∥MN , ∵B (t ,2t +3),T (3+t 3,2t+33),∴t =3+t 3,解得t =32 ,∴点B 的坐标为( 32,6). ……………………………………6分 当四边形MTNB 是平行四边形时,设BT 与MN 交于点P ,则点P 为BT 与MN 的中点,∴点P 的坐标为(0,1), ∵B (t ,2t +3),T (3+t 3 ,2t+33),∴t+3+t 3=0,解得t =−34,∴点B 的坐标为( −34,32).综上所述,点B 的坐标为( 32,6)或( −34,32). …………………………8分③-3≤t ≤1. ……………………………………10分。
考试时间:120分钟满分:100分一、选择题(每题3分,共30分)1. 下列数中,不是有理数的是()A. 2/3B. -5/2C. √4D. √-12. 若a=2,b=-3,则a²+b²的值为()A. 5B. 13C. 7D. 173. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 梯形4. 下列方程中,无解的是()A. 2x+3=7B. 3x-5=0C. 4x+1=9D. 5x-2=35. 若∠A=45°,∠B=60°,则∠C的度数为()A. 45°B. 60°C. 75°D. 90°6. 下列函数中,是反比例函数的是()A. y=x²B. y=2xC. y=1/xD. y=x+27. 下列不等式中,正确的是()A. 3x>2xB. 3x<2xC. 3x≥2xD. 3x≤2x8. 下列命题中,正确的是()A. 平行四边形的对角线互相垂直B. 等腰三角形的底角相等C. 相似三角形的对应边成比例D. 等边三角形的内角都是直角9. 下列数中,是偶数的是()A. 2B. 3C. 4D. 510. 下列事件中,属于必然事件的是()A. 抛掷一枚硬币,出现正面B. 抛掷一枚骰子,出现6C. 从一副扑克牌中抽取一张红桃 D. 随机抽取一个数,该数大于0二、填空题(每题3分,共30分)11. 若a=-3,b=4,则a²-b²的值为______。
12. 在直角三角形中,若∠A=30°,则∠B的度数为______。
13. 下列函数中,是正比例函数的是______。
14. 下列不等式中,正确的是______。
15. 下列命题中,正确的是______。
16. 若∠A=45°,∠B=60°,则∠C的度数为______。
17. 下列数中,是偶数的是______。
2024届江苏省如皋市数学八年级第二学期期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)1.如图在ABC △中,D 、E 分别是AB 、AC 的中点若ABC △的周长为16,则ADE 的周长为( )A .6B .7C .8D .92.如果a >b ,那么下列结论中,错误的是( ) A .a ﹣3>b ﹣3B .3a >3bC .33a b >D .﹣a >﹣b3.已知一个菱形的边长为5,其中一条对角线长为8,则这个菱形的面积为( ) A .12B .24C .36D .484.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表所示: 成绩/米 1.50 1.60 1.65 1.70 1.75 1.80 人数232341则这15运动员的成绩的众数和中位数分别为( ) A .1.75,1.70B .1.75,1.65C .1.80,1.70D .1.80,1.655.下列四个图形中,是轴对称图形,但不是中心对称图形的是( ).A .B .C .D .6.如图,在△ABC 中,AB =AC =15,AD 平分∠BAC ,点E 为AC 的中点,连接DE ,若△CDE 的周长为21,则BC 的长为( ).A .6B .9C .10D .127.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,6AB =,60ABC ∠=︒,过点A 作AE BC ⊥于点E ,连接OE ,则OE 的长为( )A .33B .2C .3D .68.如果点P(x-4,x+3)在平面直角坐标系的第二象限内,那么x 的取值范围在数轴上可表示为( ) A .B .C .D .9.某班数学兴趣小组5位同学的一次数学测验成绩为82,83,88,85,87(单位:分),经过计算这组数据的方差为5.2,小李和小明同学成绩均为85分,若该组加入这两位同学的成绩则( ) A .平均数变小B .方差变大C .方差变小D .方差不变10.ABCD 中,130A C ∠+∠=︒,则D ∠的度数是( ) A .65︒B .115︒C .125︒D .130︒二、填空题(每小题3分,共24分)11.若关于x 的一元二次方程2220x x m ++=有两个不相等的实数根,则m 的取值范围________12.如图,在正方形ABCD 中,E 为AB 中点,连结DE ,过点D 作DF ⊥DE 交BC 的延长线于点F ,连结EF ,若AE =1,则EF 的值为__.13.在平面直角坐标系中,将直线y=-2x+1的图象向左平移2个单位,再向上平移1个单位,所得到直线的解析式是__________。
2020年南通市名校八年级第二学期期末综合测试数学试题一、选择题(每题只有一个答案正确)1.若点P (a ,2)在第二象限,则a 的值可以是( )A .2-B .0C .1D .22.如图,△ABC 中,∠C=90°,AC=3,∠B=30°,点P 是BC 边上的动点,则AP 的长不可能是( )A .3.5B .4.2C .5.8D .73.用配方法解方程x 2-8x+9=0时,原方程可变形为( )A .(x-4)2=9B .(x-4)2=7C .(x-4)2=-9D .(x-4)2=-74.下列函数中,表示y 是x 的正比例函数的是( )A .y =﹣0.1xB .y =2x 2C .y 2=4xD .y =2x+15.若23m -有意义,则m 能取的最小整数值是( )A .0m =B .1m =C .2m =D .3m =6.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,∠AOB=60°,若矩形的对角线长为4,则AD 的长是( )A .2B .4C .23D .437.四边形ABCD 是平行四边形,下列结论中正确的是( )A .当AC BD =时,它是菱形B .当AC BD =时,它是矩形 C .当AC BD =时,它是正方形 D .当AC BD ⊥时,它是正方形8.如图,已知四边形ABCD 是边长为4的正方形,E 为CD 上一点,且DE =1,F 为射线BC 上一动点,过点E 作EG ⊥AF 于点P ,交直线AB 于点G .则下列结论中:①AF =EG ;②若∠BAF =∠PCF ,则PC =PE ;③当∠CPF =45°时,BF =1;④PC 的最小值为13﹣1.其中正确的有( )A .1个B .1个C .3个D .4个9.如图,ABCD 的一边AB 在x 轴上,长为5,且60DAB ∠=︒,反比例函数23y x =和33y x =-分别经过点C ,D ,则ABCD 的周长为( )A .12B .14C .103D .1023+10.等腰三角形的底边和腰长分别是10和12,则底边上的高是( )A .13B .8C .234D .119二、填空题11.如图,在单位为1的方格纸上,123345,A A A A A A ∆∆567,A A A ∆……,都是斜边在x 轴上,斜边长分别为2,4,6……的等腰直角三角形,若123A A A ∆的顶点坐标分别为123(2,0),?(1,1),?(0,0)A A A ,则依图中所示规律,2019A 的坐标为__________.12.已知y 是x 的一次函数,右表列出了部分对应值,则m =______.x1 02 y3 m 513.某学校八年级3班有50名同学,30名男生的平均身高为170,20cm 名女生的平均身高160cm ,则全班学生的平均身高是__________cm .14.如图在△ABC 中,AH ⊥BC 于点H,在AH 上取一点D,连接DC ,使DA=DC,且∠ADC=2∠DBC,若DH=2,BC=6,则AB=_________________。
2019-2020学年南通市如皋市八年级下学期期末数学试卷一、选择题(本大题共10小题,共20.0分)1.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2.下列事件中()是确定的.A. 车辆随机经过一个路口,遇到红灯B. 两条线段可以组成一个三角形C. 367人中至少有两人的生日在同一天D. 掷一枚均匀的骰子,掷出的点数是质数3.四边形ABCD的对角线AC、BD相交于点O,给出下列4个条件:①AB//CD;②OB=OD;③AD=BC;④AD//BC.从中任取两个条件,能推出四边形ABCD是平行四边形的概率是()A. 12B. 13C. 23D. 564.如图,直线y=x+b(b>0)分别交x轴、y轴于点A、B,直线y=kx(k<0)与直线y=x+b(b>0)交于点C,点C在第二象限,过A、B两点分别作AD⊥OC于D,BE⊥OC于E,且BE+BO=8,AD=4,则ED的长为()A. 2B. 32C. 52D. 15.下列说法正确的是()A. 连续抛一枚硬币n次,当n越来越大时,出现正面朝上的频率会越来越稳定于0.5B. 连续抛一枚硬币50次,出现正面朝上的次数是25次C. 连续三次掷一颗骰子都出现了奇数,则第四次出现的数一定是偶数D. 某地发行一种福利彩票,中奖概率为1%,买这种彩票100张一定会中奖6.袁隆平海水稻科研团队为考察最近选育的水稻生长情况,在同一时期,分别从甲、乙、丙三种稻田苗中随机抽取部分稻苗测量苗高(单位:cm),算得它们的方差分别为S甲2=2.7,S乙2=3.4,2=5.3,则下列对苗高的整齐程度描述正确的是()S丙A. 甲最整齐B. 乙最整齐C. 丙最整齐D. 一样整齐7.已知一元二次方程x2−x+1=0,下列判断正确的是()A. 该方程有两个相等的实数根B. 该方程有两个不相等的实数根C. 该方程无实数根D. 该方程根的情况不确定8.某商店一个月营业额50万元,三月份营业额72万元,设该店二、三月份平均每个月增长率为x,那么x满足的方程是()A. 50(1+x)=72B. 50(1−x)=72C. 50(1+x)2=72D. 50[(1+x)+(1+x)2]=729.为了解某中学七年级560名学生的身高情况,抽查了其中80名学生的身高进行统计分析.下面叙述正确的是()A. 560名学生是总体B. 每名学生是总体的一个个体C. 80名学生的身高是总体的一个样本D. 以上调查属于全面调查10.如图,矩形AOBC的面积为4,反比例函数y=k的图象的一支经过x矩形对角线的交点P,则k的值是()A. 1B. −2C. −1D. −12二、填空题(本大题共8小题,共16.0分)11.从−1,0,1,2这四个数字中任取一个数作为代数式中x的值.其中能使代数式有意义的概率为________.12.计算:x8÷x2=.13. 如图,△ABC 的顶点坐标分别为A(4,6)、B(5,2)、C(2,1),如果将△ABC 绕点C 按逆时针方向旋转90°,得到△A′B′C ,那么点A 的对应点A′的坐标是_______.14. 若(m +2)x m2−2+3x −1=0是关于x 的一元二次方程,则m 的值为______.15. 如图,在菱形ABCD 中,AB =2,∠DAB =60°,把菱形ABCD 绕点A 顺时针旋转30°得到菱形AB′C′D′,其中点C 的运动的路径为CC′⏜,则图中阴影部分的面积为______.16. 已知一次函数y =kx +b 的图象如图所示,则关于x 的不等式3kx −12b >0的解集为______.17. 黄金分割是指把一条线段分割为两部分,使较短线段与较长线段的比等于较长线段与原线段的比,其比值等于√5−12.如图,在正方形ABCD 中,点G 为边BC 延长线上一动点,连接AG 交对角线BD 于点H ,△ADH 的面积记为S 1,四边形DHCG 的面积记为S 2.如果点C 是线段BG 的黄金分割点,则S 1S 2的值为______ .18. 已知等腰三角形的一边长为9,另一边长为方程x 2−8x +15=0的根,则该等腰三角形的周长为______.三、计算题(本大题共1小题,共8.0分)19. 春秋旅行社为吸引市民组团去上海参观世博会,推出了如下收费标准:如果人数不超过25人,人均旅游费用为1000元;如果人数超过25人,每增加1人,人均旅游费用降低20元,但人均旅游费用不得低于700元.某单位组织员工去上海参观世博会,共支付给春秋旅行社旅游费用27000元,请问该单位这次共有多少员工去上海参观世博会?四、解答题(本大题共7小题,共56.0分) 20. 解下列方程组:(1){4s +3t =52s −t =−5;(2){3(x +y)−4(x −y)=4x+y 2+x−y 6=1.21. 张老师为了从平时在班级里数学比较优秀的王军、张成两位同学中选拔一人参加“全国初中数学联赛”,对两位同学进行了辅导,并在辅导期间进行了10次测验,两位同学测验成绩记录如下表:第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 第9次第10次王军 68 80 78 79 81 77 78 84 83 92 张成 96807583857779808075利用表中提供的数据,解答下列问题: (1)填写完成下表平均成绩中位数众数王军8079______张成8080______(2)张老师从测验成绩记录表中,求得王军10次测验成绩的方差S王2=33.2,请你帮助张老师计算张成10次测验成绩的方差S张2.22. 某校开设了“3D”打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制了两幅均不完整的统计图表.校本课程频数频率A540.45B0.25C24bD12合计a1最受欢迎的校本课程调查问卷您好!这是一份关于您最喜欢的校本课程问卷调查表,请在表格中选择一个(只能选一个)您最喜欢的课程选项,在其后空格内打“√”,非常感谢您的合作.选项校本课程A3D打印B数学史C诗歌欣赏D陶艺制作请您根据图表中提供的信息回答下列问题:(1)统计表中的a=______,b=______;(2)“D”对应扇形的圆心角为______度;(3)根据调查结果,请您估计该校1200名学生中最喜欢“数学史”校本课程的人数;(4)小明和小亮参加校本课程学习,若每人从“A”、“B”、“C”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率.23. 如图,平行四边形ABCD的边AB在x轴上,点C的坐标为(−5,4),点D在y轴的正半轴上,x−1与y轴交于点E,将直线AE沿y轴向上平移n(n>0)个单位长度后,经过点A的直线y=12得到直线l,直线l经过点C时停止平移.(1)求点A和点B的坐标以及直线l所对应的函数表达式.(2)若直线l交y轴于点F,连接CF,设△CDF的面积为S(这里规定:线段是面积为0的三角形),求S与n之间的函数关系式,并写出n的取值范围.24. 小明从深圳往广州邮寄一件包裹,邮资收费标准为每干克0.9元,并每件另加收手续费3.5元.(1)求总邮资y(元)与包裹重量x(干克)之间的函数关系式;(2)若小明的包裹重量为5千克,则小明应付的总邮资为多少?(3)若小明所付总邮资为12.5元,则小明的包裹重量为多少?25. 如图:把一个矩形如图折叠,使顶点B和D重合,折痕为EF.(1)△DEF是什么三角形,并证明.(2)连接BE,判断四边形BEDF的形状?并证明.26. 如图,在梯形ABCD中,AB//CD,AB=7,CD=1,AD=BC=5.点M、N分别在边AD、BC上运动,并保持MN//AB,ME⊥AB,NF⊥AB,垂足分别为E、F(1)求梯形ABCD的面积;(2)设AE=x,用含x的代数式表示四边形MEFN的面积;(3)试判断四边形MEFN能否为正方形?若能,求出正方形MEFN的面积;若不能,请说明理由.【答案与解析】1.答案:A解析:解:A、是轴对称图形,也是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,也不是中心对称图形,故此选项错误.故选:A.根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.答案:C解析:解:A、车辆随机经过一个路口,遇到红灯是随机事件,故本选项错误;B、两条线段可以组成一个三角形是不可能事件,故本选项错误;C、367人中至少有两人的生日在同一天是必然事件,故本选项错正确;D、掷一枚均匀的骰子,掷出的点数是质数是随机事件,故本选项错误;故选:C.根据必然事件、不可能事件、随机事件的概念分别对每一项进行分析,即可得出答案.本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.答案:C解析:解:有①与②,①与③,①与④,②与③,②与④,③与④六种情况,①与④根据两组对边分别平行的四边形是平行四边形,能推出四边形ABCD为平行四边形;③与④根据一组对边平行且相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与②,②与④通过证明全等得到四边形的对角线互相平分,能推出四边形ABCD为平行四边形;所以能推出四边形ABCD为平行四边形的有4组,所以能推出四边形ABCD是平行四边形的概率是46=23.故选:C.根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率,即可求出答案.此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn,解题的关键是掌握平行四边形的判定.4.答案:D解析:解:当y=0时,x+b=0,解得,x=−b,∴直线y=x+b(b>0)与x轴的交点坐标A为(−b,0);当x=0时,y=b,∴直线y=x+b(b>0)与y轴的交点坐标B为(0,b);∴OA=OB,∵AD⊥OC于D,BE⊥OC于E,∴∠ADO=∠BEO=90°,∵∠DOA+∠DAO=90°,∠DOA+∠DOB=90°,∴∠DAO=∠EOB,在△DAO和△BOE中{∠DAO=∠EOB ∠ADO=∠BEO OA=OB,∴△DAO≌△EOB,∴OD=BE,AD=OE=4,∵BE+BO=8,∴OB=8−BE,∵OB2=BE2+OE2,∴(8−BE)2=BE2+42,∴BE=3,∴DE=OE−OD=AD−BE=1,故选:D.分别令y=0,x=0来求直线y=x+b(b>0)与x轴负半轴、y轴正半轴的交点A、B的坐标,根据全等三角形的判定和性质以及勾股定理即可得到结论.本题综合考查了一次函数图象上点的坐标特征、全等三角形的判定与性质.解答该题时,注意全等三角形的判定与全等三角形的性质的综合运用.5.答案:A解析:解:A、连续抛一枚硬币n次,当n越来越大时,出现正面朝上的频率会越来越稳定于0.5,正确;B、这是一个随机事件,抛一枚硬币,出现正面朝上或者反面朝上都有可能,但事先无法预料,错误;C、这是一个随机事件,掷一颗骰子,出现奇数或者偶数都有可能,但事先无法预料,错误;D、这是一个随机事件,买这种彩票,中奖或者不中奖都有可能,但事先无法预料,错误.故选:A.概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.此题考查利用频率估计概率问题,正确理解概率的含义是解决本题的关键.6.答案:A解析:解:因为S丙2=5.3>S乙2=3.4>S甲2=2.7,方差最小的为甲,所以麦苗高度最整齐的是甲.故选:A.根据方差的定义,方差越小数据越稳定.本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7.答案:C解析:解:∵△=(−1)2−4×1=−3<0,∴方程无实数根.故选C.先计算△,得到△=(−1)2−4×1=−3<0,然后根据△的意义判断方程根的情况.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.答案:C解析:解:设该店二、三月份平均每个月增长率为x,依题意,得:50(1+x)2=72. 故选:C .设该店二、三月份平均每个月增长率为x ,根据该商店一月份及三月份的营业额,即可得出关于x 的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9.答案:C解析:解:A 、560名学生的身高情况是总体,故A 不符合题意; B 、每名学生的身高是总体的一个个体,故B 不符合题意; C 、80名学生的身高是总体的一个样本,故C 符合题意; D 、以上调查属于抽样调查,故D 不符合题意; 故选:C .总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本即可. 此题考查了总体、个体、样本和抽样调查,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.10.答案:C解析:本题考查了反比例函数y =kx (k ≠0)系数k 的几何意义:从反比例函数y =kx (k ≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.作PE ⊥x 轴于E ,PF ⊥y 轴于F ,根据矩形的性质得矩形OEPF 的面积=14矩形AOBC 的面积=14×4=1,然后根据反比例函数y =kx (k ≠0)系数k 的几何意义即可得到k =−1. 解:作PE ⊥x 轴于E ,PF ⊥y 轴于F ,如图,∵点P 为矩形AOBC 对角线的交点,∴矩形OEPF的面积=14矩形AOBC的面积=14×4=1,∴|k|=1,而k<0,∴k=−1,故选:C.11.答案:解析:此题考查了概率公式,分式有意义的条件.概率=所求情况数与总情况数之比.首先求得分式有意义的条件,在−1,0,1,2中任取一个数,找出恰好使分式有意义的数,然后利用概率公式求解即可求得答案.解:由题意得,x>0,∵在−1,0,1,2中任取一个数,恰好使分式有意义的有1,2,∴恰好使分式有意义的概率是=.故填.12.答案:解析:13.答案:(−3,3)解析:本题考查了坐标与图形变化−旋转,熟练掌握网格结构,作出旋转后的图形是解题的关键.根据网格结构找出点A、B绕点C逆时针旋转90°的对应点的位置,然后顺次连接,再根据平面直角坐标系写出点A′的坐标即可.解:如图所示,点A的对应点A′的坐标是(−3,3).故答案为:(−3,3).14.答案:2解析:解:由题意得,m2−2=2,m+2≠0,解得,m=2,故答案为:2.根据一元二次方程的定义列出方程和不等式,解方程和不等式得到答案.本题考查的是一元二次方程的定义,掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程是解题的关键.15.答案:π+6−4√3解析:解:连接CD′和BC′,∵∠DAB=60°,∴∠DAC=∠CAB=30°,∵∠C′AB′=30°,∴A、D′、C及A、B、C′分别共线.∴AC=2√3,∴扇形ACC′的面积为:30⋅π⋅(2√3)2360=π,∵AC=AC′,AD′=AB∴在△OCD′和△OC′B中,{CD′=BC′∠ACO=∠AC′D′∠COD′=∠C′OB,∴△OCD′≌△OC′B(AAS),∴OB=OD′,CO=C′O∵∠CBC′=60°,∠BC′O =30°∴∠COD′=90°∵CD′=AC −AD′=2√3−2,OB +C′O =2, ∴在Rt △BOC′中,BO 2+(2−BO)2=(2√3−2)2 解得BO =√3−1,C′O =3−√3, ∴S △OC′B =12⋅BO ⋅C′O =2√3−3,∴图中阴影部分的面积为:S 扇形ACC′−2S △OC′B =π+6−4√3. 故答案为:π+6−4√3.根据菱形的性质以及旋转角为30°,连接CD′和BC′,可得A 、D′、C 及A 、B 、C′分别共线,求出扇形面积,再根据AAS 证得两个小三角形全等,求得其面积,最后根据扇形ACC′的面积−两个小的三角形面积即可.本题考查了旋转的性质,菱形的性质,扇形的面积公式,勾股定理,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.16.答案:x <1解析:解:∵一次函数y =kx +b 的图象过(−6,0), ∴0=−6k +b , ∴b =6k ,∴3kx −12b =3kx −3k >0,∵函数图象经过第二、三、四象限, ∴k <0, ∴x −1<0, 解得:x <1. 故答案为:x <1.根据函数的图象可知,k <0且x =−6时,y =0,把(−6,0)代入y =kx +b ,得出k 与b 之间的关系式,再利用一元一次不等式解法得出答案.本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.17.答案:3−√52或7−3√52解析:解:设△ADH 的AD 边上的高为h ,△GBH 的边BG 上的高为ℎ′,分两种情况: ①点C 是线段BG 的黄金分割点,BC >CG , 则BC =√5−12BG ,∴BG =√5+12BC , ∵四边形ABCD 是正方形, ∴BC =CD =AD ,AD//BC , ∴△ADH∽△GBH , ∴ℎℎ′=AD BG=√5−12, ∴ℎ=√5−12ℎ′, ∵△ADH 的面积记为S 1=12AD ⋅ℎ,四边形DHCG 的面积记为S 2=△BDG 的面积−△BCH 的面积=12BG ⋅CD −12BC ⋅ℎ′, ∴S 1S 2=ℎBG−ℎ′=√5+12(ℎ+ℎ′)−ℎ′=√5−12ℎ′ℎ′+√5−12ℎ′=3−√52;②点C 是线段BG 的黄金分割点,BC <CG , 则BC =3−√52BG , ∴BG =3+√52BC ,∵四边形ABCD 是正方形, ∴BC =CD =AD ,AD//BC , ∴△ADH∽△GBH , ∴ℎℎ′=AD BG=3−√52,∴ℎ=3−√52ℎ′,∵△ADH 的面积记为S 1=12AD ⋅ℎ,四边形DHCG 的面积记为S 2=△BDG 的面积−△BCH 的面积=12BG ⋅CD −12BC ⋅ℎ′,∴S 1S 2=ℎBG−ℎ′=3+√52(ℎ+ℎ′)−ℎ′=3−√52ℎ′ℎ′+√5+12ℎ′=7−3√52; 综上所述,如果点C 是线段BG 的黄金分割点,则S 1S 2的值为3−√52或7−3√52; 故答案为:3−√52或7−3√52.分两种情况:①点C是线段BG的黄金分割点,BC>CG,则BC=√5−12BG,得BG=√5+12BC,证△ADH∽△GBH,得ℎ=√5−12ℎ′,再由三角形面积公式计算即可;②点C是线段BG的黄金分割点,BC<CG,则BC=3−√52BG,解法同①.本题考查了黄金分割的定义、正方形的性质、相似三角形的判定与性质以及三角形面积等知识;熟练掌握黄金分割的定义和相似三角形的判定与性质是解题的关键.18.答案:19或21或23解析:本题考查了解一元二次方程和等腰三角形性质,三角形的三边关系定理的应用,因式分解法求出方程的解是根本,根据等腰三角形的性质分类讨论是关键.求出方程的解,分为两种情况,看看是否符合三角形三边关系定理,求出即可.解:由方程x2−8x+15=0得:(x−3)(x−5)=0,∴x−3=0或x−5=0,解得:x=3或x=5,当等腰三角形的三边长为9、9、3时,其周长为21;当等腰三角形的三边长为9、9、5时,其周长为23;当等腰三角形的三边长为9、3、3时,3+3<9,不符合三角形三边关系定理,舍去;当等腰三角形的三边长为9、5、5时,其周长为19;综上,该等腰三角形的周长为19或21或23,故答案为19或21或23.19.答案:解:∵1000×25=25000<27000,∴去的人一定超过25人,设该单位这次共有x名员工去上海参观世博会,[1000−20(x−25)]×x=27000,解之得:x1=30,x2=45,当x=30时,人均费用为900元.当x=45时,人均费用为600元,因为低于700元,这种情况舍去.所以x=30.答:该单位这次共有30名员工去上海参观世博会.解析:设该单位这次共有x 名员工去上海参观世博会,根据每增加1人,人均旅游费用降低20元,且共支付给春秋旅行社旅游费用27000元,可列出方程求解,根据人均旅游费用不得低于700元,判断解是否合理.本题考查理解题意的能力,关键以支付给旅行社的费用作为等量关系列方程求解.20.答案:解:(1){4s +3t =5①2s −t =−5②,①−②×2得,5t =15,解得t =3; 把t =3代入②得,2s −3=−5,解得s =−1, 故此方程组的解为{t =3s =−1;(2)原方程组可化为{7y −x =4①y +2x =3②,①×2+②得,15y =11,解得y =1115; 把y =1115代入②得,1115+2x =3,解得x =1715, 故此方程组的解为{x =1715y =1115.解析:(1)先用加减消元法求出t 的值,再用代入消元法求出s 的值即可;(2)先把方程组中的两方程化为不含分母及括号的方程,再用加减消元法或代入消元法求解即可. 本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.21.答案:(1)78;80(2)张成10次测验成绩的方差是:S 张2=110[(96−80)2+3×(80−80)2+2×(75−80)2+(83−80)2+(85−80)2+(77−80)2+(79−80)2]=35;即张成10次测试成绩的方差为35. 解析:解:(1)78出现了2次,出现的次数最多,则王军成绩的众数为78; 80出现了3次,出现的次数最多,则张成成绩的众数为80; 故答案为:78,80; (2)见答案.(1)根据众数的定义即众数是一组数据中出现次数最多的数,即可得出答案;(2)根据方差S2=1n[(x1−x)2+(x2−x)2+⋯+(x n−x)2],代值计算即可.本题考查方差和众数,一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1−x)2+(x2−x)2+⋯+(x n−x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立;众数是一组数据中出现次数最多的数.22.答案:120 0.2036解析:解:(1)a=54÷0.45=120,b=24÷120=0.20,故答案为:120、0.20;(2)“D”对应扇形的圆心角为360°×12120=36°,故答案为:36;(3)估计该校1200名学生中最喜欢“数学史”校本课程的人数为1200×0.25=300(人);(4)列表格如下:A B CA A,A B,A C,AB A,B B,B C,BC A,C B,C C,C共有9种等可能的结果,其中两人恰好选中同一门校本课程的结果有3种,所以两人恰好选中同一门校本课程的概率为39=13.(1)由校本课程A的频数及频率可得合计部分a的值,再用C组频数除以总数即可得b的值;(2)用360°乘以D组人数所占比例即可得;(3)用总人数乘以样本中最喜欢“数学史”校本课程的人数所占比例;(4)先列出表格,再根据题意列出算式,再求出即可.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.23.答案:解:(1)令y=0,则12x−1=0,x=2,∴A(2,0),∵C的坐标为(−5,4),∴AB=5,∴B(−3,0);∵直线AE沿y轴向上平移得到l,∴设直线l的经过点C时的解析式为y=12x+k,把C(−5,4)代入得,4=12×(−5)+k,解得k=132,∴当l到达C点时的解析式为y=12x+132;(2)∵将直线AE沿y轴向上平移n(n>0)个单位长度后,得到直线l:y=12x−1+n,此时l与y轴的交点为(0,n−1),∵C的坐标为(−5,4),∴D(0,4),由直线AE为y=12x−1可知,E(0,−1),当0≤n≤5时,S=12×4×(4−n+1)=10−2n;当5<n≤132时,S=12×4×(n−5)=2n−10.解析:(1)令y=0,则12x−1=0,求A(2,0),由平行四边形的性质可知AB=5,则B(−3,0),设经过点C时直线l的解析式为y=12x+k,把C的坐标代入,即可求得解析式;(2)易求E(0,−1),当0≤n≤5时,S=12×4×(5−n)=10−2n;当5<n≤132时,S=12×4×(n−5)=2n−10.本题是一次函数的综合题;待定系数法求一次函数的解析式,平行四边形的性质求点的坐标,一次函数图象与几何变换,求三角形面积,确定n的范围是解题的关键.24.答案:解:(1)依题意得:y=0.9x+3.5.(2)把x=5代入y=0.9x+3.5,得y=0.9×5+3.5=8(元)答:若小明的包裹重量为5千克,则小明应付的总邮资为8元.(3)把y=12.5代入y=0.9x+3.5,得12.5=0.9x+3.5,解得x=10答:若小明所付总邮资为12.5元,则小明的包裹重量为10千克.解析:(1)根据总邮资y(元)=0.9x+3.5列出函数解析式;(2)将x=5代入(1)中的函数解析式即可求得相应的y值;(3)将y=12.5代入(1)中的函数解析式即可求得相应的x的值.此题为一次函数的应用,渗透了函数与方程的思想,难度不是很大,属于中档题.25.答案:解:(1)△DEF是等腰三角形.理由如下:∵矩形沿EF折叠,使顶点B和D重合,∴∠BFE=∠DFE,∵AD//BC,∴∠BFE=∠FED,∴∠DFE=∠FED,∴DE=DF,∴△DEF是等腰三角形;(2)连接BE、BD,如图,四边形BEDF是菱形.理由如下:∵矩形沿EF折叠,使顶点B和D重合,∴FB=FD,EB=ED,由(1)得DE=DF,∴DE=EB=BF=FD,∴四边形BEDF是菱形.解析:本题考查了折叠的性质、矩形的性质、等腰三角形的判定、菱形的判定等知识;熟练掌握矩形的性质和折叠的性质是解决问题的关键.(1)根据折叠的性质得到∠BFE=∠DFE,又AD//BC,得到∠BFE=∠FED,则∠DFE=∠FED,于是DE=DF,所以△DEF是等腰三角形;(2)根据折叠的性质得到FB=FD,EB=ED,由(1)得DE=DF,得到DE=EB=BF=FD,根据菱形的判定方法得到四边形BEDF是菱形即可.26.答案:解:(1)过点D作DN⊥AB于点N,∵在梯形ABCD中,AB//CD,AB=7,CD=1,AD=BC=5,∴AN=12×(7−1)=3,∴DN=√AD2−AN2=4,∴梯形ABCD的面积为:12×(1+7)×4=16;(2)∵AE=x,AD=BC,∴BF=x,则EF=7−2x,∵ME//DN,∴△AEM∽△AND,∴AEAN =MEDN,∴x3=ME4,解得:ME=43x,∴用含x的代数式表示四边形MEFN的面积为:(7−2x)⋅43x=−83x2+283x,(3)当四边形MEFN为正方形,由(2)得:则43x=7−2x,解得:x=2110,故正方形MEFN的面积为:43x2=43×21×21100=14725.解析:(1)利用等腰梯形的性质结合勾股定理得出梯形的高,进而得出答案;(2)利用相似三角形的判定与性质表示出ME的长,进而表示四边形MEFN的面积;(3)利用(2)中所求得出x的值,进而得出正方形MEFN的面积.此题主要考查了相似三角形的判定与性质以及等腰梯形的性质等知识,正确表示出ME的长是解题关键.。
江苏省南通市2020年八年级第二学期期末联考数学试题一、选择题(每题只有一个答案正确)1.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6 B.8 C.10 D.122.若以二元一次方程x+2y﹣b=0的解为坐标的点(x,y)都在直线y=﹣12x+b﹣l上,则常数b=()A.12B.2 C.﹣1 D.13.下列式子成立的是( )A.2(3)=3 B.23﹣3=2 C.3=3D.(3)2=64.如图,A,B,C是⊙O上三点,∠α=140°,那么∠A等于().A.70°B.110°C.140°D.220°5.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.6.在△ABC中,∠A:∠B:∠C=1:1:2,则下列说法错误的是()A.a2+c2=b2B.c2=2a2C.a=b D.∠C=90°7.下列各式中,从左到右的变形,属于分解因式的是()A.10x2-5x=5x(2x-1) B.a2-b2-c2=(a-b)(a+b)-c2C.a(m+n)=am+an D.2x2-4y+2=2(x2-2y)8.某校在“我运动,我快乐”的技能比赛培训活动中,在相同条件下,对甲、乙两名同学的“单手运球”项目进行了5次测试,测试成绩(单位:分)如下:根据右图判断正确的是()A .甲成绩的平均分低于乙成绩的平均分;B .甲成绩的中位数高于乙成绩的中位数;C .甲成绩的众数高于乙成绩的众数;D .甲成绩的方差低于乙成绩的方差.9.某校把学生的纸笔测试、实践能力、成长记录三项成绩分别按50%,20%,30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是( )纸笔测试 实践能力 成长记录 甲90 83 95 乙88 90 95 丙90 88 90 A .甲B .乙、丙C .甲、乙D .甲、丙 10.把分式3x y xy -中的x 、y 的值同时扩大为原来的2倍,则分式的值( ) A .不变B .扩大为原来的2倍C .扩大为原来的4倍D .缩小为原来的一半二、填空题11.在等腰ABC △中,3AB AC ==,2BC =,则底边上的高等于__________.12.一组数据15、13、14、13、16、13的众数是______,中位数是______.13.正n 边形的一个外角的度数为60°,则n 的值为 .14.已知关于x 的方程260x kx --=的一个根为2-,则实数k 的值为( )A .1B .1-C .2D .2- 15.一组数据5、7、7、x 中位数与平均数相等,则x 的值为________.16.如图,在平面直角坐标系中,点A 、B 的坐标分别为(1,3)、(n ,3),若直线y=2x 与线段AB 有公共点,则n 的值可以为_____.(写出一个即可)17.如图,在ABC ∆中,已知D ,E ,F 分别为BC ,AD ,CE 的中点,且28ABC S cm ∆=,则图中阴影部分BEF ∆的面积等于__2cm .三、解答题18.某商场欲购进果汁饮料和碳酸饮料共60箱,两种饮料每箱的进价和售价如下表所示。
2019-2020学年江苏省南通市如皋市八年级(下)期末数学试卷一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题纸相应位置上 1.(2分)下列几何图形中,不是中心对称图形的共有( )A .1个B .2个C .3个D .4个2.(2分)不透明袋子中有除颜色外完全相同的4个黑球和2个白球,从袋子中随机摸出3个球,下列事件是必然事件的是( ) A .3个都是黑球 B .2个黑球1个白球C .2个白球1个黑球D .至少有1个黑球3.(2分)下列不能判定四边形是平行四边形的条件是( )A .A C ∠=∠,B D ∠=∠ B .//AB CD ,//AD BCC .//AB CD ,AD BC =D .AB CD =,AD BC =4.(2分)若直线3y kx k =+-经过第二、三、四象限,则k 的取值范围是( ) A .0k <B .3k >C .3k <D .03k <<5.(2分)某鱼塘里养了1600条鲤鱼,若干条草鱼和800条罗非鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右,则该鱼塘捞到鲤鱼的概率约为( ) A .23B .12 C .13D .166.(2分)已知第一组数据:12,14,16,18的方差为21S ;第二组数据:32,34,36,38的方差为22S ;第三组数据:2020,2019,2018,2017的方差为23S ,则21S ,22S ,23S 的大小关系表示正确的是( )A .222123S S S >> B .222123S S S => C .222123S S S << D .222123S S S =< 7.(2分)下列所给方程中,有两个不相等的实数根的是( ) A .2690x x -+=B .22350x x -+=C .2350x x ++=D .22950x x ++=8.(2分)某省正加速布局以5G 等为代表的战略性新兴产业.据统计,该省目前5G 基站的数量约1.5万座,计划到2020年底,全省5G 基站数是目前的4倍,到2022年底,全省5G 基站数量将达到17.34万座.按照计划,设2020年底到2022年底,全省5G 基站数量的年平均率为x ,根据题意列方程,得( ) A .26(1)17.34x += B .217.34(1)6x += C .26(1)17.34x -=D .217.34(1)6x -=9.(2分)某市组织全民健身活动,有100名男选手参加由跑、跳、投等10个田径项目组成的“十项全能”比赛,其中25名选手的一百米跑成绩排名,跳远成绩排名与10项总成绩的排名情况如图所示:甲、乙、丙表示三名男选手,下面有3个推断:①甲的一百米跑成绩排名比10项总成绩排名靠前;②乙的一百米跑成绩排名比10项总成绩排名靠后;③丙的一百米跑成绩排名比跳远成绩排名靠前.其中合理的是()A .②B .①C .①②D .①③10.(2分)如图,矩形ABCD 中,6AB =,4AD =,E 为AB 的中点,F 为EC 上一动点,P 为DF 中点,连接PB ,则PB 的最小值是( )A .4B .4.5C .4.8D .5二、填空题(本大题共8小题,每小题2分,共16分,不需要写出解答过程,请把答案直接填写在答题纸相应位置上)11.(2分)小丽微信支付密码是六位数(每一位可显示0~9),由于她忘记了密码的末位数字,则小丽能一次支付成功的概率是 .12.(2分)已知方程2620x x --=,用配方法化为2()a x b c +=的形式为 . 13.(2分)将点(4,5)A 绕着原点顺时针旋转90︒得到点B ,则点B 的坐标是 . 14.(2分)已知1x =是方程220x bx +-=的一个根,则方程的另一个根是 . 15.(2分)如图,四边形ABCD 是菱形,48DAB ∠=︒,对角线AC ,BD 相交于点O ,DH AB ⊥于H ,连接OH ,则DHO ∠= 度.16.(2分)如图,直线2y x =+与直线y ax c =+相交于点(,3)P m ,则关于x 的不等式2x ax c ++的解为 .17.(2分)如图,已知正方形ABCD 的边长为5,点E 、F 分别在AD 、DC 上,==,BE与AF相交于点G,点H为BF的中点,连接GH,则GH AE DF2的长为.18.(2分)如图①,在四边形ABCD中,//⊥.当直线l沿射线BC方AD BC,直线l AB向,从点B开始向右平移时,直线l与四边形ABCD的边分别相交于点E,F.设直线l向右平移的距离为x,线段EF的长y,且y与x的函数关系如图②所示,则四边形ABCD的周长是.三.解答题(本大题共8小题,共64分,请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(8分)解下列方程:(1)(21)21-=-;x x x(2)2430x x--=.20.(7分)下表某公司25名员工月收入的资料.月收入/元45000170001000056005000380030001600人数111451111(1)这个公司员工月收入的平均数是6312,中位数是,众数是;(2)在(1)中三个集中趋势参数中,你认为用哪一个反映公司全体员工月收入水平更合适?请说明理由.21.(7分)某校计划在暑假第二周的星期一至星期四开展社会实践活动,要求每位学生选择两天参加活动.(1)甲同学随机选择连续的两天,其中有一天是星期二的概率是;(2)乙同学随机选择两天,其中有一天是星期二的概率是多少?22.(8分)如图,E ,F 为ABCD 对角线BD 上的两点,若再添加一个条件,就可证出//AE CF .请完成以下问题:(1)你添加的条件是 .(2)请根据题目中的条件和你添加的条件证明//AE CF .23.(8分)如图,利用一面墙(墙的长度不限),用20m 长的篱笆,怎样围成一个面积为250m 的矩形ABCD 场地?能围成一个面积为252m 的矩形ABCD 场地吗?如能,说明围法;若不能,说明理由.24.(8分)如图1,C 是线段AB 上一个定点,动点P 从点A 出发向点B 匀速移动,动点Q 从点B 出发向点C 匀速移动,点P ,Q 同时出发,移动时间记为()x s ,点P 与点C 的距离记为1()y cm ,点Q 与点C 的距离记为2()y cm .1y 、2y 与x 的关系如图2所示. (1)线段AB 的长为 cm ;(2)求点P 出发3秒后1y 与x 之间的函数关系式; (3)当P ,Q 两点相遇时,x s .25.(8分)如图,在矩形ABCD 中,E 是AD 上一点,PQ 垂直平分BE ,分别交AD ,BE ,BC 于点P ,O ,Q ,连接BP ,EQ .(1)依题意补全图形(保留作图痕迹),并求证四边形BPEQ 是菱形;(2)若6AB =,F 为AB 的中点,且9OF OB +=,求PQ 的长.26.(10分)定义:在平面直角坐标系中,对于任意两点(,)A a b ,(,)B c d ,若点(,)T x y 满足3a c x +=,3b dy +=,那么称点T 是点A ,B 的三分点. 例如:(1,5)A -,(7,7)B ,当点(,)T x y 满足1723x -+==,5743y +==时,则点(2,4)T 是点A ,B 的三分点.(1)已知点(1,8)C -,(1,2)D ,(4,2)E -,请说明其中一个点是另外两个点的三分点. (2)如图,点A 为(3,0),点(,23)B t t +是直线l 上任意一点,点(,)T x y 是点A ,B 的三分点.①试确定y 与x 的关系式.②若①中的函数图象交y 轴于点M ,直线l 交y 轴于点N ,当以M ,N ,B ,T 为顶点的四边形是平行四边形时,求点B 的坐标.③若直线AT 与线段MN 有交点,直接写出t 的取值范围.2019-2020学年江苏省南通市如皋市八年级(下)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题纸相应位置上1.(2分)下列几何图形中,不是中心对称图形的共有()A.1个B.2个C.3个D.4个【分析】根据中心对称图形的定义旋转180︒后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.【解答】解:等边三角形不是中心对称图形,是轴对称图形;正方形既是中心对称图形,也是轴对称图形;正五边形不是中心对称图形,是轴对称图形;圆既是中心对称图形,也是轴对称图形.∴不是中心对称图形有等边三角形和正五边形共2个.故选:B.【点评】此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴.2.(2分)不透明袋子中有除颜色外完全相同的4个黑球和2个白球,从袋子中随机摸出3个球,下列事件是必然事件的是()A.3个都是黑球B.2个黑球1个白球C.2个白球1个黑球D.至少有1个黑球【分析】正确理解“必然事件”的定义,即可解答.必然事件是指事件一定会发生,即事件发生的可能性为100%.【解答】解:A袋子中装有4个黑球和2个白球,摸出的三个球中可能为两个白球一个黑球,所以A 不是必然事件;B .C .袋子中有4个黑球,有可能摸到的全部是黑球,B 、C 有可能不发生,所以B 、C不是必然事件;D .白球只有两个,如果摸到三个球不可能都是白梂,因此至少有一个是黑球,D 正确.故选:D .【点评】本题考查了“必然事件”,正确理解“必然事件”的定义是解题的关键. 3.(2分)下列不能判定四边形是平行四边形的条件是( )A .A C ∠=∠,B D ∠=∠ B .//AB CD ,//AD BCC .//AB CD ,AD BC =D .AB CD =,AD BC =【分析】根据平行四边形的判定定理和平行线的性质判断即可. 【解答】解:A 、A C ∠=∠,B D ∠=∠,∴四边形ABCD 是平行四边形,故本选项不符合题意;B 、//AB CD ,//AD BC ,∴四边形ABCD 是平行四边形,故本选项不符合题意;C 、//AB CD ,AD BC =,∴四边形ABCD 可能是等腰梯形,故本选项符合题意;D 、AB CD =,AD BC =,∴四边形ABCD 是平行四边形,故本选项不符合题意.故选:C .【点评】本题考查了平行四边形的判定定理和平行线的性质,判定一个四边形是平行四边形的方法有:①有一组对边平行且相等的四边形是平行四边形,②有两组对边分别相等的四边形是平行四边形,③有两组对角分别相等的四边形是平行四边形,④有两组对边分别平行的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形.4.(2分)若直线3y kx k =+-经过第二、三、四象限,则k 的取值范围是( ) A .0k <B .3k >C .3k <D .03k <<【分析】根据一场函数图象经过的象限可得出关于k 的一元一次不等式组,解之即可得出k 的取值范围.【解答】解:根据题意得0k <且30k -<, 所以0k <. 故选:A .【点评】本题考查了一次函数与系数的关系:由于y kx b =+与y 轴交于(0,)b ,当0b >时,(0,)b 在y 轴的正半轴上,直线与y 轴交于正半轴;当0b <时,(0,)b 在y 轴的负半轴,直线与y 轴交于负半轴.0k >,0b y kx b >⇔=+的图象在一、二、三象限;0k >,0b y kx b <⇔=+的图象在一、三、四象限;0k <,0b y kx b >⇔=+的图象在一、二、四象限;0k <,0b y kx b <⇔=+的图象在二、三、四象限.5.(2分)某鱼塘里养了1600条鲤鱼,若干条草鱼和800条罗非鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右,则该鱼塘捞到鲤鱼的概率约为( ) A .23B .12 C .13D .16【分析】根据捕捞到草鱼的频率可以估计出放入鱼塘中鱼的总数量,从而可以得到捞到鲤鱼的概率.【解答】解:捕捞到草鱼的频率稳定在0.5左右, 设草鱼的条数为x ,可得:0.51600800xx =++,解得:2400x =,∴由题意可得,捞到鲤鱼的概率为:16001160024008003=++;故选:C .【点评】本题考查了利用频率估计概率,解题的关键是明确题意,由草鱼的数量和出现的频率可以计算出鱼的数量.6.(2分)已知第一组数据:12,14,16,18的方差为21S ;第二组数据:32,34,36,38的方差为22S ;第三组数据:2020,2019,2018,2017的方差为23S ,则21S ,22S ,23S 的大小关系表示正确的是( )A .222123S S S >> B .222123S S S => C .222123S S S << D .222123S S S =< 【分析】先计算出三组数据的平均数,再根据方差的定义计算出方差,从而得出答案.【解答】解:112141618154x +++==,232343638354x +++==,320202019201820172018.54x +++==,2222211[(1215)(1415)(1615)(1815)]54S ∴=⨯-+-+-+-=,2222221[(3235)(3435)(3635)(3835)]54S =⨯-+-+-+-=,22222315[(20202018.5)(20192018.5)(20182018.5)(20172018.5)]44S =⨯-+-+-+-=,222123S S S ∴=>,故选:B .【点评】本题主要考查方差,解题的关键是掌握方差的定义:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.7.(2分)下列所给方程中,有两个不相等的实数根的是( ) A .2690x x -+=B .22350x x -+=C .2350x x ++=D .22950x x ++=【分析】若方程有两个不相等的实数根,则△240b ac =->,可据此判断出正确的选项. 【解答】解:A 、△36490=-⨯=,原方程有两个相等的实数根,故A 错误;B 、△9425310=-⨯⨯=-<,原方程没有实数根,故B 错误;C 、△945110=-⨯=-<,原方程没有实数根,故C 错误;D 、△81425410=-⨯⨯=>,原方程有两个不相等的实数根,故D 正确.故选:D .【点评】考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系: (1)△0>⇔方程有两个不相等的实数根; (2)△0=⇔方程有两个相等的实数根; (3)△0<⇔方程没有实数根.8.(2分)某省正加速布局以5G 等为代表的战略性新兴产业.据统计,该省目前5G 基站的数量约1.5万座,计划到2020年底,全省5G 基站数是目前的4倍,到2022年底,全省5G 基站数量将达到17.34万座.按照计划,设2020年底到2022年底,全省5G 基站数量的年平均率为x ,根据题意列方程,得( ) A .26(1)17.34x += B .217.34(1)6x += C .26(1)17.34x -=D .217.34(1)6x -=【分析】根据2020年底及2022年底全省5G 基站的数量,即可得出关于x 的一元二次方程,此题得解.【解答】解:依题意,得:21.54(1)17.34x ⨯+=, 即26(1)17.34x +=. 故选:A .【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9.(2分)某市组织全民健身活动,有100名男选手参加由跑、跳、投等10个田径项目组成的“十项全能”比赛,其中25名选手的一百米跑成绩排名,跳远成绩排名与10项总成绩的排名情况如图所示:甲、乙、丙表示三名男选手,下面有3个推断:①甲的一百米跑成绩排名比10项总成绩排名靠前;②乙的一百米跑成绩排名比10项总成绩排名靠后;③丙的一百米跑成绩排名比跳远成绩排名靠前.其中合理的是()A .②B .①C .①②D .①③【分析】先从由统计图获取信息,明确图表中数据的来源及所表示的意义,依据所示的实际意义获取正确的信息,即可得出答案. 【解答】解:由折线统计图可知:①甲的一百米跑成绩排名比10项总成绩排名靠前;结论正确; ②乙的一百米跑成绩排名比10项总成绩排名靠前;故原说法错误; ③无法比较丙的一百米跑成绩与跳远成绩;故原说法错误. 所以合理的是①. 故选:A .【点评】本题考查折线统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.10.(2分)如图,矩形ABCD 中,6AB =,4AD =,E 为AB 的中点,F 为EC 上一动点,P 为DF 中点,连接PB ,则PB 的最小值是( )A .4B .4.5C .4.8D .5【分析】由中位线定理可得点P 的运动轨迹是线段12P P ,再由垂线段最短可得当12BP PP ⊥时,PB 取得最小值,连接1BP 、2BP ,作12BP PP '⊥于P ',作2P Q AB ⊥于Q ,则BP 的最小值为BP '的长,2P Q 是EAD ∆的中位线,由勾股定理求出2BP 、1BP 、CE 的长,由三角形中位线定理得出12P P 的长,设2P P x '=,则152P P x '=-,由勾股定理得2222211BP P P BP P P -'=-',解得1110x =,即可得出结果. 【解答】解:当点F 与点C 重合时,点P 在1P 处,11CP DP =, 当点F 与点E 重合时,点P 在2P 处,22EP DP =, 12//PP CE ∴且1212PP CE =, 当点F 在EC 上除点C 、E 的位置处时,有DP FP =, 由中位线定理可知:1//PP CE 且112PP CF =, ∴点P 的运动轨迹是线段12P P ,如图所示: ∴当12BP PP ⊥时,PB 取得最小值,四边形ABCD 是矩形,4AD BC ∴==,6AB CD ==,90DAB BCD ABC ∠=∠=∠=︒, 1132CP CD ∴==, E 为AB 的中点,132AE BE AB ∴===, 连接1BP 、2BP ,作12BP PP '⊥于P ',作2P Q AB ⊥于Q , 则BP 的最小值为BP '的长,2P Q 是EAD ∆的中位线, 2122P Q AD ∴==,1322QE AQ AE ===, 39322BQ BE QE ∴=+=+=, 在Rt △2BP Q 中,由勾股定理得:222222997()22BP BQ P Q =+=+=,在Rt CBE ∆中,由勾股定理得:2222345CE BE BC =+=+=, 121522PP CE ∴==, 在1Rt BCP ∆中,由勾股定理得:222211435BP BC CP =+=+=,设2P P x '=,则152P P x '=-, 由勾股定理得:2222211BP P P BP P P -'=-',即2222975()5()2x x -=--, 解得:1110x =, 22297112304()()10100BP ∴'=-=, 4.8BP ∴'=,故选:C .【点评】本题考查了矩形的性质、勾股定理、三角形中位线定理、垂线段最短等知识;熟练掌握矩形的性质和勾股定理是解题的关键.二、填空题(本大题共8小题,每小题2分,共16分,不需要写出解答过程,请把答案直接填写在答题纸相应位置上)11.(2分)小丽微信支付密码是六位数(每一位可显示0~9),由于她忘记了密码的末位数字,则小丽能一次支付成功的概率是110. 【分析】由末尾数字是0至9这10个数字中的一个,利用概率公式可得答案. 【解答】解:末尾数字是0至9这10个数字中的一个,∴小丽能一次支付成功的概率是110, 故答案为110. 【点评】本题主要考查概率公式,解题的关键是掌握随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.12.(2分)已知方程2620x x --=,用配方法化为2()a x b c +=的形式为 2(3)11x -= . 【分析】方程移项后,两边加上一次项系数一半的平方,变形得到结果,即可作出判断. 【解答】解:方程2620x x --=, 移项得:262x x -=,配方得:26911x x -+=,即2(3)11x -=. 故答案为:2(3)11x -=.【点评】此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键. 13.(2分)将点(4,5)A 绕着原点顺时针旋转90︒得到点B ,则点B 的坐标是 (5,4)- . 【分析】画出图形利用图象法解决问题. 【解答】解:如图,观察图象可知(5,4)B -, 故答案为(5,4)-.【点评】本题考查坐标与图形变化-旋转,解题的关键是理解题意,学会利用图象法解决问题.14.(2分)已知1x =是方程220x bx +-=的一个根,则方程的另一个根是 2- . 【分析】根据根与系数的关系得出122cx x a==-,即可得出另一根的值. 【解答】解:1x =是方程220x bx +-=的一个根, 122cx x a∴==-, 212x ∴⨯=-,则方程的另一个根是:2-, 故答案为2-.【点评】此题主要考查了一元二次方程根与系数的关系,得出两根之积求出另一根是解决问题的关键.15.(2分)如图,四边形ABCD 是菱形,48DAB ∠=︒,对角线AC ,BD 相交于点O ,DH AB ⊥于H ,连接OH ,则DHO ∠= 24 度.【分析】由菱形的性质可得OD OB =,90COD ∠=︒,由直角三角形的性质可得12OH BD OB ==,可得OHB OBH ∠=∠,由余角的性质可求解. 【解答】解:四边形ABCD 是菱形,OD OB ∴=,90COD ∠=︒,48DAB DCB ∠=∠=︒,DH AB ⊥,12OH BD OB ∴==, OHB OBH ∴∠=∠,又//AB CD ,OBH ODC ∴∠=∠,在Rt COD ∆中,90ODC DCO ∠+∠=︒, 在Rt DHB ∆中,90DHO OHB ∠+∠=︒, 1242DHO DCO DCB ∴∠=∠=∠=︒,故答案为:24.【点评】本题考查了菱形的性质,直角三角形斜边上的中线等于斜边的一半的性质,以及等角的余角相等,熟记各性质并理清图中角度的关系是解题的关键.16.(2分)如图,直线2y x =+与直线y ax c =+相交于点(,3)P m ,则关于x 的不等式2x ax c ++的解为 1x .【分析】将点(,3)P m 代入2y x =+,求出点P 的坐标;结合函数图象可知当1x 时2x ax c ++,即可求解;【解答】解:点(,3)P m 代入2y x =+, 1m ∴=,(1,3)P ∴,结合图象可知2x ax c ++的解为1x ; 故答案为1x ;【点评】本题考查一次函数的交点于一元一次不等式;将一元一次不等式的解转化为一次函数图象的关系是解题的关键.17.(2分)如图,已知正方形ABCD 的边长为5,点E 、F 分别在AD 、DC 上,2AE DF ==,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH的长为34.【分析】根据正方形的四条边都相等可得AB AD =,每一个角都是直角可得90BAE D ∠=∠=︒,然后利用“边角边”证明ABE DAF ∆≅∆得ABE DAF ∠=∠,进一步得90AGE BGF ∠=∠=︒,从而知12GH BF =,利用勾股定理求出BF 的长即可得出答案.【解答】解:四边形ABCD 为正方形,90BAE D ∴∠=∠=︒,AB AD =, 在ABE ∆和DAF ∆中,AB AD BAE D AE DF =⎧⎪∠=∠⎨⎪=⎩, ()ABE DAF SAS ∴∆≅∆,ABE DAF ∴∠=∠,90ABE BEA ∠+∠=︒, 90DAF BEA ∴∠+∠=︒, 90AGE BGF ∴∠=∠=︒, 点H 为BF 的中点,12GH BF ∴=, 5BC =、523CF CD DF =-=-=,BF ∴==12GH BF ∴==,故答案为:2. 【点评】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形两锐角互余等知识,掌握三角形全等的判定方法与正方形的性质是解题的关键.18.(2分)如图①,在四边形ABCD 中,//AD BC ,直线l AB ⊥.当直线l 沿射线BC 方向,从点B 开始向右平移时,直线l 与四边形ABCD 的边分别相交于点E ,F .设直线l 向右平移的距离为x ,线段EF 的长y ,且y 与x 的函数关系如图②所示,则四边形ABCD 的周长是 12+【分析】分别研究直线l在直线a的位置、直线l经过a后平移到b的位置、直线l到达直线c 的位置三种情况,线段l与四边形ABCD的位置,进而求解.【解答】解:过A、C、D分别作直线l的平行线,延长BC交直线c于点F,设直线a交BC 于点M,直线b交AD于点N,①当直线l在直线a的位置时,2AM EF==,4BM=,则1sin2AMBBM==,故30B∠=︒,则3023AB BMosc=︒=60BMA DFC∴∠=︒=∠;直线l经过a后平移到b处时,642MC AN=-==,即426BC MB MC=+=+=,当直线l到达直线c的位置时,862CF ND=-==,则224AD AN ND=+=+=,此时,60DCF∠=︒,2CF DF==,故CDF∆为等边三角形,即2CD=,四边形ABCD的周长234621223AB AD BC CD=+++=++=+故答案为1223+【点评】本题以动态的形式考查了分类讨论的思想,函数的知识和等腰直角三角形,具有很强的综合性.三.解答题(本大题共8小题,共64分,请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(8分)解下列方程:(1)(21)21x x x -=-; (2)2430x x --=.【分析】(1)利用因式分解法求解可得; (2)利用配方法求解可得. 【解答】解:(1)(21)(21)0x x x ---=,(21)(1)0x x ∴--=,则210x -=或10x -=, 解得0.5x =或1x =;(2)243x x -=,24434x x ∴-+=+,即2(2)7x -=,2x ∴-=,2x ∴=.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.20.(7分)下表某公司25名员工月收入的资料.(1)这个公司员工月收入的平均数是6312,中位数是 3800 ,众数是 ;(2)在(1)中三个集中趋势参数中,你认为用哪一个反映公司全体员工月收入水平更合适?请说明理由.【分析】(1)根据中位数的定义把这组数据从小到大排列起来,找出最中间一个数即可;根据众数的定义找出现次数最多的数据即可; (2)根据平均数、中位数和众数的意义回答.【解答】解:(1)共有25个员工,中位数是第13个数, 则中位数是3800元;3000出现了11次,出现的次数最多,则众数是3000.(2)用中位数或众数来描述更为恰当.理由:平均数受极端值45000元的影响,只有3个人的工资达到了6312元,不恰当.故答案为3800;3000.【点评】此题考查了中位数、众数、平均数,掌握中位数、众数、平均数的定义是解题的关键,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数,平均数=总数÷个数,众数是出现次数最多的数据.21.(7分)某校计划在暑假第二周的星期一至星期四开展社会实践活动,要求每位学生选择两天参加活动.(1)甲同学随机选择连续的两天,其中有一天是星期二的概率是23;(2)乙同学随机选择两天,其中有一天是星期二的概率是多少?【分析】(1)甲同学随机选择连续的两天,共有3个等可能的结果,即(星期一,星期二),(星期二,星期三),(星期三,星期四);其中有一天是星期二的结果有2个,由概率公式即可得出结果;(2)由树状图得出共有12个等可能的结果,其中有一天是星期二的结果有6个,由概率公式即可得出结果.【解答】解:(1)甲同学随机选择连续的两天,共有3个等可能的结果,即(星期一,星期二),(星期二,星期三),(星期三,星期四);其中有一天是星期二的结果有2个,即(星期一,星期二),(星期二,星期三),则甲同学随机选择连续的两天,其中有一天是星期二的概率是23;故答案为:23;(2)画树状图如图所示:共有12个等可能的结果,其中有一天是星期二的结果有6个,则乙同学随机选择两天,其中有一天是星期二的概率为61 122=.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.22.(8分)如图,E ,F 为ABCD 对角线BD 上的两点,若再添加一个条件,就可证出//AE CF .请完成以下问题:(1)你添加的条件是 BE DF = .(2)请根据题目中的条件和你添加的条件证明//AE CF .【分析】(1)可添加BE DF =;(2)连接AC 交BD 于点O ,连接AF 、CE ,由四边形ABCD 是平行四边形知OA OC =、OB OD =,结合BE DF =得OE OF =,据此可证四边形AECF 是平行四边形,从而得出答案.【解答】解:(1)添加的条件是:BE DF =,故答案为:BE DF =;(2)如图,连接AC 交BD 于点O ,连接AF 、CE ,四边形ABCD 是平行四边形,OA OC ∴=、OB OD =,BE DF =,OB BE OD DF ∴-=-,即OE OF =,∴四边形AECF 是平行四边形,//AE CF ∴.【点评】本题主要考查平行四边形的性质,解题的关键是掌握平行四边形的判定和性质.23.(8分)如图,利用一面墙(墙的长度不限),用20m 长的篱笆,怎样围成一个面积为250m 的矩形ABCD 场地?能围成一个面积为252m 的矩形ABCD 场地吗?如能,说明围法;若不能,说明理由.【分析】设垂直于墙的一边AB 长为xm ,那么另一边长为(202)x m -,可根据长方形的面积公式即可列方程进行求解.【解答】解:设垂直于墙的一边AB 长为xm ,那么另一边长为(202)x m -,由题意得(202)50x x -=,解得:125x x ==,(2025)10()m -⨯=.围成一面靠墙,其它三边分别为5m ,10m ,5m 的矩形.答:不能围成面积252m 的矩形ABCD 场地.理由:若能围成,则可列方程(202)52x x -=,此方程无实数解.所以不能围成一个面积为252m 的矩形ABCD 场地.【点评】此题主要考查了一元二次方程的应用,表示出长方形场地的面积是解题关键.24.(8分)如图1,C 是线段AB 上一个定点,动点P 从点A 出发向点B 匀速移动,动点Q从点B 出发向点C 匀速移动,点P ,Q 同时出发,移动时间记为()x s ,点P 与点C 的距离记为1()y cm ,点Q 与点C 的距离记为2()y cm .1y 、2y 与x 的关系如图2所示.(1)线段AB 的长为 27 cm ;(2)求点P 出发3秒后1y 与x 之间的函数关系式;(3)当P ,Q 两点相遇时,x = s .【分析】(1)根据函数图象中的数据可以得到线段AB 的长;(2)根据图象中的数据和题意可以得到点P 出发3秒后1y 与x 之间的函数关系式;(3)根据题意可以得到点P 和Q 的速度,从而可以求得x 的值.【解答】解:(1)由图可得,线段AC 的长度为6cm ,线段BC 的长为21cm ,∴段AB 的长为62127cm +=,故答案为:27;(2)设点P 出发3秒后,1y 与x 之间的函数关系式为1(0)y kx b k =+≠,由图象可得,点P 的运动速度为:632/cm s ÷=,由27213.5÷=,可知1y kx b =+的图象过点(13.5,21),又1y kx b =+的图象过点(3,0),13.52130k b k b +=⎧⎨+=⎩,得26k b =⎧⎨=-⎩, 即1y 与x 的函数关系式为126y x =-;(3)由题意可得,点Q 的速度为:2173/cm s ÷=,则当P ,Q 两点相遇时,2727325x ==+, 故答案为:275. 【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想和一次函数的性质解答.25.(8分)如图,在矩形ABCD 中,E 是AD 上一点,PQ 垂直平分BE ,分别交AD ,BE ,BC 于点P ,O ,Q ,连接BP ,EQ .(1)依题意补全图形(保留作图痕迹),并求证四边形BPEQ 是菱形;(2)若6AB =,F 为AB 的中点,且9OF OB +=,求PQ 的长.【分析】(1)根据要求作出图形即可,根据对角线垂直的平行四边形是菱形证明即可.(2)解直角三角形求出PB ,OB ,利用勾股定理即可解决问题.【解答】解:(1)图形如图所示.四边形BPEQ 是菱形.理由:PQ 垂直平分线段BE ,OE OB ∴=,四边形ABCD 是矩形,//PE BQ ∴,PEO OBQ ∴∠=∠,POE QOB ∠=∠,()POE QOB ASA ∴∆≅∆,OP OQ ∴=,OE OB =,∴四边形BPEQ 是平行四边形,BE PQ ⊥,∴四边形BPEQ 是菱形.(2)AF BF =,OE OB =,22AE BE OF OB ∴+=+,设AE x =,则18BE x =-,在Rt ABE ∆中,2226(18)x x +=-,解得8x =,18810BE ∴=-=,152OB BE ∴==, 设PE y =,则8AP y =-,BP PE y ==,在Rt ABP ∆中,2226(8)y y +-=,。
一、选择题(每题4分,共40分)1. 已知等腰三角形ABC中,AB=AC,角BAC的度数是:A. 30°B. 45°C. 60°D. 90°2. 下列各组数中,成等差数列的是:A. 1, 2, 3, 4, 5B. 1, 3, 5, 7, 9C. 1, 3, 6, 10, 15D. 1, 4, 9, 16, 253. 若方程x^2 - 5x + 6 = 0的解为x1和x2,则x1 + x2的值为:A. 2B. 3C. 4D. 54. 在平面直角坐标系中,点A(2,3),点B(-1,-4),则线段AB的中点坐标为:A. (1,-1)B. (3,-1)C. (1,1)D. (3,1)5. 下列函数中,在定义域内单调递增的是:A. y = x^2B. y = -x^2C. y = 2xD. y = -2x6. 若a、b、c是等差数列,且a + b + c = 15,则a^2 + b^2 + c^2的值为:A. 45B. 50C. 55D. 607. 在直角三角形ABC中,∠C=90°,∠A=30°,则sinB的值为:A. 1/2B. √3/2C. 2/√3D. √38. 下列各式中,正确的是:A. √(16) = 4B. √(25) = 5C. √(36) = 6D. √(49) = 79. 若等比数列的前三项分别为a、ar、ar^2,则公比r的值为:A. aB. 1/aC. a^2D. 1/a^210. 在平面直角坐标系中,点P(3,-2)关于x轴的对称点坐标为:A. (3,2)B. (-3,2)C. (3,-2)D. (-3,-2)二、填空题(每题4分,共20分)11. 已知等差数列的前三项分别为2,5,8,则第10项为______。
12. 在直角三角形ABC中,∠A=30°,∠C=90°,AB=6,则AC的长度为______。
1. 下列数中,是质数的是()A. 15B. 17C. 28D. 352. 下列代数式中,最简整式是()A. 3x^2 + 2x - 5B. 4x^2 - 3x + 1C. 2x^3 - 5x^2 + 4xD. 3x^2 - 2x + 73. 若a、b是方程2x^2 - 5x + 3 = 0的两个根,则a + b的值是()A. 2B. 5C. 3D. 14. 在直角坐标系中,点A(-3,4)关于原点对称的点是()A. (-3,-4)B. (3,4)C. (3,-4)D. (-3,4)5. 若等腰三角形底边长为8cm,腰长为10cm,则该三角形的面积是()A. 32cm^2B. 40cm^2C. 48cm^2D. 56cm^26. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x^2 - 1D. y = 2x^3 - 57. 若等差数列的第一项为2,公差为3,则第10项是()A. 29B. 30C. 31D. 328. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 梯形D. 圆9. 若一个数x满足不等式3x - 2 < 5,则x的取值范围是()A. x < 3B. x < 7C. x > 3D. x > 710. 下列运算正确的是()A. (a + b)^2 = a^2 + 2ab + b^2 + 2abB. (a - b)^2 = a^2 - 2ab + b^2 - 2abC. (a + b)^2 = a^2 + 2ab + b^2 - 2abD. (a - b)^2 = a^2 - 2ab + b^2 + 2ab11. 分数4/5的倒数是______。
12. 等差数列1,4,7,10,...的第n项是______。
13. 若a、b是方程x^2 - 4x + 3 = 0的两个根,则a^2 + b^2的值是______。
南通市2020年八年级第二学期期末达标测试数学试题一、选择题(每题只有一个答案正确)1.在Rt△ABC中,∠C=90°.如果BC=3,AC=5,那么AB=()A.34B.4 C.4或34D.以上都不对2.下列四个图形中,既是轴对称又是中心对称的图形是()A.4个B.3个C.2个D.1个3.直角坐标系中,点P(x,y)在第三象限,且P到x轴和y轴的距离分别为3、4,则点P的坐标为()A.(-3,-4)B.(3,4)C.(-4,-3)D.(4,3)4.函数y=11xx+-中自变量x的取值范围是()A.x≥-1且x≠1B.x≥-1 C.x≠1D.-1≤x<15.八(1)班45名同学一天的生活费用统计如下表:生活费(元)1015202530学生人数(人)3915126则这45名同学一天的生活费用中,平均数是()A.15B.20C.21D.256.如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分线C.AC2=BC•CD D.AD DC AB AC=7.下列多项式中,能用公式法分解因式的是( )A.22a b--B.22a2ab b--C.22m n+D.22m n-+8.在式子1x1-,1x2-x1-x2-x可以取1和2的是( )A.1x1-B.1x2-C x1-D x2-9.如图,在Rt△DEF中,∠EFD=90°,∠DEF=30°,EF=3cm,边长为2cm的等边△ABC的顶点C与同一条直线上时停止,设△ABC在平移过程中与△DEF的重叠面积为ycm2,CE的长为xcm,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.10.函数y=2x的图象在()A.第一、三象限B.第一、二象限C.第二、四象限D.第三、四象限二、填空题11.在平面直角坐标系中,若直线y=kx+b经过第一、三、四象限,则直线y=bx+k不经过的象限是________.12.当x=4时,二次根式4x-的值为______.13.如图,一根旗杆在离地面5 m处断裂,旗杆顶部落在离旗杆底部12 m处,旗杆断裂之前的高为____.14.如图,AB//CD,请写出图中一对相等的角:______;要使A B∠=∠成立,需再添加的一个条件为:______.15.如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在边AB上的点D处,已知MN∥AB,MC=6,NC=3MABN的面积是___________.16.如图,在平面直角坐标系中,点A 、B 的坐标分别为(1,3)、(n ,3),若直线y=2x 与线段AB 有公共点,则n 的值可以为_____.(写出一个即可)17.今有三部自动换币机,其中甲机总是将一枚硬币换成2枚其他硬币;乙机总是将一枚硬币换成4枚其他硬币;丙机总是将一枚硬币换面10枚其他硬币.某人共进行了12次换币,便将一枚硬币换成了81枚.试问他在丙机上换了_____次?三、解答题18.如图,等腰直角三角形ABC 中,2AC BC ==,点D 是斜边AB 上的一点,将BCD ∆沿CD 翻折得ECD ∆,连接AE ,若ADE ∆是等腰三角形,则BD 的长是______.19.(6分)已知:如图,在△ABC 中,∠BAC 的平分线AP 与BC 的垂直平分线PQ 相交于点P ,过点P 分别作PM ⊥AC 于点M ,PN ⊥AB 交AB 延长线于点N ,连接PB ,PC .求证:BN=CM .20.(6分)已知,如图,E 、F 分别为□ABCD 的边BC 、AD 上的点,且∠1=∠2,.求证:AE=CF.21.(6分)如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (﹣3,5),B (﹣2,1),C (﹣1,3).①若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;②若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;③将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.22.(8分)如图,过点A(2,0)的两条直线,分别交y轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=.(1)求点B的坐标;(2)若△ABC的面积为4,求的解析式.23.(8分)如图,正方形ABCD的边长为4,动点E从点A出发,以每秒2个单位的速度沿A→D→A运动,动点G从点A出发,以每秒1个单位的速度沿A→B运动,当有一个点到达终点时,另一点随之也停止运动.过点G作FG⊥AB交AC于点F.设运动时间为t(单位:秒).以FG为一直角边向右作等腰直角三角形FGH,△FGH与正方形ABCD重叠部分的面积为S.(1)当t=1.5时,S=________;当t=3时,S=________.(2)设DE=y1,AG=y2,在如图所示的网格坐标系中,画出y1与y2关于t的函数图象.并求当t为何值时,四边形DEGF是平行四边形?24.(10分)如图,在平直角坐标系xOy 中,直线+2y x =与反比例函数k y x=的图象关于点(1,)P a(1)求点P 的坐标及反比例函数的解析式;(2)点(, 0)Q n 是x 轴上的一个动点,若5PQ ,直接写出n 的取值范围.25.(10分)如图所示,ABC △中,090ABC ∠=,D 、E 分别为AB 、AC 的中点,延长DE 到F ,使2EF DE =.求证:四边形BCFE 是平行四边形.参考答案一、选择题(每题只有一个答案正确)1.A【解析】解:∵∠C=90°,AC=5,BC=3,∴AB=22AC BC +=2253+=34.故选A .2.C根据轴对称图形与中心对称图形的概念结合各图形的特点求解.【详解】①是轴对称图形,也是中心对称图形,符合题意;②是轴对称图形,不是中心对称图形,不符合题意;③是轴对称图形,是中心对称图形,符合题意;④轴对称图形,不是中心对称图形,不符合题意.综上可得①③符合题意.故选:C.【点睛】考查了中心对称图形与轴对称图形的识别.判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.3.C【解析】【分析】根据点P所在象限先确定P点横纵坐标都是负数,根据P到x轴和y轴的距离确定点的坐标.【详解】解:∵点P(x,y)在第三象限,∴P点横纵坐标都是负数,∵P到x轴和y轴的距离分别为3、4,∴点P的坐标为(-4,-3).故选:C.【点睛】此题主要考查了点的坐标,关键是掌握到x轴的距离=纵坐标的绝对值,到y轴的距离=横坐标的绝对值.4.A【解析】分析:根据分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分.详解:根据题意得到:1010 xx+≥⎧⎨-≠⎩,解得x≥-1且x≠1,故选A.点睛:本题考查了函数自变量的取值范围问题,判断一个式子是否有意义,应考虑分母上若有字母,字母的非负性和分母不等于0混淆.5.C【解析】【分析】根据加权平均数公式列出算式求解即可.【详解】解:这45名同学一天的生活费用的平均数=103159201525123062145⨯+⨯+⨯+⨯+⨯=. 故答案为C.【点睛】本题考查了加权平均数的计算,读懂题意,正确的运用公式是解题的关键6.C【解析】【分析】结合图形,逐项进行分析即可.【详解】在△ADC 和△BAC 中,∠ADC=∠BAC ,如果△ADC ∽△BAC ,需满足的条件有:①∠DAC=∠ABC 或AC 是∠BCD 的平分线; ②AD DC AB AC=, 故选C .【点睛】本题考查了相似三角形的条件,熟练掌握相似三角形的判定方法是解题的关键.7.D【解析】【分析】利用平方差公式及完全平方公式的结构特征判断即可.【详解】解:22m n -+=(n +m )(n−m ),故选D .【点睛】此题考查了因式分解−运用公式法,熟练掌握平方差公式及完全平方公式是解本题的关键.8.C【分析】根据分式和二次根式成立的条件逐个式子分析即可. 【详解】A.11x-有意义时x≠1,不能取1,故不符合题意;B.1x2-有意义时x≠2,不能取2,故不符合题意;C.1x-有意义时x≥1,以取1和2,故符合题意;D.2x-有意义时x≥2,不能取1,故不符合题意;故选C.【点睛】本题考查了分式和二次根式有意义的条件,分式有意义的条件是分母不等于零,二次根式有意义的条件是被开方式大于且等于零.9.A【解析】【分析】分0≤x≤2、2<x≤3、3<x≤4三种情况,分别求出函数表达式即可求解.【详解】解:①当0≤x≤2时,如图1,设AC交ED于点H,则EC=x,∵∠ACB=60°,∠DEF=30°,∴∠EHC=90°,y=S△EHC=12×EH×HC=12⨯ECsin∠ACB×EC×cos∠ACB=38CE2=38x2,该函数为开口向上的抛物线,当x=2时,y=3;②当2<x≤3时,如图2,设AC交DE于点H,AB交DE于点G,同理△AHG为以∠AHG为直角的直角三角形,EC=x,EB=x﹣2=BG,则AG=2﹣BG=2﹣(x﹣2)=4﹣x,边长为2的等边三角形的面积为:122×3=3;同理S△AHG=3(4﹣x)2,y=S四边形BCHG=S△ABC﹣S△AHG=3﹣3(x﹣4)2,函数为开口向下的抛物线,当x=3时,y=73,③当3<x≤4时,如图3,同理可得:y3[38(4﹣x)2+32(x﹣3)2]=﹣538x23x﹣1132,函数为开口向下的抛物线,当x=4时,y3故选:A.【点睛】本题考查的是动点问题的函数图象,此类题目通常需要分不同时间段确定函数的表达式,进而求解.10.B【解析】【分析】首先根据分式有意义的条件知x≠0,然后分x>0和x<0两种情况,根据反比例函数的性质作答.注意本题中函数值y的取值范围.【详解】解:当x>0时,函数y=2x即y=2x,其图象在第一象限;当x<0时,函数y=2x即y=-2x,其图象在第二象限.反比例函数的性质:反比例函数y=k x的图象是双曲线.当k >0时,它的两个分支分别位于第一、三象限;当k <0时,它的两个分支分别位于第二、四象限.二、填空题11.第三象限【解析】分析:根据直线y=kx+b 在平面直角坐标系中所经过象限与k 、b 值的关系进行分析解答即可.详解:∵直线y=kx+b 经过第一、三、四象限,∴k>0,b<0,∴直线y=bx+k 经过第一、二、四象限,∴直线y=bx+k 不经过第三象限.故答案为:第三象限.点睛:熟知:“直线y=kx+b 在平面直角坐标系中所经过的象限与k 、b 的值的关系”是解答本题的关键. 12.0【解析】【分析】直接将4x =,代入二次根式解答即可.【详解】解:把x =40,故答案为:0【点睛】此题主要考查了二次根式的定义,直接将4x =代入求出,利用二次根式的性质直接开平方是解决问题的关键.13.18m【解析】旗杆折断后,落地点与旗杆底部的距离为12m ,旗杆离地面5m 折断,且旗杆与地面是垂直的, 所以折断的旗杆与地面形成了一个直角三角形.根据勾股定理,=13m ,所以旗杆折断之前高度为13m+5m=18m.故答案为18m.14.2A ∠∠=(答案不唯一) ∠2=∠3(答案不唯一)根据平行线的性质进行解答即可得答案.【详解】解:如图,AB//CD,请写出图中一对相等的角:答案不唯一:∠2=∠A,或∠3=∠B;要使∠A=∠B成立,需再添加的一个条件为:∠2=∠B或∠3=∠A或∠2=∠3,或CD是∠ACE的平分线.故答案为:∠2=∠A(答案不唯一):∠2=∠3(答案不唯一).【点睛】本题考查了平行线的性质,正确运用数形结合思想进行分析是解题的关键.15.183【解析】【分析】如图,连接CD,与MN交于点E,根据折叠的性质可知CD⊥MN ,CE=DE.再根据相似三角形的判定可知△MNC∽△ABC,再根据相似三角形的面积之比等于相似比的平方.由图可知四边形ABNM的面积等于△ABC的面积减去△MNC的面积.【详解】解:连接CD ,交MN于点E.∵△ABC沿直线MN翻折后,顶点C恰好落在边AB上的点D处,∴CD⊥MN,CE=DE.∵MN∥AB,∴△MNC∽△ABC, CD⊥AB,∴ABCMNCSS=2CDCE⎛⎫⎪⎝⎭=41=4.∵MNCS=12MC CN=12⨯6⨯3=63∴ABCS3∴四边形ACNM=ABCS-MNCS333故答案是3.本题考查了折叠的性质、相似三角形的性质和判定,根据题意正确作出辅助线是解题的关键.16.1【解析】【分析】由直线y=1x 与线段AB 有公共点,可得出点B 在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于n 的一元一次不等式,解之即可得出n 的取值范围,在其内任取一数即可得出结论.【详解】∵直线y=1x 与线段AB 有公共点,∴1n≥3,∴n≥32, 故答案为:1.【点睛】本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于n 的一元一次不等式是解题的关键.17.8【解析】【分析】根据题意可知,在甲机上每换一次多1个;在乙机上每换一次多3个;在丙机上每换一次多9个;进行了12次换币就将一枚硬币换成了81枚,多了80个;找到相等关系式列出方程解答即可.【详解】解:设:在甲机换了x 次.乙机换了y 次.丙机换了z 次.在甲机上每换一次多 1 个;在乙机上每换一次多 3 个;在丙机上每换一次多 9 个;进行了12次换币就将一枚硬币换成了81枚,多了80个;∴123980x y z x y z ++=⎧⎨++=⎩①② 由②-①,得:2y+8z=68,∴y+4z=34,∴y=34-4z ,结合x+y+z=12,能满足上面两式的值为:∴x 2y 2z 8===,,;即在丙机换了8次.故答案为:8.此题关键是明白一枚硬币在不同机上换得个数不同,但是通过一枚12次取了81枚,多了80枚,找到等量关系,再根据题意解出即可.三、解答题18.31-或33-【解析】【分析】分两种情形:①如图1中,当ED=EA时,作DH⊥BC于H.②如图2中,当AD=AE时,分别求解.【详解】如图1中,当ED=EA时,作DH⊥BC于H.∵CB=CA,∠ACB=90°,∴∠B=∠CAB=45°,由翻折不变性可知:∠CED=∠B=45°,∴A,C,D,E四点共圆,∵ED=EA,∴∠ACE=∠ECD=∠BCD=30°,设BH=DH=x,则3x,∵2,∴32∴x=622.∴23.如图2中,当AD=AE时,同法可证:∠ACD=∠ACE,∵∠BCD=∠DCE,∴∠BCD=2∠ACD,∴∠BCD=60°,设BH=DH=x,则3,∵2,∴32,∴326∴23.综上所述,满足条件的BD3或3故答案为3或3【点睛】本题考查翻折变换,等腰直角三角形的性质,解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.19.见解析【解析】【分析】根据角平分线上的点到角的两边距离相等可得PM=PN,线段垂直平分线上的点到线段两端点的距离相等可得PB=PC,然后利用“HL”证明Rt△PBN和Rt△PCM全等,根据全等三角形对应边相等证明即可.【详解】∵AP是∠BAC的平分线,PM⊥AC,PN⊥AB,∴PM=PN,∵PQ是线段BC的垂直平分线,∴PB=PC,在Rt △PBN 和Rt △PCM 中,PB PC PM PN=⎧⎨=⎩ , ∴Rt △PBN ≌Rt △PCM (HL ),∴BN=CM .【点睛】本题考查了全等三角形的判定与性质,主要利用了角平分线上的点到角的两边距离相等的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,熟记各性质并准确确定出全等三角形是解题的关键. 20.详见解析【解析】【分析】通过证明三角形全等求得两线段相等即可.【详解】∵四边形ABCD 为平行四边形∴∠B=∠D,AB=CD在△ABE 与△CDF 中,∠1=∠2,∠B=∠D,AB=CD∴△ABE≌△CDF∴AE=CF【点睛】本题主要考查平行四边形性质与全等三角形,解题关键在于找到全等三角形.21. (1)1A (2,2),1B (3,﹣2);(2)2A (3,﹣5),2B (2,﹣1),2C (1,﹣3);(3)3A (5,3),3B (1,2),3C (3,1).【解析】试题分析:(1)利用点C 和点1C 的坐标变化得到平移的方向与距离,然后利用此平移规律写出顶点1A ,1B 的坐标;(2)根据关于原点对称的点的坐标特征求解;(3)利用网格和旋转的性质画出333A B C ,然后写出333A B C 的各顶点的坐标.试题解析:(1)如图,111A B C 即为所求,因为点C (﹣1,3)平移后的对应点1C 的坐标为(4,0),所以△ABC 先向右平移5个单位,再向下平移3个单位得到111A B C ,所以点1A 的坐标为(2,2),1B 点的坐标为(3,﹣2);(2)因为△ABC 和222A B C 关于原点O 成中心对称图形,所以2A (3,﹣5),2B (2,﹣1),2C (1,﹣3); (3)如图,333A B C 即为所求,3A (5,3),3B (1,2),3C (3,1).考点:坐标与图形变化-旋转;坐标与图形变化——平移.22.(1)(0,3);(2).【解析】【分析】(1)在Rt △AOB 中,由勾股定理得到OB=3,即可得出点B 的坐标;(2)由=BC•OA ,得到BC=4,进而得到C (0,-1).设的解析式为,把A (2,0),C (0,-1)代入即可得到的解析式.【详解】(1)在Rt △AOB 中,∵,∴,∴OB=3,∴点B 的坐标是(0,3) .(2)∵=BC•OA ,∴BC×2=4,∴BC=4,∴C(0,-1).设的解析式为,把A(2,0),C(0,-1)代入得:,∴,∴的解析式为是.考点:一次函数的性质.23.(1)98;52;(2)当t=43或t=4时,四边形DEGF是平行四边形.【解析】【分析】(1)当t=1.5时,如图①,重叠部分的面积是△FGH的面积,求出即可;当t=3时,如图②,重叠部分的面积是四边形FGBK的面积,也就是△FGH的面积减去△KBH的面积,求出即可;(2)进行分类讨论,列出方程即可求出t的值.【详解】解:当t=1.5时,如图①,重叠部分的面积是△FGH的面积,所以S=1339= 2228⨯⨯;当t=3时,如图②,重叠部分的面积是四边形FGBK的面积,也就是△FGH的面积减去△KBH的面积,所以S=12×3×3-12×2×2=52.(2)由题意可以求得y1=42(02)24(24)t tt t-≤≤⎧⎨-<≤⎩;y2=t(0≤t≤4).<所以y1与y2关于t的函数图象如图③所示.因为运动过程中,DE∥FG,所以当DE=FG时,四边形DEGF是平行四边形.∵FG=AG,∴DE=AG,∴y1=y2.由图象可知,有两个t值满足条件:①当0≤t≤2时,由4-2t=t,解得t=43;②当2<t≤4时,由2t-4=t,解得t=4.所以当t=43或t=4时,四边形DEGF是平行四边形.24.(1)3y x=;(2)35n -≤≤ 【解析】【分析】 (1)先把P (1,a )代入y=x+2,求出a 的值,确定P 点坐标为(1,3),然后把P (1,3)代入y=k x求出k 的值,从而可确定反比例函数的解析式; (2)过P 作PB ⊥x 轴于点B ,则B 点坐标为(1,0),PB=3,然后利用PQ ≤1,由垂线段最短可知,PQ ≥3,然后利用PQ ≤1,在直角三角形PBQ 中,PQ=1时,易确定n 的取值范围,要注意分点Q 在点B 左右两种情况.当点Q 在点B 左侧时,点Q 坐标为(-3,0);当点Q 在点B 右侧时,点Q 坐标为(1,0),从而确定n 的取值范围.【详解】解:(1)∵直线2y x =+与反比例函数k y x=的图象交于点(1, )P a , ∴3a =.∴点P 的坐标为(1,3).∴3k =.∴反比例函数的解析式为3y x =. (2)过P 作PB ⊥x 轴于点B ,∵点P 的坐标为(1,3),Q (n ,0)是x 轴上的一个动点,PQ≤1,由勾股定理得BQ ≤22534-=,∴1-4=-3,1+4=1,∴n 的取值范围为-3≤n≤1.【点睛】本题考查了反比例函数与一次函数的交点问题:反比例函数图象与一次函数图象的交点坐标满足两函数的解析式.也考查了勾股定理的应用.25.证明见解析.【解析】【分析】由题意易得,EF与BC平行且相等,即可证明四边形BCFE是平行四边形【详解】证明:∵D、E分别为AB、AC中点,∴DE=12BC且DE//BC∵EF//BC∴2DE=BC=EF∴BC=EF∴四边形BCFE为平行四边形.【点睛】此题考查平行四边形的判定,解题关键在于判定定理。
2022-2023学年江苏省南通市如皋市八年级(下)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下面四种交通标志图中,是中心对称图形的是()A. B. C. D.2.若“抛掷一枚质地均匀、六面点数分别是1,2,3,4,5,6的骰子,向上一面的点数是a”是随机事件,则a的值可以是()A.0B.2C. D.73.一家鞋店近期售出某种女鞋30双,各种尺码鞋的销量如下表:尺码22232425销售量/双12511731根据表中数据,鞋店经理决定多进一些的鞋.经理作出这一决定,利用了表中鞋的尺码的()A.平均数B.中位数C.众数D.方差4.如图,▱ABCD的周长为20,AD::2,则BC的长是()A.4B.6C.8D.105.一次函数的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.已知是一元二次方程的一个根,则a的值为()A.2B.C.1D.7.在一个不透明的口袋中装有红球、白球和黑球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了500次球,其中有100次摸到了红球,由此估计,该口袋中红球有()A.4个B.3个C.2个D.1个8.我国古代数学著作《九章算术》中有这样一道题:“今有户高多于广六尺,两隅相去适一丈,问户高、广各几何?”大意是:“有一扇矩形门的高比宽多6尺,门的对角线长为1丈丈尺,那么门的高和宽各是多少?”如果设门的宽为x尺,根据题意,则可列方程为()A. B.C. D.9.如图,在正方形ABCD中,,将边BC绕点B逆时针旋转至,连接,,若,则线段的长度为()A. B.2 C. D.410.平面直角坐标系xOy中,P点坐标为,且实数m,n满足则点P到原点O的距离的最小值为()A. B. C. D.二、填空题:本题共8小题,每小题3分,共24分。
【校级联考】江苏省如皋市南片区八校联考2020-2021学年八下数学期末监测试题 注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)1.如图,已知正方形 ABCD 的边长为 10,E 在 BC 边上运动,取 DE 的中点 G ,EG 绕点 E 顺时针旋转90°得 EF ,问 CE 长为多少时,A 、C 、F 三点在一条直线上( )A .83B .65C .103D .322.如图,ABC ∆中,4AB =,6BC =,60B ∠=︒,将ABC ∆沿射线BC 的方向平移,得到A B C '''∆,再将A B C '''∆绕A '逆时针旋转一定角度,点B '恰好与点C 重合,则平移的距离和旋转角的度数分别为( )A .4,20︒B .2,60︒C .1,30D .3,46︒3.一元二次方程2820x x --=配方后可变形为( )A .2(4)18x -=B .2(4)14x -=C .2(2)6xD .2(2)2x -=4.关于x 的不等式21x a --的解集如图所示,则a 的取值是( )A .0B .3-C .2-D .1-5.如图,点O (0,0),A (0,1)是正方形OAA 1B 的两个顶点,以正方形的对角线OA 1为边作正方形OA 1A 2B 1,再以正方形的对角线OA 2为边作正方形OA 1A 2B 1,…,依此规律,则点A 2017的坐标是( )A.(21008,0)B.(21008,﹣21008)C.(0,21010)D.(22019,﹣22019)6.一种微粒的半径是4×10-5米,用小数表示为()A.0.000004米B.0.000004米C.0.00004米D.0.0004米7.一个多边形的内角和是外角和的2倍,这个多边形是()A.四边形B.五边形C.六边形D.八边形8.以矩形ABCD两对角线的交点O为原点建立平面直角坐标系,且x轴过BC中点,y轴过CD中点,y=12x﹣2与边AB、BC分别交于点E、F,若AB=10,BC=3,则△EBF的面积是( )A.4 B.5 C.6 D.79.我市城区测得上一周PM2.5的日均值(单位mg/m3)如下:50,40,75,50,57,40,50.则这组数据的众数是()A.40 B.50 C.57 D.7510.已知为常数,点在第二象限,则关于的方程根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法判断二、填空题(每小题3分,共24分)11.如图,在菱形ABCD中,AB=4,线段AD的垂直平分线交AC于点N,△CND的周长是10,则AC的长为__________.12.如图,在▱ABCD中,分别设P,Q,E,F为边AB,BC,AD,CD的中点,设T为线段EF的三等分点,则△PQT 与▱ABCD的面积之比是______.13.如图,已知矩形ABCD ,AB 在y 轴上,AB=2,BC=3,点A 的坐标为(0,1),在AD 边上有一点E(2,1),过点E 的直线与BC 交于点F .若EF 平分矩形ABCD 的面积,则直线EF 的解析式为________.14.一次函数2y x m =-+的图象经过点()2,3P -,且与x 轴、y 轴分别交于点A 、B ,则AOB 的面积等于___________.15.如果关于x 的方程2320x x k --=没有实数根,则k 的取值范围为______.16.若代数式2x +在实数范围内有意义,则x 的取值范围为_____. 17.某射手在相同条件下进行射击训练,结果如下:该射手击中靶心的概率的估计值是______(精确到0.01).18.不等式814x x +>-的负整数解有__________. 三、解答题(共66分)19.(10分)在体育局的策划下,市体育馆将组织明星篮球赛,为此体育局推出两种购票方案(设购票张数为x ,购票总价为y ):方案一:提供8000元赞助后,每张票的票价为50元;方案二:票价按图中的折线OAB 所表示的函数关系确定.(1)若购买120张票时,按方案一和方案二分别应付的购票款是多少?(2)求方案二中y 与x 的函数关系式;(3)至少买多少张票时选择方案一比较合算?20.(6分)已知函数的图象经过第四象限的点B(3,a),且与x轴相交于原点和点A(7,0)(1)求k、b的值;(2)当x为何值时,y>﹣2;(3)点C是坐标轴上的点,如果△ABC恰好是以AB为腰的等腰三角形,直接写出满足条件的点C的坐标21.(6分)如图,矩形ABCD的边BC在x轴上,点A(a,4)和D分别在反比函数y=-和y=(m>0)的图象上.(1)当AB=BC时,求m的值。
一、选择题(每题3分,共30分)1. 若x=2,则代数式2x-3的值为()A. 1B. 2C. 5D. 7答案:C 解析:将x=2代入代数式,得22-3=4-3=1,故选C。
2. 下列各数中,有理数是()A. √3B. πC. -2/3D. 无理数答案:C 解析:有理数包括整数和分数,-2/3是分数,故选C。
3. 若a=5,b=-3,则代数式a^2 - b^2的值为()A. 8B. 10C. 18D. 28答案:A 解析:代入a=5,b=-3,得5^2 - (-3)^2 = 25 - 9 = 16,故选A。
4. 下列函数中,是反比例函数的是()A. y = x^2B. y = 2x + 1C. y = 1/xD. y = 3x - 4答案:C 解析:反比例函数的一般形式为y = k/x,其中k为常数,故选C。
5. 若x+y=10,x-y=2,则x的值为()A. 6B. 7C. 8D. 9答案:A 解析:将两个方程相加,得2x=12,解得x=6,故选A。
6. 下列各式中,等式成立的是()A. (a+b)^2 = a^2 + b^2B. (a+b)^2 = a^2 + 2ab + b^2C. (a-b)^2 = a^2 - 2ab + b^2D. (a-b)^2 = a^2 + 2ab - b^2答案:B 解析:根据完全平方公式,(a+b)^2 = a^2 + 2ab + b^2,故选B。
7. 下列图形中,是轴对称图形的是()A. 等边三角形B. 等腰三角形C. 正方形D. 矩形答案:C 解析:正方形有四条对称轴,故选C。
8. 若sin∠A = 1/2,∠A是锐角,则∠A的度数为()A. 30°B. 45°C. 60°D. 90°答案:C 解析:sin30°=1/2,故∠A=60°,故选C。
9. 下列数据中,中位数是6的是()A. 1, 2, 3, 4, 5, 6, 7B. 1, 2, 3, 4, 5, 6, 8C. 1, 2, 3, 4, 5, 7, 8D. 1, 2, 3, 4, 5, 6, 9答案:B 解析:将数据从小到大排列,得1, 2, 3, 4, 5, 6, 8,中位数为6,故选B。
2019-2020学年江苏省南通市如皋市八年级(下)期末数学试卷一.选择题(共10小题)1.下列几何图形中,不是中心对称图形的共有()A.1个B.2个C.3个D.4个2.不透明袋子中有除颜色外完全相同的4个黑球和2个白球,从袋子中随机摸出3个球,下列事件是必然事件的是()A.3个都是黑球B.2个黑球1个白球C.2个白球1个黑球D.至少有1个黑球3.下列不能判定四边形是平行四边形的条件是()A.∠A=∠C,∠B=∠D B.AB∥CD,AD∥BCC.AB∥CD,AD=BC D.AB=CD,AD=BC4.若直线y=kx+k﹣3经过第二、三、四象限,则k的取值范围是()A.k<0B.k>3C.k<3D.0<k<35.某鱼塘里养了1600条鲤鱼,若干条草鱼和800条罗非鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右,则该鱼塘捞到鲤鱼的概率约为()A.B.C.D.6.已知第一组数据:12,14,16,18的方差为S12;第二组数据:32,34,36,38的方差为S22;第三组数据:2020,2019,2018,2017的方差为S32,则S12,S22,S32的大小关系表示正确的是()A.S12>S22>S32B.S12=S22>S32C.S12<S22<S32D.S12=S22<S327.下列所给方程中,有两个不相等的实数根的是()A.x2﹣6x+9=0B.2x2﹣3x+5=0C.x2+3x+5=0D.2x2+9x+5=0 8.某省正加速布局以5G等为代表的战略性新兴产业.据统计,该省目前5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.按照计划,设2020年底到2022年底,全省5G基站数量的年平均率为x,根据题意列方程,得()A.6(1+x)2=17.34B.17.34(1+x)2=6C.6(1﹣x)2=17.34D.17.34(1﹣x)2=69.某市组织全民健身活动,有100名男选手参加由跑、跳、投等10个田径项目组成的“十项全能”比赛,其中25名选手的一百米跑成绩排名,跳远成绩排名与10项总成绩的排名情况如图所示:甲、乙、丙表示三名男选手,下面有3个推断:①甲的一百米跑成绩排名比10项总成绩排名靠前;②乙的一百米跑成绩排名比10项总成绩排名靠后;③丙的一百米跑成绩排名比跳远成绩排名靠前.其中合理的是()A.②B.①C.①②D.①③10.如图,矩形ABCD中,AB=6,AD=4,E为AB的中点,F为EC上一动点,P为DF 中点,连接PB,则PB的最小值是()A.4B.4.5C.4.8D.5二.填空题(共8小题)11.小丽微信支付密码是六位数(每一位可显示0~9),由于她忘记了密码的末位数字,则小丽能一次支付成功的概率是.12.已知方程x2﹣6x﹣2=0,用配方法化为a(x+b)2=c的形式为.13.将点A(4,5)绕着原点顺时针旋转90°得到点B,则点B的坐标是.14.已知x=1是方程x2+bx﹣2=0的一个根,则方程的另一个根是.15.如图,四边形ABCD是菱形,∠DAB=48°,对角线AC,BD相交于点O,DH⊥AB 于H,连接OH,则∠DHO=度.16.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c 的解为.17.如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE 与AF相交于点G,点H为BF的中点,连接GH,则GH的长为.18.如图①,在四边形ABCD中,AD∥BC,直线l⊥AB.当直线l沿射线BC方向,从点B 开始向右平移时,直线l与四边形ABCD的边分别相交于点E,F.设直线l向右平移的距离为x,线段EF的长y,且y与x的函数关系如图②所示,则四边形ABCD的周长是.三.解答题19.解下列方程:(1)x(2x﹣1)=2x﹣1;(2)x2﹣4x﹣3=0.20.下表某公司25名员工月收入的资料.月收入/元45000170001000056005000380030001600人数111451111(1)这个公司员工月收入的平均数是6312,中位数是,众数是;(2)在(1)中三个集中趋势参数中,你认为用哪一个反映公司全体员工月收入水平更合适?请说明理由.21.某校计划在暑假第二周的星期一至星期四开展社会实践活动,要求每位学生选择两天参加活动.(1)甲同学随机选择连续的两天,其中有一天是星期二的概率是;(2)乙同学随机选择两天,其中有一天是星期二的概率是多少?22.如图,E,F为▱ABCD对角线BD上的两点,若再添加一个条件,就可证出AE∥CF.请完成以下问题:(1)你添加的条件是.(2)请根据题目中的条件和你添加的条件证明AE∥CF.23.如图,利用一面墙(墙的长度不限),用20m长的篱笆,怎样围成一个面积为50m2的矩形ABCD场地?能围成一个面积为52m2的矩形ABCD场地吗?如能,说明围法;若不能,说明理由.24.如图1,C是线段AB上一个定点,动点P从点A出发向点B匀速移动,动点Q从点B出发向点C匀速移动,点P,Q同时出发,移动时间记为x(s),点P与点C的距离记为y1(cm),点Q与点C的距离记为y2(cm).y1、y2与x的关系如图2所示.(1)线段AB的长为cm;(2)求点P出发3秒后y1与x之间的函数关系式;(3)当P,Q两点相遇时,x=s.25.如图,在矩形ABCD中,E是AD上一点,PQ垂直平分BE,分别交AD,BE,BC于点P,O,Q,连接BP,EQ.(1)依题意补全图形(保留作图痕迹),并求证四边形BPEQ是菱形;(2)若AB=6,F为AB的中点,且OF+OB=9,求PQ的长.26.定义:在平面直角坐标系中,对于任意两点A(a,b),B(c,d),若点T(x,y)满足x=,y=,那么称点T是点A,B的三分点.例如:A(﹣1,5),B(7,7),当点T(x,y)满足x==2,y==4时,则点T(2,4)是点A,B的三分点.(1)已知点C(﹣1,8),D(1,2),E(4,﹣2),请说明其中一个点是另外两个点的三分点.(2)如图,点A为(3,0),点B(t,2t+3)是直线l上任意一点,点T(x,y)是点A,B的三分点.①试确定y与x的关系式.②若①中的函数图象交y轴于点M,直线l交y轴于点N,当以M,N,B,T为顶点的四边形是平行四边形时,求点B的坐标.③若直线AT与线段MN有交点,直接写出t的取值范围.2019-2020学年江苏省南通市如皋市八年级(下)期末数学试卷参考答案与试题解析一.选择题(共10小题)1.下列几何图形中,不是中心对称图形的共有()A.1个B.2个C.3个D.4个【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.【解答】解:等边三角形不是中心对称图形,是轴对称图形;正方形既是中心对称图形,也是轴对称图形;正五边形不是中心对称图形,是轴对称图形;圆既是中心对称图形,也是轴对称图形.∴不是中心对称图形有等边三角形和正五边形共2个.故选:B.2.不透明袋子中有除颜色外完全相同的4个黑球和2个白球,从袋子中随机摸出3个球,下列事件是必然事件的是()A.3个都是黑球B.2个黑球1个白球C.2个白球1个黑球D.至少有1个黑球【分析】正确理解“必然事件”的定义,即可解答.必然事件是指事件一定会发生,即事件发生的可能性为100%.【解答】解:A袋子中装有4个黑球和2个白球,摸出的三个球中可能为两个白球一个黑球,所以A不是必然事件;B.C.袋子中有4个黑球,有可能摸到的全部是黑球,B、C有可能不发生,所以B、C 不是必然事件;D.白球只有两个,如果摸到三个球不可能都是白梂,因此至少有一个是黑球,D正确.故选:D.3.下列不能判定四边形是平行四边形的条件是()A.∠A=∠C,∠B=∠D B.AB∥CD,AD∥BCC.AB∥CD,AD=BC D.AB=CD,AD=BC【分析】根据平行四边形的判定定理和平行线的性质判断即可.【解答】解:A、∵∠A=∠C,∠B=∠D,∴四边形ABCD是平行四边形,故本选项不符合题意;B、∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,故本选项不符合题意;C、∵AB∥CD,AD=BC,∴四边形ABCD可能是等腰梯形,故本选项符合题意;D、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,故本选项不符合题意.故选:C.4.若直线y=kx+k﹣3经过第二、三、四象限,则k的取值范围是()A.k<0B.k>3C.k<3D.0<k<3【分析】根据一场函数图象经过的象限可得出关于k的一元一次不等式组,解之即可得出k的取值范围.【解答】解:根据题意得k<0且k﹣3<0,所以k<0.故选:A.5.某鱼塘里养了1600条鲤鱼,若干条草鱼和800条罗非鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右,则该鱼塘捞到鲤鱼的概率约为()A.B.C.D.【分析】根据捕捞到草鱼的频率可以估计出放入鱼塘中鱼的总数量,从而可以得到捞到鲤鱼的概率.【解答】解:∵捕捞到草鱼的频率稳定在0.5左右,设草鱼的条数为x,可得:=0.5,解得:x=2400,∴由题意可得,捞到鲤鱼的概率为:=;故选:C.6.已知第一组数据:12,14,16,18的方差为S12;第二组数据:32,34,36,38的方差为S22;第三组数据:2020,2019,2018,2017的方差为S32,则S12,S22,S32的大小关系表示正确的是()A.S12>S22>S32B.S12=S22>S32C.S12<S22<S32D.S12=S22<S32【分析】先计算出三组数据的平均数,再根据方差的定义计算出方差,从而得出答案.【解答】解:∵==15,==35,==2018.5,∴S12=×[(12﹣15)2+(14﹣15)2+(16﹣15)2+(18﹣15)2]=5,S22=×[(32﹣35)2+(34﹣35)2+(36﹣35)2+(38﹣35)2]=5,S32=×[(2020﹣2018.5)2+(2019﹣2018.5)2+(2018﹣2018.5)2+(2017﹣2018.5)2]=,∴S12=S22>S32,故选:B.7.下列所给方程中,有两个不相等的实数根的是()A.x2﹣6x+9=0B.2x2﹣3x+5=0C.x2+3x+5=0D.2x2+9x+5=0【分析】若方程有两个不相等的实数根,则△=b2﹣4ac>0,可据此判断出正确的选项.【解答】解:A、△=36﹣4×9=0,原方程有两个相等的实数根,故A错误;B、△=9﹣4×2×5=﹣31<0,原方程没有实数根,故B错误;C、△=9﹣4×5=﹣11<0,原方程没有实数根,故C错误;D、△=81﹣4×2×5=41>0,原方程有两个不相等的实数根,故D正确.故选:D.8.某省正加速布局以5G等为代表的战略性新兴产业.据统计,该省目前5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.按照计划,设2020年底到2022年底,全省5G基站数量的年平均率为x,根据题意列方程,得()A.6(1+x)2=17.34B.17.34(1+x)2=6C.6(1﹣x)2=17.34D.17.34(1﹣x)2=6【分析】根据2020年底及2022年底全省5G基站的数量,即可得出关于x的一元二次方程,此题得解.【解答】解:依题意,得:1.5×4(1+x)2=17.34,即6(1+x)2=17.34.故选:A.9.某市组织全民健身活动,有100名男选手参加由跑、跳、投等10个田径项目组成的“十项全能”比赛,其中25名选手的一百米跑成绩排名,跳远成绩排名与10项总成绩的排名情况如图所示:甲、乙、丙表示三名男选手,下面有3个推断:①甲的一百米跑成绩排名比10项总成绩排名靠前;②乙的一百米跑成绩排名比10项总成绩排名靠后;③丙的一百米跑成绩排名比跳远成绩排名靠前.其中合理的是()A.②B.①C.①②D.①③【分析】先从由统计图获取信息,明确图表中数据的来源及所表示的意义,依据所示的实际意义获取正确的信息,即可得出答案.【解答】解:由折线统计图可知:①甲的一百米跑成绩排名比10项总成绩排名靠前;结论正确;②乙的一百米跑成绩排名比10项总成绩排名靠前;故原说法错误;③无法比较丙的一百米跑成绩与跳远成绩;故原说法错误.所以合理的是①.故选:A.10.如图,矩形ABCD中,AB=6,AD=4,E为AB的中点,F为EC上一动点,P为DF 中点,连接PB,则PB的最小值是()A.4B.4.5C.4.8D.5【分析】由中位线定理可得点P的运动轨迹是线段P1P2,再由垂线段最短可得当BP⊥P1P2时,PB取得最小值,连接BP1、BP2,作BP′⊥P1P2于P′,作P2Q⊥AB于Q,则BP的最小值为BP′的长,P2Q是△EAD的中位线,由勾股定理求出BP2、BP1、CE 的长,由三角形中位线定理得出P1P2的长,设P′P2=x,则P′P1=﹣x,由勾股定理得BP22﹣P′P2=BP12﹣P′P12,解得x=,即可得出结果.【解答】解:当点F与点C重合时,点P在P1处,CP1=DP1,当点F与点E重合时,点P在P2处,EP2=DP2,∴P1P2∥CE且P1P2=CE,当点F在EC上除点C、E的位置处时,有DP=FP,由中位线定理可知:P1P∥CE且P1P=CF,∴点P的运动轨迹是线段P1P2,如图所示:∴当BP⊥P1P2时,PB取得最小值,∵四边形ABCD是矩形,∴AD=BC=4,AB=CD=6,∠DAB=∠BCD=∠ABC=90°,∴CP1=CD=3,∵E为AB的中点,∴AE=BE=AB=3,连接BP1、BP2,作BP′⊥P1P2于P′,作P2Q⊥AB于Q,则BP的最小值为BP′的长,P2Q是△EAD的中位线,∴P2Q=AD=2,QE=AQ=AE=,∴BQ=BE+QE=3+=,在Rt△BP2Q中,由勾股定理得:BP2===,在Rt△CBE中,由勾股定理得:CE===5,∴P1P2=CE=,在Rt△BCP1中,由勾股定理得:BP1===5,设P′P2=x,则P′P1=﹣x,由勾股定理得:BP22﹣P′P2=BP12﹣P′P12,即()2﹣x2=52﹣(﹣x)2,解得:x=,∴BP′2=()2﹣()2=,∴BP′=4.8,故选:C.二.填空题(共8小题)11.小丽微信支付密码是六位数(每一位可显示0~9),由于她忘记了密码的末位数字,则小丽能一次支付成功的概率是.【分析】由末尾数字是0至9这10个数字中的一个,利用概率公式可得答案.【解答】解:∵末尾数字是0至9这10个数字中的一个,∴小丽能一次支付成功的概率是,故答案为.12.已知方程x2﹣6x﹣2=0,用配方法化为a(x+b)2=c的形式为(x﹣3)2=11.【分析】方程移项后,两边加上一次项系数一半的平方,变形得到结果,即可作出判断.【解答】解:方程x2﹣6x﹣2=0,移项得:x2﹣6x=2,配方得:x2﹣6x+9=11,即(x﹣3)2=11.故答案为:(x﹣3)2=11.13.将点A(4,5)绕着原点顺时针旋转90°得到点B,则点B的坐标是(5,﹣4).【分析】画出图形利用图象法解决问题.【解答】解:如图,观察图象可知B(5,﹣4),故答案为(5,﹣4).14.已知x=1是方程x2+bx﹣2=0的一个根,则方程的另一个根是﹣2.【分析】根据根与系数的关系得出x1x2==﹣2,即可得出另一根的值.【解答】解:∵x=1是方程x2+bx﹣2=0的一个根,∴x1x2==﹣2,∴1×x2=﹣2,则方程的另一个根是:﹣2,故答案为﹣2.15.如图,四边形ABCD是菱形,∠DAB=48°,对角线AC,BD相交于点O,DH⊥AB 于H,连接OH,则∠DHO=24度.【分析】由菱形的性质可得OD=OB,∠COD=90°,由直角三角形的性质可得OH=BD=OB,可得∠OHB=∠OBH,由余角的性质可求解.【解答】解:∵四边形ABCD是菱形,∴OD=OB,∠COD=90°,∠DAB=∠DCB=48°,∵DH⊥AB,∴OH=BD=OB,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC,在Rt△COD中,∠ODC+∠DCO=90°,在Rt△DHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO=∠DCB=24°,故答案为:24.16.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c 的解为x≤1.【分析】将点P(m,3)代入y=x+2,求出点P的坐标;结合函数图象可知当x≤1时x+2≤ax+c,即可求解;【解答】解:点P(m,3)代入y=x+2,∴m=1,∴P(1,3),结合图象可知x+2≤ax+c的解为x≤1;故答案为x≤1;17.如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE 与AF相交于点G,点H为BF的中点,连接GH,则GH的长为.【分析】根据正方形的四条边都相等可得AB=AD,每一个角都是直角可得∠BAE=∠D =90°,然后利用“边角边”证明△ABE≌△DAF得∠ABE=∠DAF,进一步得∠AGE =∠BGF=90°,从而知GH=BF,利用勾股定理求出BF的长即可得出答案.【解答】解:∵四边形ABCD为正方形,∴∠BAE=∠D=90°,AB=AD,在△ABE和△DAF中,∵,∴△ABE≌△DAF(SAS),∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=∠BGF=90°,∵点H为BF的中点,∴GH=BF,∵BC=5、CF=CD﹣DF=5﹣2=3,∴BF==,∴GH=BF=,故答案为:.18.如图①,在四边形ABCD中,AD∥BC,直线l⊥AB.当直线l沿射线BC方向,从点B 开始向右平移时,直线l与四边形ABCD的边分别相交于点E,F.设直线l向右平移的距离为x,线段EF的长y,且y与x的函数关系如图②所示,则四边形ABCD的周长是12+2.【分析】分别研究直线l在直线a的位置、直线l经过a后平移到b的位置、直线l到达直线c的位置三种情况,线段l与四边形ABCD的位置,进而求解.【解答】解:过A、C、D分别作直线l的平行线,延长BC交直线c于点F,设直线a 交BC于点M,直线b交AD于点N,①当直线l在直线a的位置时,AM=EF=2,BM=4,则sin B==,故∠B=30°,则AB=BMosc30°=2,∴∠BMA=60°=∠DFC;直线l经过a后平移到b处时,MC=6﹣4=2=AN,即BC=MB+MC=4+2=6,当直线l到达直线c的位置时,CF=8﹣6=2=ND,则AD=AN+ND=2+2=4,此时,∠DCF=60°,CF=DF=2,故△CDF为等边三角形,即CD=2,四边形ABCD的周长=AB+AD+BC+CD=2+4+6+2=12+2,故答案为12+2三.解答题19.解下列方程:(1)x(2x﹣1)=2x﹣1;(2)x2﹣4x﹣3=0.【考点】A6:解一元二次方程﹣配方法;A8:解一元二次方程﹣因式分解法.【专题】523:一元二次方程及应用;66:运算能力.【分析】(1)利用因式分解法求解可得;(2)利用配方法求解可得.【解答】解:(1)∵x(2x﹣1)﹣(2x﹣1)=0,∴(2x﹣1)(x﹣1)=0,则2x﹣1=0或x﹣1=0,解得x=0.5或x=1;(2)∵x2﹣4x=3,∴x2﹣4x+4=3+4,即(x﹣2)2=7,∴x﹣2=,∴x=2.20.下表某公司25名员工月收入的资料.月收入/元45000170001000056005000380030001600人数111451111(1)这个公司员工月收入的平均数是6312,中位数是3800,众数是3000;(2)在(1)中三个集中趋势参数中,你认为用哪一个反映公司全体员工月收入水平更合适?请说明理由.【考点】W4:中位数;W5:众数.【专题】542:统计的应用;65:数据分析观念.【分析】(1)根据中位数的定义把这组数据从小到大排列起来,找出最中间一个数即可;根据众数的定义找出现次数最多的数据即可;(2)根据平均数、中位数和众数的意义回答.【解答】解:(1)共有25个员工,中位数是第13个数,则中位数是3800元;3000出现了11次,出现的次数最多,则众数是3000.(2)用中位数或众数来描述更为恰当.理由:平均数受极端值45000元的影响,只有3个人的工资达到了6312元,不恰当.故答案为3800;3000.21.某校计划在暑假第二周的星期一至星期四开展社会实践活动,要求每位学生选择两天参加活动.(1)甲同学随机选择连续的两天,其中有一天是星期二的概率是;(2)乙同学随机选择两天,其中有一天是星期二的概率是多少?【考点】X6:列表法与树状图法.【专题】543:概率及其应用;67:推理能力.【分析】(1)甲同学随机选择连续的两天,共有3个等可能的结果,即(星期一,星期二),(星期二,星期三),(星期三,星期四);其中有一天是星期二的结果有2个,由概率公式即可得出结果;(2)由树状图得出共有12个等可能的结果,其中有一天是星期二的结果有6个,由概率公式即可得出结果.【解答】解:(1)甲同学随机选择连续的两天,共有3个等可能的结果,即(星期一,星期二),(星期二,星期三),(星期三,星期四);其中有一天是星期二的结果有2个,即(星期一,星期二),(星期二,星期三),则甲同学随机选择连续的两天,其中有一天是星期二的概率是;故答案为:;(2)画树状图如图所示:共有12个等可能的结果,其中有一天是星期二的结果有6个,则乙同学随机选择两天,其中有一天是星期二的概率为=.22.如图,E,F为▱ABCD对角线BD上的两点,若再添加一个条件,就可证出AE∥CF.请完成以下问题:(1)你添加的条件是BE=DF.(2)请根据题目中的条件和你添加的条件证明AE∥CF.【考点】L5:平行四边形的性质.【专题】555:多边形与平行四边形;67:推理能力.【分析】(1)可添加BE=DF;(2)连接AC交BD于点O,连接AF、CE,由四边形ABCD是平行四边形知OA=OC、OB=OD,结合BE=DF得OE=OF,据此可证四边形AECF是平行四边形,从而得出答案.【解答】解:(1)添加的条件是:BE=DF,故答案为:BE=DF;(2)如图,连接AC交BD于点O,连接AF、CE,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OB﹣BE=OD﹣DF,即OE=OF,∴四边形AECF是平行四边形,∴AE∥CF.23.如图,利用一面墙(墙的长度不限),用20m长的篱笆,怎样围成一个面积为50m2的矩形ABCD场地?能围成一个面积为52m2的矩形ABCD场地吗?如能,说明围法;若不能,说明理由.【考点】AD:一元二次方程的应用.【专题】12:应用题;523:一元二次方程及应用;66:运算能力;69:应用意识.【分析】设垂直于墙的一边AB长为xm,那么另一边长为(20﹣2x)m,可根据长方形的面积公式即可列方程进行求解.【解答】解:设垂直于墙的一边AB长为xm,那么另一边长为(20﹣2x)m,由题意得x(20﹣2x)=50,解得:x1=x2=5,(20﹣2×5)=10(m).围成一面靠墙,其它三边分别为5m,10m,5m的矩形.答:不能围成面积52m2的矩形ABCD场地.理由:若能围成,则可列方程x(20﹣2x)=52,此方程无实数解.所以不能围成一个面积为52m2的矩形ABCD场地.24.如图1,C是线段AB上一个定点,动点P从点A出发向点B匀速移动,动点Q从点B出发向点C匀速移动,点P,Q同时出发,移动时间记为x(s),点P与点C的距离记为y1(cm),点Q与点C的距离记为y2(cm).y1、y2与x的关系如图2所示.(1)线段AB的长为27cm;(2)求点P出发3秒后y1与x之间的函数关系式;(3)当P,Q两点相遇时,x=s.【考点】FH:一次函数的应用.【专题】533:一次函数及其应用.【分析】(1)根据函数图象中的数据可以得到线段AB的长;(2)根据图象中的数据和题意可以得到点P出发3秒后y1与x之间的函数关系式;(3)根据题意可以得到点P和Q的速度,从而可以求得x的值.【解答】解:(1)由图可得,线段AC的长度为6cm,线段BC的长为21cm,∴段AB的长为6+21=27cm,故答案为:27;(2)设点P出发3秒后,y1与x之间的函数关系式为y1=kx+b(k≠0),由图象可得,点P的运动速度为:6÷3=2cm/s,由27÷2=13.5,可知y1=kx+b的图象过点(13.5,21),又∵y1=kx+b的图象过点(3,0),,得,即y1与x的函数关系式为y1=2x﹣6;(3)由题意可得,点Q的速度为:21÷7=3cm/s,则当P,Q两点相遇时,x=,故答案为:.25.如图,在矩形ABCD中,E是AD上一点,PQ垂直平分BE,分别交AD,BE,BC于点P,O,Q,连接BP,EQ.(1)依题意补全图形(保留作图痕迹),并求证四边形BPEQ是菱形;(2)若AB=6,F为AB的中点,且OF+OB=9,求PQ的长.【考点】KG:线段垂直平分线的性质;LA:菱形的判定与性质;LB:矩形的性质;N3:作图—复杂作图.【专题】13:作图题;556:矩形菱形正方形;69:应用意识.【分析】(1)根据要求作出图形即可,根据对角线垂直的平行四边形是菱形证明即可.(2)解直角三角形求出PB,OB,利用勾股定理即可解决问题.【解答】解:(1)图形如图所示.四边形BPEQ是菱形.理由:∵PQ垂直平分线段BE,∴OE=OB,∵四边形ABCD是矩形,∴PE∥BQ,∴∠PEO=∠OBQ,∵∠POE=∠QOB,∴△POE≌△QOB(ASA),∴OP=OQ,∵OE=OB,∴四边形BPEQ是平行四边形,∵BE⊥PQ,∴四边形BPEQ是菱形.(2)∵AF=BF,OE=OB,∴AE+BE=2OF+2OB,设AE=x,则BE=18﹣x,在Rt△ABE中,62+x2=(18﹣x)2,解得x=8,∴BE=18﹣8=10,∴OB=BE=5,设PE=y,则AP=8﹣y,BP=PE=y,在Rt△ABP中,62+(8﹣y)2=y2,解得y=,在Rt△BOP中,OP==,∴PQ=2OP=.26.定义:在平面直角坐标系中,对于任意两点A(a,b),B(c,d),若点T(x,y)满足x=,y=,那么称点T是点A,B的三分点.例如:A(﹣1,5),B(7,7),当点T(x,y)满足x==2,y==4时,则点T(2,4)是点A,B的三分点.(1)已知点C(﹣1,8),D(1,2),E(4,﹣2),请说明其中一个点是另外两个点的三分点.(2)如图,点A为(3,0),点B(t,2t+3)是直线l上任意一点,点T(x,y)是点A,B的三分点.①试确定y与x的关系式.②若①中的函数图象交y轴于点M,直线l交y轴于点N,当以M,N,B,T为顶点的四边形是平行四边形时,求点B的坐标.③若直线AT与线段MN有交点,直接写出t的取值范围.【考点】LO:四边形综合题.【专题】533:一次函数及其应用;555:多边形与平行四边形;69:应用意识.【分析】(1)由“三分点”的定义可求解;(2)①由“三分点”定义可得:,即可求解;②先求出点M,点N的坐标,分两种情况讨论,利用平行四边形的性质可求解;③利用特殊位置,分别求出AT过点M和过点N时,t的值,即可求解.【解答】解:(1)∵,∴点D(1,2)是点C,点E的三分点;(2)①∵点A为(3,0),点B(t,2t+3)是直线l上任意一点,点T(x,y)是点A,B的三分点,∴,∴y=2x﹣1;②∵y=2x﹣1图象交y轴于点M,直线l交y轴于点N,∴点M(0,﹣1),点N(0,3),当四边形MTBN是平行四边形时,∴BT∥MN,∵B(t,2t+3),T(,),∴t=,∴t=,∴点B的坐标(,6);当四边形MTNB是平行四边形时,设BT与MN交于点P,则点P为BT与MN的中点,∴点P(0,1),∵B(t,2t+3),T(,),∴t+=0,∴t=﹣,∴点B(﹣,),综上所述:点B的坐标为(,6)或(﹣,);③当直线AT过点M时,∵点A(3,0),点M(0,﹣1),∴直线AM解析式为y=x﹣1,∵点T是直线AM上,∴=×﹣1∴t=﹣3,当直线AT过点N时,∵点A(3,0),点M(0,3),∴直线AN解析式为y=﹣x+3,∵点T是直线AN上,∴=﹣+3,∴t=1,∵直线AT与线段MN有交点,∴﹣3≤t≤1.。
一、选择题(每题4分,共20分)1. 如果一个数的平方根是±2,那么这个数是()A. 4B. -4C. 16D. 0答案:A解析:因为一个数的平方根是±2,那么这个数就是2的平方,即4。
2. 下列各组数中,不是同类项的是()A. 3x^2y^3B. 5x^2y^3C. 7xy^2D. 4x^3y答案:D解析:同类项是指所含字母相同,并且相同字母的指数也相同的项。
D选项中x的指数是3,而其他选项中x的指数都是2。
3. 一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的面积是()A. 24cm²B. 28cm²C. 32cm²D. 36cm²答案:A解析:等腰三角形的面积可以用公式S = (底边长× 高) / 2来计算。
因为等腰三角形的高是底边的中线,所以高为底边长的一半,即3cm。
因此,面积S = (6cm × 3cm) / 2 = 18cm²。
4. 如果sinθ = 1/2,那么cosθ的值是()A. √3/2B. 1/2C. -√3/2D. -1/2答案:A解析:根据三角函数的关系,sin²θ + cos²θ = 1。
已知sinθ = 1/2,代入得(1/2)² + cos²θ = 1,解得cos²θ = 3/4,所以cosθ = √3/2。
5. 下列函数中,不是一次函数的是()A. y = 2x + 3B. y = 3x - 4C. y = 5x² + 2D. y = 4x + 1答案:C解析:一次函数是指函数的最高次数为1的函数。
C选项中函数的最高次数为2,所以不是一次函数。
二、填空题(每题5分,共25分)6. √25的值是______。
答案:5解析:因为5² = 25,所以√25 = 5。
7. 如果a = -3,那么2a - 5的值是______。
2020年江苏省南通市八年级第二学期期末达标测试数学试题一、选择题(每题只有一个答案正确)1.下列命题是假命题的是( )A .四边都相等的四边形为菱形B .对角线互相平分的四边形为平行四边形C .对角线相等的平行四边形为矩形D .对角线互相垂直且相等的四边形为正方形 2.若分式13x - 有意义,则 x 的取值范围是( ) A .x >3 B .x <3 C .x =3 D .x ≠33.如图,ABC 中,AB AC =,AB 5=,BC 8=,AD 是BAC ∠的平分线,则AD 的长为( )A .5B .4C .3D .24.在下列长度的各组线段中,能构成直角三角形的是( )A .3,5,9B .4,6,8C .13,14,15D .8,15,175.下列从左到右的变形,是因式分解的是( )A .()()23x 3x 9x -+=-B .()()()()y 1y 33y y 1+-=-+C .()24yz 2y z z 2y 2z zy z -+=-+ D .228x 8x 22(2x 1)-+-=-- 6.如图,在ABCD 中,对角线AC 与BD 相交于点O ,E 是边CD 的中点,连接OE .若50,80ABC BAC ∠=∠=,则1∠的度数为( )A .60B .50C .40D .257.等边△ABC 的边长为6,点O 是三边垂直平分线的交点,∠FOG=120°,∠FOG 的两边OF ,OG 分别交AB ,BC 与点D ,E ,∠FOG 绕点O 顺时针旋转时,下列四个结论正确的是( )①OD=OE ;②ODE BDE S S ∆∆=;③2738ODBE S =;④△BDE 的周长最小值为9. A .1个 B .2个 C .3个 D .4个8.一组数据:﹣3,1,2,6,6,8,16,99,这组数据的中位数和众数分别是( )A .6和6B .8和6C .6和8D .8和169.如图,在菱形ABCD 中,对角线AC 、BD 相较于点O ,BD =8,BC =5,AE ⊥BC 于点E ,则AE 的长为( )A .5B .125C .245D .18510.如图,在矩形ABCD 中,点E 在AD 上,且EC 平分∠BED ,AB =1,∠ABE =45°,则BC 的长为( )A .2B .1.5C .3D .2 二、填空题11.如图,ABCD 的周长为36,对角线AC ,BD 相交于点O .点E 是CD 的中点,BD=12,则△DOE 的周长为 .12.数据3,7,6,2-,1的方差是__________.13.如图,在菱形ABCD 中,AC 、BD 交于点O ,BC=5,若DE ∥AC ,CE ∥BD ,则OE 的长为_____.14.当x =_____时,分式2121x x +-的值为1. 15.将二元二次方程22560x xy y -+=化为两个一次方程为______.16.对分式213a b 和312ab进行通分,它们的最简公分母是________. 17.观察下列按顺序排列的等式:12341111111a 1a a a 3243546=-=-=-=-⋯,,,,,试猜想第n 个等式(n 为正整数):a n =_____.三、解答题18.已知四边形ABCD 为菱形,4AB =,60ABC ∠=︒,EAF ∠的两边分别与射线CB 、DC 相交于点E 、F ,且60EAF ∠=︒.(1)如图1,当点E 是线段BC 的中点时,请直接写出线段AE 与BE 之间的数量关系;(2)如图2,当点E 是线段BC 上的任意一点(点E 不与点B 、C 重合)时,求证:BE CF =; (3)如图3,当点E 在线段CB 的延长线上,且15EAB ∠=︒时,求线段FD 的长.19.(6分)我市从 2018 年 1 月 1 日开始,禁止燃油助力车上路,于是电动自 行车的市场需求量日渐增多.某商店计划最多投入 8 万元购进 A 、B 两种型号的 电动自行车共 30 辆,其中每辆 B 型电动自行车比每辆 A 型电动自行车多 500 元.用 5 万元购进的 A 型电动自行车与用 6 万元购进的 B 型电动自行车数量一 样.(1)求 A 、B 两种型号电动自行车的进货单价;(2)若 A 型电动自行车每辆售价为 2800 元,B 型电动自行车每辆售价为 3500 元,设该商店计划购进 A 型电动自行车 m 辆,两种型号的电动自行车全部销售 后可获利润 y 元.写出 y 与 m 之间的函数关系式;(3)该商店如何进货才能获得最大利润;此时最大利润是多少元.20.(6分)如图,DE 是△ABC 的中位线,延长DE 至R ,使EF =DE ,连接BF .(1)求证:四边形ABFD 是平行四边形;(2)求证:BF =DC .21.(6分)如图,在平面直角坐标系中,点A ,B 的坐标分别是(-3,0),(0,6),动点P 从点O 出发,沿x 轴正方向以每秒1个单位的速度运动,同时动点C 从点B 出发,沿射线BO 方向以每秒2个单位的速度运动.以CP ,CO 为邻边构造PCOD.在线段OP 延长线上一动点E ,且满足PE =AO.(1)当点C 在线段OB 上运动时,求证:四边形ADEC 为平行四边形;(2)当点P 运动的时间为32秒时,求此时四边形ADEC 的周长是多少.22.(8分)已知关于x 的一元二次方程2240x x m --=的两个实数根为x 1、x 2且x 1+2x 2=9,求m 的值.23.(8分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-4, 1),B(-1,3),C(-1,1)(1)将△ABC以原点O为旋转中心旋转180°,画出旋转后对应的△;平移△ABC,若A对应的点坐标为(-4,-5),画出△;(2)若△绕某一点旋转可以得到△,直接写出旋转中心坐标是__________;(3)在x轴上有一点P是的PA+PB的值最小,直接写出点P的坐标___________;24.(10分)(1)计算:11 27154834-+(2)解方程:(1-2x)2=x2-6x+925.(10分)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线与直线l1,l2,分别交于点C,D,垂足为点E,设点E的坐标为(a,0)若线段CD长为2,求a的值.参考答案一、选择题(每题只有一个答案正确)1.D【解析】【分析】根据矩形、平行四边形、菱形、正方形的判定定理判断即可.A、根据菱形的判定定理可知是真命题;B、根据平行四边形的判定定理可知是真命题;C、根据矩形的的判定定理可知是真命题;D、根据正方形的判定定理可知是假命题.故选D【点睛】本题考查假命题的定义,涉及了矩形、平行四边形、菱形、正方形的判定定理. 2.D【解析】【分析】分式有意义,则分式的分母不为零,即x-3≠0,据此求解即可.【详解】若分式13x-有意义,则x-3≠0,x≠3故选:D【点睛】本题考查的是分式有意义的条件,掌握分式有意义时分式的分母不为0是关键.3.C【解析】【分析】先根据等腰三角形的性质:底边上的三线合一,得出AD⊥BC,BD=12BC,再由勾股定理求出AD的长.【详解】∵在△ABC中,AB=AC,AD是∠BAC的平分线,∴AD⊥BC,BD=12 BC.∵BC=8,∴BD=4在Rt ABD中=3故选C.【点睛】本题考查了等腰三角形的性质以及勾股定理的知识,熟练掌握等腰三角形的性质是解题的关键.4.D欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A 、因为32+52≠92,所以不能组成直角三角形;B 、因为42+62≠82,所以不能组成直角三角形;C 、因为132+142≠152,所以不能组成直角三角形;D 、因为82+152=172,所以能组成直角三角形.故选:D .【点睛】此题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.5.D【解析】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【详解】根据因式分解的定义得:从左边到右边的变形,是因式分解的是228x 8x 22(2x 1)-+-=--.其他不是因式分解:A,C 右边不是积的形式,B 左边不是多项式.故选D.【点睛】本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子. 6.B【解析】【分析】利用三角形内角和定理得出∠BCA 的度数,再利用三角形中位线定理以及平行线的性质即可得出答案【详解】50ABC =∠°,∠BAC=80°∴ ∠BCA=180°-50°=50°对角线AC 与BD 相交与点O ,E 是CD 的中点,∴ EO 是△DBC 的中位线∴EO ∥BC∴ ∠1=∠ACB=50°本题考查三角形内角和定理,熟练掌握三角形的性质及平行线的性质是解题关键.7.B【解析】【分析】连接OB 、OC ,如图,利用等边三角形的性质得∠ABO=∠OBC=∠0CB=30°,再证明∠BOD=∠COE ,于是可判断△BOD ≌△COE ,所以BD=CE ,OD=OE ,则可对①进行判断;利用 BOD COE SS ∆=得到四边形ODBE 的面积1333ABC S ∆== ,则可对进行③判断;作OH ⊥DE ,如图,则DH=EH ,计算出ODE S ∆=23OE ,利用ODE S ∆面积随OE 的变化而变化和四边形ODBE 的面积为定值可对②进行判断;由于△BDE 的周长=BC+DE=4+DE=4+3OE ,根据垂线段最短,当OE ⊥BC 时,OE 最小,△BDE 的周长最小,计算出此时OE 的长则可对④进行判断.【详解】解:连接OB 、OC ,如图,∵△ABC 为等边三角形,∴∠ABC=∠ACB=60°,∵点0是△ABC 的中心,∴OB=OC ,OB 、OC 分别平分∠ABC 和∠ACB ,∴∠ABO=∠0BC=∠OCB=30°∴∠BOC=120°,即∠BOE+∠COE=120°,而∠DOE=120°,即∠BOE+∠BOD=120°,∴∠BOD=∠COE ,在△BOD 和△COE 中BOD COE BO COOBD OCE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BOD2≌△COE ,∴BD=CE ,OD=OE ,所以①正确;∴BOD COE S S ∆=,∴四边形ODBE的面积2116334OBC ABC S S ∆∆===⨯= ,所以③错误; 作OH ⊥DE ,如图,则DH=EH ,∵∠DOE=120°,∴∠ODE=∠OEH=30°,21,2211224ODE OH OE HE OE DE S OE OE ∆∴===∴=∴=⋅= 即S △ODE 随OE 的变化而变化,而四边形ODBE 的面积为定值,ODE BDE S S ∆∴≠ 所以②错误;∵BD=CE ,∴△BDE 的周长OE ,当OE ⊥BC 时,OE 最小,△BDE的周长最小,此时,.△BDE 周长的最小值=6+3=9,所以④正确.故选:B.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质和全等三角形的判定与性质.8.A【解析】【分析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数.【详解】在这一组数据中6是出现次数最多的,故众数是6;这组数据已按从小到大的顺序排列,处于中间位置的两个数是6、6,那么由中位数的定义可知,这组数据的中位数是6;故选A .本题为统计题,考查众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.9.C【解析】【分析】在Rt OBC中,根据OC=OC,再利用面积法可得11AE BC BO AC22⨯⨯=⨯⨯,由此求出AE即可.【详解】四边形ABCD是菱形,BD8=,BO DO4∴==,BOC90∠=,在Rt OBC中,OC3===,AC2OC6∴==,ABC 11S AE BC BO AC22∴=⨯⨯=⨯⨯故5AE24=,解得:24 AE5=.故选C.【点睛】此题主要考查了菱形的性质以及勾股定理,正确利用三角形面积求出AE的长是解题关键.10.A【解析】【分析】由矩形的性质和角平分线的定义得出∠DEC=∠ECB=∠BEC,推出BE=BC,求得AE=AB=1,然后依据勾股定理可求得BE的长.【详解】解:∵四边形ABCD是矩形,∴AD∥BC.∴∠DEC=∠BCE,∵EC平分∠DEB,∴∠DEC=∠BEC.∴∠BEC=∠ECB.∵四边形ABCD 是矩形,∴∠A=90°,∵∠ABE=45°,∴∠ABE=AEB=45°,∴AB=AE=1,∵由勾股定理得:BE=2222112AB AE +=+= ,∴BC=BE=2,故选:A .【点睛】本题考查了矩形的性质,等腰三角形的判定,勾股定理的应用;熟练掌握矩形的性质,证出BE=BC 是解题的关键.二、填空题11.1.【解析】∵ABCD 的周长为33,∴2(BC+CD )=33,则BC+CD=2. ∵四边形ABCD 是平行四边形,对角线AC ,BD 相交于点O ,BD=12,∴OD=OB=BD=3.又∵点E 是CD 的中点,∴OE 是△BCD 的中位线,DE=CD .∴OE=BC .∴△DOE 的周长="OD+OE+DE=" OD +12(BC+CD )=3+9=1,即△DOE 的周长为1. 12.10.8【解析】【分析】根据平均数的计算公式先求出这组数据的平均数,再根据方差的公式计算即可.【详解】解:这组数据的平均数是:(3+7+6-2+1)÷5=3, 则这组数据的方差是: 15[(3-3)2+(7-3)2+(6-3)2+(-2-3)2+(1-3)2]=10.8 故答案为:10.8【点睛】本题考查方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差()()()2222121n S x x x x x x n ⎡⎤=-+-+⋯+-⎣⎦,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.13.1【解析】【分析】由菱形的性质可得BC =CD =1,AC ⊥BD ,由题意可证四边形ODEC 是矩形,可得OE =CD =1.【详解】解:∵四边形ABCD 是菱形,∴BC =CD =1,AC ⊥BD ,∵DE ∥AC ,CE ∥BD ,∴四边形ODEC 是平行四边形,且AC ⊥BD ,∴四边形ODEC 是矩形,∴OE =CD =1,故答案为1.【点睛】本题考查了菱形的性质,矩形的判定和性质,证明四边形ODEC 是矩形是解题的关键.14.12-. 【解析】【分析】分式值为零的条件:分子为零且分母不为零,即210x +=且210x -≠.【详解】 分式2121x x +-的值为1 210x ∴+=且210x -≠ 解得:12x =- 故答案为12-. 【点睛】 从以下三个方面透彻理解分式的概念:分式无意义⇔分母为零;分式有意义⇔分母不为零;分式值为零⇔分子为零且分母不为零.15.30x y -=和20x y -=【解析】【分析】二元二次方程22560x xy y -+=的中间项523xy xy xy -=--,根据十字相乘法,分解即可.【详解】解:22560x xy y -+=,(2)(3)0x y x y ∴--=,∴30x y -=,20x y -=.故答案为:30x y -=和20x y -=.【点睛】本题考查了高次方程解法和分解因式的能力.熟练运用十字相乘法,是解答本题的关键.16.236a b【解析】【分析】根据确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母即可得出答案.【详解】 解:分式213a b 和312ab的最简公分母是236a b , 故答案为:236a b .【点睛】本题考查了最简公分母的定义:通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.17.11n n 2-+. 【解析】【分析】【详解】 根据题意可知,11+12a 1=-, 211a 22+2=-, 311a 33+2=-, 411442a +=-⋯, ∴n 11a n n 2=-+.三、解答题18.(1)3=AE BE;(2)见解析;(3)232=+FD .【解析】【分析】(1)连接AC ,先证△ABC 是等边三角形,再由题意得出AE ⊥BC ,∠B=60°求解可得;(2)证△BAE ≌△CAF 即可得;(3)作AG ⊥BC ,由∠EAB=15°,∠ABC=60°知∠AEB=45°,根据AG=23得EG=AG=23,EB=EG-BG=23-2,再证△AEB ≌△AFC 知EB=FC ,由FD=FC+CD=EB+CD 可得答案.【详解】解:(1)如图1,连接AC ,∵四边形ABCD 是菱形,∴AB=BC ,又∵∠ABC=60°,∴△ABC 是等边三角形,∵E 是BC 中点,∴AE ⊥BC ,BE=12BC=12AB 在Rt △ABE 中,3;(2)证明:连接AC ,如图2中,∵四边形ABCD 是菱形,60ABC ∠=︒,∴ABC ∆与ACD ∆都是等边三角形,∴AB AC =,60ABC ACF ∠=∠=︒.∵60BAC EAF ∠=∠=︒,∴BAE CAF ∠=∠,在BAE ∆和CAF ∆中,BAE CAF BA CAB ACF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()BAE CAF ASA ∆≅∆.∴BE CF =.(3)解:连接AC ,过点A 作AG BC ⊥于点G ,如图3所示,∵15EAB ∠=︒,60ABC ∠=︒,∴45AEB ∠=︒.在Rt AGB ∆中,∵60ABC ∠=︒,4AB =, ∴122BG AB ==, ∴323AG BG ==.在Rt AEG ∆中,∵45ABC ∠=︒,23AG =,∴23EG AG ==,∴232EG EG BG =-=-.由(2)得60ABC ACD ∠=∠=︒,AB AC =,则120ABE ACF ∠=∠=︒,∵60BAC EAF ∠=∠=︒,∴BAE CAF ∠=∠,可得()AEB AFC ASA ∆≅∆,∴EB FC =,∴2324FD FC CD EB CD =+=+=-+232=+.【点睛】考查四边形的综合问题,解题的关键是掌握菱形的性质、等边三角形与全等三角形的判定与性质等知识点.19.(1)A 、B 两种型号电动自行车的进货单价分别为 2500 元 3000 元;(2)y=﹣200m+15000(20≤m≤30);(3)m=20 时,y 有最大值,最大值为 11000 元.【解析】【分析】(1)设 A 、B 两种型号电动自行车的进货单价分别为 x 元、(x+500)元,根据用 5 万元购进的 A 型电动自行车与用 6 万元购进的 B 型电动自行车数量一 样,列分式方程即可解决问题;(2)根据总利润=A 型的利润+B 型的利润,列出函数关系式即可;(3)利用一次函数的性质即可解决问题.【详解】解:(1)设 A 、B 两种型号电动自行车的进货单价分别为 x 元、(x+500) 元, 由题意:50000x =60000x+500, 解得:x=2500,经检验:x=2500 是分式方程的解,答:A 、B 两种型号电动自行车的进货单价分别为 2500 元 3000 元;(2)y=300m+500(30﹣m )=﹣200m+15000(20≤m≤30);(3)∵y=300m+500(30﹣m )=﹣200m+15000,∵﹣200<0,20≤m≤30,∴m=20 时,y 有最大值,最大值为 11000 元.【点睛】本题考查了分式方程的应用,一次函数的应用等知识,读懂题意,找准等量关系列出方程,找准数量关系列出函数关系是解题的关键.20.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)由三角形中位线定理可得//DE AB ,2AB DE =,由EF DE =,可得DF AB =,即可证四边形ABFD 是平行四边形;(2)由平行四边形的性质可得AD BF =,可得BF CD =.【详解】证明:(1)DE 是ABC ∆的中位线,//DE AB ∴,2AB DE =,AD CD =EF DE =2DF DE ∴=AB DF ∴=,且//AB DF∴四边形ABFD是平行四边形;(2)四边形ABFD是平行四边形AD BF∴=,且AD CD=BF DC∴=【点睛】本题主要考查了平行四边形的判定和性质,以及三角形中位线定理,关键是掌握对角线互相平分的四边形是平行四边形,两组对边分别平行的四边形是平行四边形.21. (1)证明见解析;(2) 四边形ADEC的周长为62+313.【解析】【分析】(1)连接CD交AE于F,根据平行四边形的性质得到CF=DP,OF=PF,根据题意得到AF=EF,又CF=DP,根据平行四边形的判定定理证明即可;(2)根据题意计算出OC、OP的长,根据勾股定理求出AC、CE,根据平行四边形的周长公式计算即可.【详解】(1)证明:如答图,连接CD交AE于F.∵四边形PCOD是平行四边形,∴CF=DF,OF=PF.∵PE=AO,∴AF=EF.又∵CF=DF,∴四边形ADEC为平行四边形.(2)解:当点P运动的时间为32秒时,OP=32,OC=3,则OE=9 2 .由勾股定理,得AC=22OA OC+=3,CE =22OC OE +=3132. ∵四边形ADEC 为平行四边形, ∴四边形ADEC 的周长为(3+3132)×2=6+313.【点睛】本题考查的知识点是平行四边形的性质和判定、勾股定理的应用,解题关键是掌握对角线互相平分的四边形是平行四边形.22.5m =±【解析】【分析】由根与系数的关系可得12x x 4+=,x 1x 2=-m 2,再根据x 1+2x 2=9可求出x 1、x 2的值,代入x 1x 2=-m 2即可求得m 的值.【详解】由根与系数可知: 12x x 4+=,x 1x 2=-m 2,解方程组1212x x 4x 2x 9+=⎧⎨+=⎩,得:12x 1x 5=-⎧⎨=⎩ , ∴x 1x 2=-5,即2m 5-=-,∴m 5=±.【点睛】本题考查了一元二次方程根与系数的关系,熟知一元二次方程根与系数的关系是解题的关键.一元二次方程根与系数的关系:若x 1、x 2是一元二次方程ax 2+bx+c=0(a≠0)的两个实数根,则有x 1+x 2=b a -,x 1x 2=c a. 23.(1)见解析(2)(-1,-2)(3)P (-,0).【解析】【分析】(1)根据旋转变换与平移变换的定义作出变换后的对应点,再顺次连接即可;(2)结合对应点的位置,根据旋转变换的性质可得旋转中心;(3)作出点A 关于x 轴的对称点A ’,再连接A’B ,与x 轴的交点即为P 点.【详解】(1)如图所示,△,△即为所求;(2)如图所示,点Q 即为所求,坐标为(-1,-2)(3)如图所示,P即为所求,设A’B的解析式为y=kx+b,将A’(-4,-1),B(-1,3)代入得解得∴A’B的解析式为y=x+,当y=0,时,x+=0,解得x=-∴P(-,0).【点睛】此题主要考查作图-旋转变换与平移变换,解题的关键是熟知旋转变换与平移变换的定义与性质,据此找到变换后的对应点.24.(1)-3(2)-2、4 3【解析】【分析】(1)根据二次根式的运算法则进行运算;(2)运用开方知识解方程. 【详解】(1)解:原式=3﹣15×+×=3+=;(2)解:原方程可化为:()12123243x x x x -=±-=-=所以,【点睛】本题考核知识点:二次根式运算,解一元二次方程. 解题关键点:掌握二次根式运算法则和开方知识解方程.25.(1)b=3,m=-1;(2)13或53【解析】【分析】(1)由点P (1,b )在直线l 1上,利用一次函数图象上点的坐标特征,即可求出b 值,再将点P 的坐标代入直线l 2中,即可求出m 值;(2)由点C 、D 的横坐标,即可得出点C 、D 的纵坐标,结合CD=2即可得出关于a 的含绝对值符号的一元一次方程,解之即可得出结论.【详解】解:(1)∵点P(1,b)在直线l 1:y=2x+1上,∴b=2×1+1=3;∵点P(1,3)在直线l 2:y=mx+4上,∴3=m+4,∴m=1-.(2)当x=a 时,y C =2a+1, y D =4-a .∵CD=2,∴|2a+1-(4-a)|=2, 解得:a=13或a=53. ∴a 的值为13或53. 【点睛】本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征以及解含绝对值符号的一元一次方程,解题的关键是:(1)利用一次函数图象上点的坐标特征求出b 、m 的值;(2)根据CD=2,找出关于a 的含绝对值符号的一元一次方程.。
2019-2020学年江苏省南通市如皋市八年级(下)期末数学试卷一.选择题(共10小题)1.下列几何图形中,不是中心对称图形的共有()A.1个B.2个C.3个D.4个2.不透明袋子中有除颜色外完全相同的4个黑球和2个白球,从袋子中随机摸出3个球,下列事件是必然事件的是()A.3个都是黑球B.2个黑球1个白球C.2个白球1个黑球D.至少有1个黑球3.下列不能判定四边形是平行四边形的条件是()A.∠A=∠C,∠B=∠D B.AB∥CD,AD∥BCC.AB∥CD,AD=BC D.AB=CD,AD=BC4.若直线y=kx+k﹣3经过第二、三、四象限,则k的取值范围是()A.k<0B.k>3C.k<3D.0<k<35.某鱼塘里养了1600条鲤鱼,若干条草鱼和800条罗非鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右,则该鱼塘捞到鲤鱼的概率约为()A.B.C.D.6.已知第一组数据:12,14,16,18的方差为S12;第二组数据:32,34,36,38的方差为S22;第三组数据:2020,2019,2018,2017的方差为S32,则S12,S22,S32的大小关系表示正确的是()A.S12>S22>S32B.S12=S22>S32C.S12<S22<S32D.S12=S22<S327.下列所给方程中,有两个不相等的实数根的是()A.x2﹣6x+9=0B.2x2﹣3x+5=0C.x2+3x+5=0D.2x2+9x+5=0 8.某省正加速布局以5G等为代表的战略性新兴产业.据统计,该省目前5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.按照计划,设2020年底到2022年底,全省5G基站数量的年平均率为x,根据题意列方程,得()A.6(1+x)2=17.34B.17.34(1+x)2=6C.6(1﹣x)2=17.34D.17.34(1﹣x)2=69.某市组织全民健身活动,有100名男选手参加由跑、跳、投等10个田径项目组成的“十项全能”比赛,其中25名选手的一百米跑成绩排名,跳远成绩排名与10项总成绩的排名情况如图所示:甲、乙、丙表示三名男选手,下面有3个推断:①甲的一百米跑成绩排名比10项总成绩排名靠前;②乙的一百米跑成绩排名比10项总成绩排名靠后;③丙的一百米跑成绩排名比跳远成绩排名靠前.其中合理的是()A.②B.①C.①②D.①③10.如图,矩形ABCD中,AB=6,AD=4,E为AB的中点,F为EC上一动点,P为DF 中点,连接PB,则PB的最小值是()A.4B.4.5C.4.8D.5二.填空题(共8小题)11.小丽微信支付密码是六位数(每一位可显示0~9),由于她忘记了密码的末位数字,则小丽能一次支付成功的概率是.12.已知方程x2﹣6x﹣2=0,用配方法化为a(x+b)2=c的形式为.13.将点A(4,5)绕着原点顺时针旋转90°得到点B,则点B的坐标是.14.已知x=1是方程x2+bx﹣2=0的一个根,则方程的另一个根是.15.如图,四边形ABCD是菱形,∠DAB=48°,对角线AC,BD相交于点O,DH⊥AB 于H,连接OH,则∠DHO=度.16.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c 的解为.17.如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE 与AF相交于点G,点H为BF的中点,连接GH,则GH的长为.18.如图①,在四边形ABCD中,AD∥BC,直线l⊥AB.当直线l沿射线BC方向,从点B 开始向右平移时,直线l与四边形ABCD的边分别相交于点E,F.设直线l向右平移的距离为x,线段EF的长y,且y与x的函数关系如图②所示,则四边形ABCD的周长是.三.解答题19.解下列方程:(1)x(2x﹣1)=2x﹣1;(2)x2﹣4x﹣3=0.20.下表某公司25名员工月收入的资料.月收入/元45000170001000056005000380030001600人数111451111(1)这个公司员工月收入的平均数是6312,中位数是,众数是;(2)在(1)中三个集中趋势参数中,你认为用哪一个反映公司全体员工月收入水平更合适?请说明理由.21.某校计划在暑假第二周的星期一至星期四开展社会实践活动,要求每位学生选择两天参加活动.(1)甲同学随机选择连续的两天,其中有一天是星期二的概率是;(2)乙同学随机选择两天,其中有一天是星期二的概率是多少?22.如图,E,F为▱ABCD对角线BD上的两点,若再添加一个条件,就可证出AE∥CF.请完成以下问题:(1)你添加的条件是.(2)请根据题目中的条件和你添加的条件证明AE∥CF.23.如图,利用一面墙(墙的长度不限),用20m长的篱笆,怎样围成一个面积为50m2的矩形ABCD场地?能围成一个面积为52m2的矩形ABCD场地吗?如能,说明围法;若不能,说明理由.24.如图1,C是线段AB上一个定点,动点P从点A出发向点B匀速移动,动点Q从点B出发向点C匀速移动,点P,Q同时出发,移动时间记为x(s),点P与点C的距离记为y1(cm),点Q与点C的距离记为y2(cm).y1、y2与x的关系如图2所示.(1)线段AB的长为cm;(2)求点P出发3秒后y1与x之间的函数关系式;(3)当P,Q两点相遇时,x=s.25.如图,在矩形ABCD中,E是AD上一点,PQ垂直平分BE,分别交AD,BE,BC于点P,O,Q,连接BP,EQ.(1)依题意补全图形(保留作图痕迹),并求证四边形BPEQ是菱形;(2)若AB=6,F为AB的中点,且OF+OB=9,求PQ的长.26.定义:在平面直角坐标系中,对于任意两点A(a,b),B(c,d),若点T(x,y)满足x=,y=,那么称点T是点A,B的三分点.例如:A(﹣1,5),B(7,7),当点T(x,y)满足x==2,y==4时,则点T(2,4)是点A,B的三分点.(1)已知点C(﹣1,8),D(1,2),E(4,﹣2),请说明其中一个点是另外两个点的三分点.(2)如图,点A为(3,0),点B(t,2t+3)是直线l上任意一点,点T(x,y)是点A,B的三分点.①试确定y与x的关系式.②若①中的函数图象交y轴于点M,直线l交y轴于点N,当以M,N,B,T为顶点的四边形是平行四边形时,求点B的坐标.③若直线AT与线段MN有交点,直接写出t的取值范围.2019-2020学年江苏省南通市如皋市八年级(下)期末数学试卷参考答案与试题解析一.选择题(共10小题)1.下列几何图形中,不是中心对称图形的共有()A.1个B.2个C.3个D.4个【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.【解答】解:等边三角形不是中心对称图形,是轴对称图形;正方形既是中心对称图形,也是轴对称图形;正五边形不是中心对称图形,是轴对称图形;圆既是中心对称图形,也是轴对称图形.∴不是中心对称图形有等边三角形和正五边形共2个.故选:B.2.不透明袋子中有除颜色外完全相同的4个黑球和2个白球,从袋子中随机摸出3个球,下列事件是必然事件的是()A.3个都是黑球B.2个黑球1个白球C.2个白球1个黑球D.至少有1个黑球【分析】正确理解“必然事件”的定义,即可解答.必然事件是指事件一定会发生,即事件发生的可能性为100%.【解答】解:A袋子中装有4个黑球和2个白球,摸出的三个球中可能为两个白球一个黑球,所以A不是必然事件;B.C.袋子中有4个黑球,有可能摸到的全部是黑球,B、C有可能不发生,所以B、C 不是必然事件;D.白球只有两个,如果摸到三个球不可能都是白梂,因此至少有一个是黑球,D正确.故选:D.3.下列不能判定四边形是平行四边形的条件是()A.∠A=∠C,∠B=∠D B.AB∥CD,AD∥BCC.AB∥CD,AD=BC D.AB=CD,AD=BC【分析】根据平行四边形的判定定理和平行线的性质判断即可.【解答】解:A、∵∠A=∠C,∠B=∠D,∴四边形ABCD是平行四边形,故本选项不符合题意;B、∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,故本选项不符合题意;C、∵AB∥CD,AD=BC,∴四边形ABCD可能是等腰梯形,故本选项符合题意;D、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,故本选项不符合题意.故选:C.4.若直线y=kx+k﹣3经过第二、三、四象限,则k的取值范围是()A.k<0B.k>3C.k<3D.0<k<3【分析】根据一场函数图象经过的象限可得出关于k的一元一次不等式组,解之即可得出k的取值范围.【解答】解:根据题意得k<0且k﹣3<0,所以k<0.故选:A.5.某鱼塘里养了1600条鲤鱼,若干条草鱼和800条罗非鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右,则该鱼塘捞到鲤鱼的概率约为()A.B.C.D.【分析】根据捕捞到草鱼的频率可以估计出放入鱼塘中鱼的总数量,从而可以得到捞到鲤鱼的概率.【解答】解:∵捕捞到草鱼的频率稳定在0.5左右,设草鱼的条数为x,可得:=0.5,解得:x=2400,∴由题意可得,捞到鲤鱼的概率为:=;故选:C.6.已知第一组数据:12,14,16,18的方差为S12;第二组数据:32,34,36,38的方差为S22;第三组数据:2020,2019,2018,2017的方差为S32,则S12,S22,S32的大小关系表示正确的是()A.S12>S22>S32B.S12=S22>S32C.S12<S22<S32D.S12=S22<S32【分析】先计算出三组数据的平均数,再根据方差的定义计算出方差,从而得出答案.【解答】解:∵==15,==35,==2018.5,∴S12=×[(12﹣15)2+(14﹣15)2+(16﹣15)2+(18﹣15)2]=5,S22=×[(32﹣35)2+(34﹣35)2+(36﹣35)2+(38﹣35)2]=5,S32=×[(2020﹣2018.5)2+(2019﹣2018.5)2+(2018﹣2018.5)2+(2017﹣2018.5)2]=,∴S12=S22>S32,故选:B.7.下列所给方程中,有两个不相等的实数根的是()A.x2﹣6x+9=0B.2x2﹣3x+5=0C.x2+3x+5=0D.2x2+9x+5=0【分析】若方程有两个不相等的实数根,则△=b2﹣4ac>0,可据此判断出正确的选项.【解答】解:A、△=36﹣4×9=0,原方程有两个相等的实数根,故A错误;B、△=9﹣4×2×5=﹣31<0,原方程没有实数根,故B错误;C、△=9﹣4×5=﹣11<0,原方程没有实数根,故C错误;D、△=81﹣4×2×5=41>0,原方程有两个不相等的实数根,故D正确.故选:D.8.某省正加速布局以5G等为代表的战略性新兴产业.据统计,该省目前5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.按照计划,设2020年底到2022年底,全省5G基站数量的年平均率为x,根据题意列方程,得()A.6(1+x)2=17.34B.17.34(1+x)2=6C.6(1﹣x)2=17.34D.17.34(1﹣x)2=6【分析】根据2020年底及2022年底全省5G基站的数量,即可得出关于x的一元二次方程,此题得解.【解答】解:依题意,得:1.5×4(1+x)2=17.34,即6(1+x)2=17.34.故选:A.9.某市组织全民健身活动,有100名男选手参加由跑、跳、投等10个田径项目组成的“十项全能”比赛,其中25名选手的一百米跑成绩排名,跳远成绩排名与10项总成绩的排名情况如图所示:甲、乙、丙表示三名男选手,下面有3个推断:①甲的一百米跑成绩排名比10项总成绩排名靠前;②乙的一百米跑成绩排名比10项总成绩排名靠后;③丙的一百米跑成绩排名比跳远成绩排名靠前.其中合理的是()A.②B.①C.①②D.①③【分析】先从由统计图获取信息,明确图表中数据的来源及所表示的意义,依据所示的实际意义获取正确的信息,即可得出答案.【解答】解:由折线统计图可知:①甲的一百米跑成绩排名比10项总成绩排名靠前;结论正确;②乙的一百米跑成绩排名比10项总成绩排名靠前;故原说法错误;③无法比较丙的一百米跑成绩与跳远成绩;故原说法错误.所以合理的是①.故选:A.10.如图,矩形ABCD中,AB=6,AD=4,E为AB的中点,F为EC上一动点,P为DF 中点,连接PB,则PB的最小值是()A.4B.4.5C.4.8D.5【分析】由中位线定理可得点P的运动轨迹是线段P1P2,再由垂线段最短可得当BP⊥P1P2时,PB取得最小值,连接BP1、BP2,作BP′⊥P1P2于P′,作P2Q⊥AB于Q,则BP的最小值为BP′的长,P2Q是△EAD的中位线,由勾股定理求出BP2、BP1、CE 的长,由三角形中位线定理得出P1P2的长,设P′P2=x,则P′P1=﹣x,由勾股定理得BP22﹣P′P2=BP12﹣P′P12,解得x=,即可得出结果.【解答】解:当点F与点C重合时,点P在P1处,CP1=DP1,当点F与点E重合时,点P在P2处,EP2=DP2,∴P1P2∥CE且P1P2=CE,当点F在EC上除点C、E的位置处时,有DP=FP,由中位线定理可知:P1P∥CE且P1P=CF,∴点P的运动轨迹是线段P1P2,如图所示:∴当BP⊥P1P2时,PB取得最小值,∵四边形ABCD是矩形,∴AD=BC=4,AB=CD=6,∠DAB=∠BCD=∠ABC=90°,∴CP1=CD=3,∵E为AB的中点,∴AE=BE=AB=3,连接BP1、BP2,作BP′⊥P1P2于P′,作P2Q⊥AB于Q,则BP的最小值为BP′的长,P2Q是△EAD的中位线,∴P2Q=AD=2,QE=AQ=AE=,∴BQ=BE+QE=3+=,在Rt△BP2Q中,由勾股定理得:BP2===,在Rt△CBE中,由勾股定理得:CE===5,∴P1P2=CE=,在Rt△BCP1中,由勾股定理得:BP1===5,设P′P2=x,则P′P1=﹣x,由勾股定理得:BP22﹣P′P2=BP12﹣P′P12,即()2﹣x2=52﹣(﹣x)2,解得:x=,∴BP′2=()2﹣()2=,∴BP′=4.8,故选:C.二.填空题(共8小题)11.小丽微信支付密码是六位数(每一位可显示0~9),由于她忘记了密码的末位数字,则小丽能一次支付成功的概率是.【分析】由末尾数字是0至9这10个数字中的一个,利用概率公式可得答案.【解答】解:∵末尾数字是0至9这10个数字中的一个,∴小丽能一次支付成功的概率是,故答案为.12.已知方程x2﹣6x﹣2=0,用配方法化为a(x+b)2=c的形式为(x﹣3)2=11.【分析】方程移项后,两边加上一次项系数一半的平方,变形得到结果,即可作出判断.【解答】解:方程x2﹣6x﹣2=0,移项得:x2﹣6x=2,配方得:x2﹣6x+9=11,即(x﹣3)2=11.故答案为:(x﹣3)2=11.13.将点A(4,5)绕着原点顺时针旋转90°得到点B,则点B的坐标是(5,﹣4).【分析】画出图形利用图象法解决问题.【解答】解:如图,观察图象可知B(5,﹣4),故答案为(5,﹣4).14.已知x=1是方程x2+bx﹣2=0的一个根,则方程的另一个根是﹣2.【分析】根据根与系数的关系得出x1x2==﹣2,即可得出另一根的值.【解答】解:∵x=1是方程x2+bx﹣2=0的一个根,∴x1x2==﹣2,∴1×x2=﹣2,则方程的另一个根是:﹣2,故答案为﹣2.15.如图,四边形ABCD是菱形,∠DAB=48°,对角线AC,BD相交于点O,DH⊥AB 于H,连接OH,则∠DHO=24度.【分析】由菱形的性质可得OD=OB,∠COD=90°,由直角三角形的性质可得OH=BD=OB,可得∠OHB=∠OBH,由余角的性质可求解.【解答】解:∵四边形ABCD是菱形,∴OD=OB,∠COD=90°,∠DAB=∠DCB=48°,∵DH⊥AB,∴OH=BD=OB,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC,在Rt△COD中,∠ODC+∠DCO=90°,在Rt△DHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO=∠DCB=24°,故答案为:24.16.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c 的解为x≤1.【分析】将点P(m,3)代入y=x+2,求出点P的坐标;结合函数图象可知当x≤1时x+2≤ax+c,即可求解;【解答】解:点P(m,3)代入y=x+2,∴m=1,∴P(1,3),结合图象可知x+2≤ax+c的解为x≤1;故答案为x≤1;17.如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE 与AF相交于点G,点H为BF的中点,连接GH,则GH的长为.【分析】根据正方形的四条边都相等可得AB=AD,每一个角都是直角可得∠BAE=∠D =90°,然后利用“边角边”证明△ABE≌△DAF得∠ABE=∠DAF,进一步得∠AGE =∠BGF=90°,从而知GH=BF,利用勾股定理求出BF的长即可得出答案.【解答】解:∵四边形ABCD为正方形,∴∠BAE=∠D=90°,AB=AD,在△ABE和△DAF中,∵,∴△ABE≌△DAF(SAS),∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=∠BGF=90°,∵点H为BF的中点,∴GH=BF,∵BC=5、CF=CD﹣DF=5﹣2=3,∴BF==,∴GH=BF=,故答案为:.18.如图①,在四边形ABCD中,AD∥BC,直线l⊥AB.当直线l沿射线BC方向,从点B 开始向右平移时,直线l与四边形ABCD的边分别相交于点E,F.设直线l向右平移的距离为x,线段EF的长y,且y与x的函数关系如图②所示,则四边形ABCD的周长是12+2.【分析】分别研究直线l在直线a的位置、直线l经过a后平移到b的位置、直线l到达直线c的位置三种情况,线段l与四边形ABCD的位置,进而求解.【解答】解:过A、C、D分别作直线l的平行线,延长BC交直线c于点F,设直线a 交BC于点M,直线b交AD于点N,①当直线l在直线a的位置时,AM=EF=2,BM=4,则sin B==,故∠B=30°,则AB=BMosc30°=2,∴∠BMA=60°=∠DFC;直线l经过a后平移到b处时,MC=6﹣4=2=AN,即BC=MB+MC=4+2=6,当直线l到达直线c的位置时,CF=8﹣6=2=ND,则AD=AN+ND=2+2=4,此时,∠DCF=60°,CF=DF=2,故△CDF为等边三角形,即CD=2,四边形ABCD的周长=AB+AD+BC+CD=2+4+6+2=12+2,故答案为12+2三.解答题19.解下列方程:(1)x(2x﹣1)=2x﹣1;(2)x2﹣4x﹣3=0.【考点】A6:解一元二次方程﹣配方法;A8:解一元二次方程﹣因式分解法.【专题】523:一元二次方程及应用;66:运算能力.【分析】(1)利用因式分解法求解可得;(2)利用配方法求解可得.【解答】解:(1)∵x(2x﹣1)﹣(2x﹣1)=0,∴(2x﹣1)(x﹣1)=0,则2x﹣1=0或x﹣1=0,解得x=0.5或x=1;(2)∵x2﹣4x=3,∴x2﹣4x+4=3+4,即(x﹣2)2=7,∴x﹣2=,∴x=2.20.下表某公司25名员工月收入的资料.月收入/元45000170001000056005000380030001600人数111451111(1)这个公司员工月收入的平均数是6312,中位数是3800,众数是3000;(2)在(1)中三个集中趋势参数中,你认为用哪一个反映公司全体员工月收入水平更合适?请说明理由.【考点】W4:中位数;W5:众数.【专题】542:统计的应用;65:数据分析观念.【分析】(1)根据中位数的定义把这组数据从小到大排列起来,找出最中间一个数即可;根据众数的定义找出现次数最多的数据即可;(2)根据平均数、中位数和众数的意义回答.【解答】解:(1)共有25个员工,中位数是第13个数,则中位数是3800元;3000出现了11次,出现的次数最多,则众数是3000.(2)用中位数或众数来描述更为恰当.理由:平均数受极端值45000元的影响,只有3个人的工资达到了6312元,不恰当.故答案为3800;3000.21.某校计划在暑假第二周的星期一至星期四开展社会实践活动,要求每位学生选择两天参加活动.(1)甲同学随机选择连续的两天,其中有一天是星期二的概率是;(2)乙同学随机选择两天,其中有一天是星期二的概率是多少?【考点】X6:列表法与树状图法.【专题】543:概率及其应用;67:推理能力.【分析】(1)甲同学随机选择连续的两天,共有3个等可能的结果,即(星期一,星期二),(星期二,星期三),(星期三,星期四);其中有一天是星期二的结果有2个,由概率公式即可得出结果;(2)由树状图得出共有12个等可能的结果,其中有一天是星期二的结果有6个,由概率公式即可得出结果.【解答】解:(1)甲同学随机选择连续的两天,共有3个等可能的结果,即(星期一,星期二),(星期二,星期三),(星期三,星期四);其中有一天是星期二的结果有2个,即(星期一,星期二),(星期二,星期三),则甲同学随机选择连续的两天,其中有一天是星期二的概率是;故答案为:;(2)画树状图如图所示:共有12个等可能的结果,其中有一天是星期二的结果有6个,则乙同学随机选择两天,其中有一天是星期二的概率为=.22.如图,E,F为▱ABCD对角线BD上的两点,若再添加一个条件,就可证出AE∥CF.请完成以下问题:(1)你添加的条件是BE=DF.(2)请根据题目中的条件和你添加的条件证明AE∥CF.【考点】L5:平行四边形的性质.【专题】555:多边形与平行四边形;67:推理能力.【分析】(1)可添加BE=DF;(2)连接AC交BD于点O,连接AF、CE,由四边形ABCD是平行四边形知OA=OC、OB=OD,结合BE=DF得OE=OF,据此可证四边形AECF是平行四边形,从而得出答案.【解答】解:(1)添加的条件是:BE=DF,故答案为:BE=DF;(2)如图,连接AC交BD于点O,连接AF、CE,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OB﹣BE=OD﹣DF,即OE=OF,∴四边形AECF是平行四边形,∴AE∥CF.23.如图,利用一面墙(墙的长度不限),用20m长的篱笆,怎样围成一个面积为50m2的矩形ABCD场地?能围成一个面积为52m2的矩形ABCD场地吗?如能,说明围法;若不能,说明理由.【考点】AD:一元二次方程的应用.【专题】12:应用题;523:一元二次方程及应用;66:运算能力;69:应用意识.【分析】设垂直于墙的一边AB长为xm,那么另一边长为(20﹣2x)m,可根据长方形的面积公式即可列方程进行求解.【解答】解:设垂直于墙的一边AB长为xm,那么另一边长为(20﹣2x)m,由题意得x(20﹣2x)=50,解得:x1=x2=5,(20﹣2×5)=10(m).围成一面靠墙,其它三边分别为5m,10m,5m的矩形.答:不能围成面积52m2的矩形ABCD场地.理由:若能围成,则可列方程x(20﹣2x)=52,此方程无实数解.所以不能围成一个面积为52m2的矩形ABCD场地.24.如图1,C是线段AB上一个定点,动点P从点A出发向点B匀速移动,动点Q从点B出发向点C匀速移动,点P,Q同时出发,移动时间记为x(s),点P与点C的距离记为y1(cm),点Q与点C的距离记为y2(cm).y1、y2与x的关系如图2所示.(1)线段AB的长为27cm;(2)求点P出发3秒后y1与x之间的函数关系式;(3)当P,Q两点相遇时,x=s.【考点】FH:一次函数的应用.【专题】533:一次函数及其应用.。