热电偶热电阻资料
- 格式:ppt
- 大小:3.02 MB
- 文档页数:28
热电偶和热电阻的区别与识别方法热电偶和热电阻是工业上常用的两种温度传感器,它们在测量温度方面具有很好的性能。
然而,它们的工作原理和特点有很大的区别。
本文将就热电偶和热电阻的区别及识别方法进行详细的介绍,希望能够为大家对这两种传感器有一个更深入的了解。
一、热电偶和热电阻的工作原理1. 热电偶的工作原理热电偶是利用两种不同材料的热电势差产生的原理来测量温度的。
当两种不同金属相接形成闭合回路后,如果两个接头处于不同的温度下,就会在回路中产生一个热电动势,这种现象称为热电效应。
通过测量这个热电动势的大小,就可以确定两个接头处的温度差,从而测量出被测物体的温度。
热电偶的优点是测量范围广,精度高,响应速度快,但是对环境条件和测量电路的影响比较敏感。
2. 热电阻的工作原理热电阻是利用材料的电阻随温度变化的特性来测量温度的。
一般情况下,热电阻的电阻值随温度升高而增大,利用这个特性可以通过测量热电阻的电阻值来确定被测物体的温度。
热电阻的优点是测量精度高,线性好,但是响应速度相对较慢,不适合对温度变化较快的物体进行测量。
二、热电偶和热电阻的区别1. 原理区别热电偶利用热电效应来测量温度,而热电阻利用电阻随温度变化的特性来测量温度,两者的工作原理完全不同。
2. 测量范围区别热电偶的测量范围更广,可以用于测量-200℃至1800℃范围内的温度;而热电阻的测量范围相对较窄,一般在-200℃至600℃之间。
3. 线性特性区别热电偶的温度-电压变化是非线性的,而热电阻的温度-电阻变化是线性的。
4. 响应速度区别热电偶由于其工作原理的特性,响应速度比较快,适合对温度变化较快的物体进行测量;而热电阻的响应速度相对较慢,不适合对温度变化较快的物体进行测量。
5. 环境条件影响区别热电偶对环境条件和测量电路的影响比较敏感,容易受到干扰;而热电阻对环境条件和测量电路的影响相对较小。
6. 价格区别由于其工作原理和特性的不同,热电偶的制作工艺相对较为复杂,成本较高;而热电阻的制作工艺相对简单,成本较低。
热电偶热电阻测温应用原理1热电偶测温的应用原理1.1热电偶测温基本原理1.2热电偶的种类及结构形成1.2.1热电偶的种类1.2.2热电偶的结构形式1.3热电偶冷端的温度补偿1.4温度测量仪表的分类2热电阻的应用原理2.1热电阻测温原理及材料2.2.1精通型热电阻2.2.2铠装热电阻2.2.3端面热电阻2.2.4隔爆型热电阻2.3热电阻测温系统的组成热电偶热电阻测温应用原理1热电偶测温的应用原理热电偶是工业上最常用的温度检测元件之一。
其优点是:①测量精度高。
因热电偶直接与被测对象接触,不受中间介质的影响。
②测量范围广。
常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。
③构造简单,使用方便。
热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。
1.1热电偶测温基本原理将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。
当导体A和B的两个接触点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一定大小的电流,这种现象称为热电效应。
热电偶就是利用这一效应来工作的。
1.2热电偶的种类及结构形成1.2.1热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。
所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。
非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。
标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。
1.2.2热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:①组成热电偶的两个热电极的焊接必须牢固;②两个热电极彼此之间应很好地绝缘,以防短路;③补偿导线与热电偶自由端的连接要方便可靠;④保护套管应能保证热电极与有害介质充分隔离。
热电偶温度计热电现象和关于热电偶的基本定律热电偶温度计由热电偶、电测仪表和连接导线组成。
它被广泛用于测量-200~1300℃范围内的温度。
在特殊情况下,可测至2800℃的高温或4K 的低温。
热电偶能把温度信号转变为电信号,便于信号的远传和多点切换测量,具有结构简单、制作方便、准确度高、热惯性小等优点。
1. 热电偶测温原理由两种不同的导体或半导体A 或B 组成的闭合回路,如果使两个接点处于不同的温度t 0、t ,则回路中就有电动势出现,称为热电势,这一现象称为热电效应。
热电势是温度t 0和t 的函数,恒定接点温度t 0,则热电势是温度t 的单值函数,只要测得热电势的大小,便可得到被测温度t 。
热电势由温差电势与接触电势组成。
温差电势:是指一根导体上因两端温度不同而产生的热电动势。
同一导体两端温度不同时,高温端(测量端、工作端、热端)电子的运动速度大于低温端电子(参比端、自由端、冷端)的运动速度,单位时间内高温端失电子带正电,低温端得电子带负电,高、低温端之间形成一个从高温端指向低温端的静电场。
该电场阻止高温端电子向低温端的动;加大低温端电子向高温端的运动速度,当运动达到动态平衡时,导体两端产生相应的电位差,该电位差称为温差电势。
温差电势的方向:由低温端指向高温端。
温差电势的大小:,()dt dtt N d N e k t t e t tt t )(1,00⎰=,式中k 为波尔兹曼常数;e 为电子电量t N 为导体内的电子密度,是温度的函数;t 、to 是导体两端的温度。
可见温差电势的大小与导体的性质和导体两端温度有关,而与导体长度、截面大小以及沿导体长度方向的温度分布无关。
热端 测量端 工作端冷端自由端参比端热电极B(e AB ()0t AB (,t t e (0,t t e B热电偶回路的总电势接触电势:是在两种不同材料A 和B 的接触点产生的。
A 、B 材料有不同的电子密度,设导体A 的电子密度n A 大于导体B 的电子密度n B ,则从A 扩散到B 的电子数要比从B 扩散到A 的多,A 因失电子而带正电荷,B 因得电子而带负电荷,于是在A 、B 的接触面上便形成一从A 到B 的静电场。
热电偶和热电阻区别1、虽然都是接触式测温仪表,但它们的测温范围不同。
热电偶使用在温度较高的环境,因它们在中,低温区时输出热电势很小,当电势小时,对抗干扰措施和二次表和要求很高,否则测量不准,还有,在较低的温度区域,冷端温度的变化和环境温度的变化所引起的相对误差就显得很突出,不易得到全补偿。
热电阻使用在中低温的环境,一般使用热电阻测温范围为20(Γ500°C,甚至还可测更低的温度(如用碳电阻可测到IK左右的低温).现在正常使用钳热电阻Ptl00。
(也有Pt50,在工业上也有用铜电阻,但测温范围较小,在一50~150°C之间。
在一些特殊场合还有钢阻,镐电阻等)。
2、测温原理热电偶测量温度的基本原理是热电效应,二次表是一个检伏计或为了提高精度时使用电子电位差计。
热电阻是基于导体和半导体的电阻值随温度而变化的特性而工作的,二次表是一个不平衡电桥。
3、工作中的现场故障判断热电偶:热电偶有正负极,补偿导线也有正负之分。
首先保证连接和配置正确,在运行中,常见的故障现象有短路、断路、接触不良(有万用表可判断)和变质(根据表面颜色来鉴别)。
检查时,要使热电偶与二次表分开。
热电阻:不外乎短路和断路。
用万用表可判断,在运行中怀疑短路只要将电阻端拆下一个线头,显示仪表如到最大则热电阻短路;显示仪表如回零导线短路。
保证正常连接和配置时,表值显示低或不稳,保护管可能性进水了。
热电偶和电阻信号进入PLC系统,如果仪表开路,PLC数据回零;如果仪表短路,PLC 数据溢出;如果仪表信号受电磁干扰,PLC数据不稳定或一直溢出。
4、热电偶和热电阻的选择热电偶的分度号有主要有S、R、B、N、K、E、J、T等几种。
其中S、R、B属于贵金属热电偶,N、K、E、J、T属于廉金属热电偶。
T分度号的特点是在所有廉金属热电偶中精确度等级最高,通常用来测量300℃以下的温度。
热电阻是中低温区最常用的一种温度检测器。
它的主要特点是测量精度高,性能稳定。
热电偶、热电阻工作原理及特点热电偶工作原理将两种不同的金属导体焊接在一起,构成闭合回路,如在焊接端(即测量端)加热产生温差,则在回路中就会产生热电动势,此种现象称为塞贝克效应(Seebeck-effect)。
如将另一端(即参考端)温度保持一定(一般为0℃),那么回路的热电动势则变成测量端温度的单值函数。
这种以测量热电动势的方法来测量温度的元件,即两种成对的金属导体,称为热电偶。
热电偶产生的热电动势,其大小仅与热电极材料及两端温差有关,与热电极长度、直径无关。
热电偶工作原理图热电阻工作原理工业用热电阻分铂热电阻和铜热电阻两大类。
热电阻是利用物质在温度变化时自身电阻也随着发生变化的特性来测量温度的。
热电阻的受热部份(感温元件)是用细金属丝均匀地双绕在绝缘材料制成的骨架上。
当被测介质中有温度发生变化时,所测得的温度是感温元件所在范围内介质中的平均温度。
热电偶、热电阻特点热电偶热电阻热电偶同其它种温度计相比具有如下特点:a、优点·热电偶可将温度量转换成电量进行检测,对于温度的测量、控制,以及对温度信号的放大、变换等都很方便,·结构简单,制造容易,·价格便宜,·惰性小,热电阻同其它种温度计相比具有如下特点:a、优点·准确度高。
在所有常用温度计中,准确度最高,可达1mk。
·输出信号大,灵敏度高。
如在0℃用Pt100铂热电阻测温,当温度变化1℃时,其电阻值约变化0.4Ω,如果通过电流为2mA,则其电压输出量变化为800μV。
在相同条件下,即使灵敏度比较高的K型热电偶,其热电动势变化也只有热电偶热电阻热电偶同其它种温度计相比具有如下特点:a、优点·热电偶可将温度量转换成电量进行检测,对于温度的测量、控制,以及对温度信号的放大、变换等都很方便,·结构简单,制造容易,·价格便宜,·惰性小,·准确度高,·测温范围广,·能适应各种测量对象的要求(特定部位或狭小场所),如点温和面温的测量,·适于远距离测量和控制。
热电偶和热电阻、热敏电阻的区别热电偶热电偶是工业上最常用的温度检测元件之一,热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。
其优点是:①测量精度高。
因热电偶直接与被测对象接触,不受中间介质的影响。
②测量范围广。
常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。
③构造简单,使用方便。
热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。
1.热电偶测温基本原理将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图2-1-1所示。
当导体A 和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。
热电偶就是利用这一效应来工作的。
2.热电偶的种类及结构形成(1)热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。
所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。
非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。
标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。
(2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:①组成热电偶的两个热电极的焊接必须牢固;②两个热电极彼此之间应很好地绝缘,以防短路;③补偿导线与热电偶自由端的连接要方便可靠;④保护套管应能保证热电极与有害介质充分隔离。
3.热电偶冷端的温度补偿由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。
热电偶和热电阻有相同的地方是:都是测量温度的传感器,也叫一次仪表。
它们不同的是:1热电偶作为温度传感器它输出的是和温度对应的电势,多为毫伏级的伩号。
用不同的金属材料制成的热电偶,在同样温度下,输出的电势是不同的。
比如用铂铑-铂丝制成的热电偶,我们称s分度,它在0度时输出0mv,1000度时输出9.585mv,1600度时输出16.771mv (环境温度为0度时)。
如果用镍铬-镍硅丝制成的热电偶,我们称k分度。
它在0度时输出0mv,1000度时输出39.816mv,1300度时输出50.950mv(环境温度为0度)。
热电偶一般用来测量“点”的温度。
根据要测量不同高低的温度等和其它要求选用不同材质的热点偶。
热电阻故名思意,它的电阻的阻值是随着温度变化而变化的,比如,用线性比较好的铂丝;铜丝作的电阻。
比如用铜丝作的,分度号Cu50。
它在0度时,阻值是50欧姆,100度时是71.400欧姆。
如用铂丝做成的,其分度号称Pt100。
它的阻值在0度时为100欧姆,负200度时为18.52欧姆,200度时为175.86欧姆,800度时为375.70欧姆。
环境温度对热电偶的影响较大,所以在使用热电偶时要对环境温度进行补偿。
而使用,要注意连接到和仪表之间连线的阻值要一样。
(一般用三线制)同样也要根据要测量的温度,来选用铜电阻还是铂电阻。
过去,因为PLC发展较仪表慢一些,输如到PLC的伩号一般是0-10ma或0-10v,4-20ma所以要把的电阻值变成上说的伩号,以使PLC能接受;所以要用变送器。
一用变送器,就有2线制和4线制之分。
2线制是电源和信号就用2根线传送;比如4-20ma的仪表,就用2线制传送。
4线制,是电源和信号各用2根线来传送,互相隔离,比如0-10ma;0-10v都用4线制。
随着PLC的飞速发展PLC已有输入模块和热电偶的输入模块,只要把直接连到模块就行了。
热电偶就更方便,温度补偿以及线性校正都可以在模块里完成。
热电偶热电阻热电偶热电阻是一种普遍应用于各种工业监控和测量中的基本温度传感器。
它是一种由两个不同金属接触口连接的特殊电阻。
这两个接触口的温度变化时,电阻值随之发生变化。
这种变化与温度变化成线性关系,其变化率可以设置,为一定范围内温度变化测量提供准确而可靠的输出信号。
热电偶热电阻分为三种:接触式热电偶热电阻,两端式热电偶热电阻和电位池式热电偶热电阻。
接触式热电偶热电阻是最常见的一种,它由一根无极性互换的金属丝组成,金属丝经热处理而成,丝的两端接触时,它的电阻值随温度的变化而发生变化,它们的温度范围普遍为-70℃至800℃。
两端式热电偶热电阻是由两个金属片,它们之间只有一条电连接,因此,两端式热电偶热电阻比接触式安装起来更方便,并且可以提供更宽的温度范围。
两端式热电偶热电阻的温度范围为-50℃至1200℃,可以满足高温工况的测试需求。
电位池式热电偶热电阻是一种集成型热电偶热电阻,它由一个热电偶热电阻,一个电容和一个NTC电阻组成,电容和NTC电阻是由微电路控制的,当温度变化时电容和NTC会变化,因此热电阻值也会发生变化,一般温度范围为-40至400℃。
由于集成型热电偶热电阻可以在短时间内快速响应,所以它特别适合于电力、冶金、汽车行业等对快速响应的应用。
热电偶热电阻主要用于测控电气仪表,仪表表面的指示仪及现场实时监测温度。
这种温度电阻器可以测量的温度范围较大,温度精度可达到0.1℃,温度分辨率可达到0.01℃,所以它可以用在各种工业场合中,特别是在高温、腐蚀性介质、爆炸性介质工况下,它可以提供准确可靠的温度控制及监测,为工业自动化提供技术支持。
此外,热电偶热电阻具有很低的老化率、耐腐蚀性、耐震性及良好的信号稳定性,使它在工业安全检测系统中有着广泛的应用。
一般来说,它们的使用寿命都超过10年,性价比高,因此广受各大工厂和企业的欢迎。
综上所述,热电偶热电阻是一种工业监控和测量所必不可少的设备,它具有准确稳定、温度范围宽等优点,在各种工况和电气仪表测量方面都有着广泛的应用,为工业自动化提供技术支持。