基于压缩感知的随机噪声成像雷达
- 格式:pdf
- 大小:542.18 KB
- 文档页数:6
第37卷第2期南京理工大学学报V01.37N o.2兰Q!!生垒旦!竺!竺型竺堕!尘!竺!竺!堡!!!堡坚兰!堡!!!!!!里!皇!竺!竺墅垒巳!:呈Q!兰基于贝叶斯压缩感知的噪声M I M O雷达目标成像王超宇,贺亚鹏,胡恒,朱晓华(南京理工大学电子工程与光电技术学院,江苏南京210094)摘要:为了提高低信噪比下压缩感知雷达的成像性能,该文提出了一种基于贝叶斯压缩感知的噪声多入多出(M I M O)雷达成像方法。
给出了噪声M I M O雷达系统稀疏感知模型,构造了贝叶斯概率密度函数,利用最大后验概率优化方法对目标函数进行优化求解。
优化估计的结果接近最佳稀疏度,与传统压缩感知重构方法相比,该方法能够有效降低目标场景向量的估计误差,提高目标二维像的质量,对噪声干扰的鲁棒性更好。
仿真结果验证了该方法的有效性。
关键词:贝叶斯压缩感知;噪声多入多出雷达;目标成像中图分类号:TN958.8文章编号:1005—9830(2013)02-0262—07N oi se M I M O r adar t ar get i m agi ng based on B ayes i anW a ng C haoyu,H e Y a peng,H u H eng,Z hu X i a ohua(School of E l ect r oni c E ngi neer i ng a nd O pt oel ec t r oni c T echnol ogy,N U ST,N anj i ng210094,C hi na)A bst r act:To e nha nc e noi se r at i o,t he noi s eB ayesi an co m pr e ssi v et he pe r f or m ance of t heco m pr e ssi v e sensi ngr adar i m agi ng i n t he l ow s i gnal t o m ul t i pl e i nput m ul t i pl e out put(M I M O)r adar t ar get i m agi ng bas ed on t he s ens i ng(B C S)i s pr opos ed.T he s par s e sensi ng m odel of t he noi s e M I M O r a darand t he B a ye si a n pr ob abi l i t y densi t y f unct i on a r e pr es ent ed,and a n opt i m i zat i on m et hod bas ed o nm a xi m um a pos t er i ori is e m pl oyed t o SO l V e t he a bove pr obl em.T he es t i m at e s i gnal vect or of t he t ar gets ce ne cl oses t o t he best opt i m i ze r e sul t s.C om par ed w i t h t he t radi t i onal c om pr ess e d sensi ngr econs t ruct i on m et hod,t he pr opose d m et hod ca n eff ect i vel y r e duc e e r r or s of t he est i m a t e,i m pr ove t hequal i t y of t he t w o di m ensi onal i m age,and s how t he bet t er r obus t ness t o noi s e.Si m ul at i on r es ul t s dem-onst r at e t he ef f ect i venes s of t he m et ho d.K ey w or ds:B aye si an co m pr e ssi v e s ens i ng;noi s e m ul t i pl e i nput m ul t i pl e out put r adar;t arget i m a gi ng收稿日期:2011—10—13修回日期:2012-07—10基金项目:南京理工大学自主科研专项计划(2010ZD J H05)作者简介:王超字(1985一),男,博士生,主要研究方向:稀疏成像,E-m ai l:w angchaoyu@yahoo.cn;通讯作者:朱晓华(1966一),男,教授,博士生导师,主要研究方向:雷达系统,高速数字信号处理等,E.m ai l:zxh@m ai l.nj ust.edu.cn。
基于压缩感知的SAR成像传统成像雷达通常采用匹配滤波实现脉冲压缩,匹配滤波使得高斯白噪声条件下的输出信噪比最大化,但相对高的旁瓣通常妨碍了邻近目标的分辨,且在接收端需要一个高速A/D转换器。
压缩感知思想用于雷达成像压缩感知思想为取消雷达接收端的匹配滤波器、降低接收机必需的A/D转换带宽提供了契机。
利用压缩感知来研究雷达成像问题,一方面可望减少提取目标脉冲响应和刻画目标散射机制所需的测量数,生成高分辨雷达图像;另一方面也可用于雷达图像的后处理,减少斑点噪声,实现特征增强,从而有利于图像分析和目标识别。
R.Baraniuk等人正是基于此率先研究了基于压缩感知理论的新兴雷达系统设计问题,发射机同传统雷达,接收端由一个低速率A/D转换器组成,目的是将雷达系统中昂贵的接收机硬件设计转移到灵活的信号恢复算法研究。
M.Herman等人通过数值模拟研究了基于压缩感知理论的高分辨雷达,从另一个角度验证了取消匹配滤波器的作用。
把场景对发射信号的作用建模为一个广义线性算子,然后将该算子分解成时延和多普勒移位的组合,采用压缩感知方法重构目标距离-多普勒分布图。
压缩感知用于雷达成像的三个关键点建立雷达回波的稀疏模型稀疏性是信号复杂度的本质度量,待处理信号在某个基上可稀疏表示是压缩感知理论应用的前提。
稀疏基的选择目前主要有两种途径,其一是采用稀疏表示字典的波形匹配分量构造方法,即根据发射信号和回波信号模型的先验信息设计波形匹配字典;其二是分析雷达回波数据模型,通过离散化目标空间,综合每个空间位置的模型数据来生成字典元素。
构造测量矩阵基于随机滤波、随机卷积的通用压缩感知测量体系,即将信号通过一个具有随机延迟系数的确定性FIR滤波器或与一个随机脉冲相卷积,然后降采样。
雷达回波序列对应于发射脉冲和目标场景反射率函数的卷积,可把发射脉冲视为随机滤波中的FIR滤波器、随机卷积中的随机脉冲,从而基于压缩感知实现雷达成像。
设计有效稳健的重构算法对雷达数据进行稀疏性建模,并确定观测模型后,即可采用非线性重构算法生成雷达图像,雷达图像重构算法的研究主要集中在减少测量数、增强稳健性和降低复杂度上。
第47卷第3期2021年3月北京工业大学学报JOURNAL OF BEIJING UNIVERSITY OF TECHNOLOGYVol.47No.3Mar.2021基于压缩感知理论的二维DOA估计窦慧晶,梁霄,张文倩(北京工业大学信息学部,北京100124)摘要:二维波达方向(direction of arrival,DOA)估计在雷达探测、电子对抗、医学成像等领域有着广泛的应用.针对现有算法估计精度不足、计算量巨大的问题,在基于压缩感知理论的背景下提出一种二维均匀L型阵列信号的DOA估计算法.该算法首先对阵列信号的俯仰角和方位角构建空间合成角,并对空间合成角构建过完备冗余字典;再利用正交化高斯随机矩阵构造观测矩阵;最后通过改进RM-FOCUSS算法和求解三角函数的方法还原出方位角和俯仰角.理论研究表明,该方法在高信噪比、多快拍条件下比传统算法具有更高的估计精度和分辨力,且通过压缩采样降低了运算量.仿真实验验证了上述结论.关键词:DOA估计;压缩感知;过完备冗余字典;稀疏表示;压缩采样;测量矩阵中图分类号:TN911文献标志码:A文章编号:0254-0037(2021)03-0231-08doi:10.11936/bjutxb2019100002Two-dimensional DOA Estimation Based onCompressed Sensing TheoryDOU Huijing,LIANG Xiao,ZHANG Wenqian(Faculty of Information Technology,Beijing University of Technology,Beijing100124,China)Abstract:Two-dimensional direction of arrival(DOA)estimation has been widely used in radar detection,electronic reconnaissance,medical imaging and other fields.Aiming at the problems of inadequate estimation accuracy and enormous computational load of existing algorithms,a DOA estimation algorithm for two-dimensional uniform L-shaped array signals was presented in this paper based on compressed sensing theory.First,an over-complete redundant dictionary was established by using the space frequency of the azimuth angle and pitch angle.Then the orthogonal Gaussian random matrix was used to construct the measurement matrix.Finally,azimuth and elevation were restored by improving RM -FOCUSS algorithm and solving trigonometric function.The theoretical research shows that the proposed method has higher estimation accuracy and resolution than the traditional algorithm under the conditions of high SNR and multi-snapshot,and it reduces the computational complexity by compressing sampling.The simulation results verify the effectiveness and correctness.Key words:direction of arrival(DOA)estimation;compressed sensing(CS);over-complete redundant dictionary;spare representation;compressed sampling;measurement matrix二维波达方向(direction of arrival,DOA)估计在阵列信号处理领域有着重要的研究意义,与一维收稿日期:2019-10-11基金项目:国家自然科学基金资助项目(61171137);北京市教育委员会科研发展计划资助项目(KM201210005001)作者简介:窦慧晶(1969—),女,副教授,主要从事数字信号处理、信号参量估计阵列信号处理、语音信号处理方面的研究, E-mail:dhuijing@232北京工业大学学报2021年DOA估计相比,该估计算法能够更精确描述目标的空间特性,因此DOA估计在二维信号领域更具实际应用价值[1-2].二维多重信号分类(two-dimensional multiple signal classification,2-D MUSIC)算法是目前已有的二维阵列信号DOA估计算法中最为经典的估计算法之一,该算法核心思想是将传统的一维MUSIC估计算法在二维空间进行直接推广,由于该算法需要二维谱峰搜索因而导致计算量巨大,且需要各信源的中心频率已知,因此很难满足实际应用⑶.为了解决上述缺陷,有学者提出一种无须谱峰搜索的二维旋转不变子空间(two-dimensional estimating signal parameter via rotational invariance techniques,2-D ESPRIT)算法以及二维传播算子(two-dimensional propagation method,2-D PM)算法⑷.这些算法的相继问世使阵列信号的处理性能得到一定的提高,但因其在小快拍数及低信噪比情况下估计性能严重下降而无法推广到实际应用中.在众多阵列结构中,由于L型阵列具有结构简单、实施容易、估计性能佳等优点而被广泛用于工程领域.为解决二维信号角度匹配精度不高且计算复杂的问题,文献[5]提出一种基于L型阵列的无须手动配对的二维DOA估计算法,通过引入新的合成角度计算出新的导向矢量,进而获得原信号的俯仰角和方位角.尽管该方法能够自动完成角度配对,但需要多次谱峰搜索及特征值分解导致计算复杂度过高.文献[6]提出一种新的二维DOA估计方法,该算法首先将方位角和俯仰角分别估计出来,再通过阵列输出的互相关和信号功率对2个角度进行匹配,由于需要大量的采样信号使得该方法不可有效避免大量的数值计算.为降低运算量有学者提出利用阵列数据的协方差矩阵进行二维角度估计的算法[7-8].文献[9]提出一种利用多相干信号对方位角和俯仰角进行配对的方法,通过利用协方差矩阵最小化构造的代价函数从而实现角度配对,该算法存在的最大弊端是在构造协方差矩阵的过程中可能会引入外界噪声,从而影响其估计性能.压缩感知(comprehensive sensing,CS)理论的出现为现代信号处理带来一种更高效、更精确的方法,文献[10]提出基于该理论的£-SVD算法,该算法通过对接收信号进行奇异值分解(singular value decomposition,SVD)来降低算法复杂度和对噪声的敏感性,然后利用二阶锥规划的方法求解相应的优化问题,该算法在小快拍数和低信噪比时有很好的性能,并且可以直接用于相干信号[11].该方法摆脱了传统奈奎斯特采样定理带来超大计算量的束缚.基于此,众多学者将压缩感知理论引入到DOA估计中来,从而达到降低计算量的目的.文献[12]提出一种基于协方差矩阵联合稀疏重构的降维波达方向估计算法,该算法充分利用阵列孔径,无须预先估计目标数目,参数估计性能在低信噪比及小快拍数据长度下优势明显,但在其他方面尚有改进余地.本文在基于压缩感知理论的背景下提出一种二维L 型阵列信号的DOA估计算法.该方法在高信噪比、多快拍条件下相较于传统算法具有更高的估计精度和分辨力,且具有较低的运算量.1信号模型本文试验采用L型均匀阵列,该模型中2个子阵互相垂直,成90。
基于压缩感知的荧光成像技术现状及趋势研究赵清1,2,马素洁1,张伟1,刘雪峰3,姚旭日1,2*,葛墨林1,2(1.北京理工大学 物理学院,量子技术研究中心和先进光电量子结构设计与测量教育部重点实验室,北京,100081;2.北京量子信息研究院,北京,100193;3.中国科学院国家空间科学中心 复杂航天系统电子信息技术重点实验室,北京,100190)Abstract: Compressed imaging technology is the combination of compressed sensing and spatial light modulation technology. Compressed imaging can break through the limitation of Nyquist Shannon sampling theorem, and has the advantages of sub sampling imaging, dimensionality reduction sampling and high-throughput measurement. It has great development potential and application prospects. At present, compressed sensing imaging technology has been used to realize spectral imaging, time-resolved imaging, phase imaging and so on. As an advanced technology developed in recent years, compressed imaging has gradually moved from basic research to application, especially in the field of high-dimensional optical signal measurement and extremely weak light measurement. This paper reviews the research status and the engineering progress of compressed sensing. Some suggestions are put forward to develop the subversive technology of bioluminescence sensing based on compressed sensing imaging technology.Key words: Compressed sensing;spectroscopic imaging; fluorescence imagingCurrent Situation and Trend of Imaging Spectroscopy and Fluorescence Imaging Based on Compressed SensingZHAO Qing 1,2, MA Sujie 1, ZHANG Wei 1, LIU Xuefeng 3, YAO Xuri 1,2, GE Molin 1,2(1. Center for Quantum Technology Research and Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081; 2. Beijing Academy of Quantum Information Sciences, Beijing, 100193; 3. Key Laboratory of Electronics and Information Technology for Space Systems National Space Science Center Chinese Academy of SciencesBeijing, 100190)摘要:压缩感知成像技术是压缩感知与空间光调制技术结合的产物,其可突破Nyquist-Shannon 采样定理限制,实现了亚采样成像,并且具降维探测和高通量测量等优势,具有巨大的发展潜力和应用前景。
基于压缩感知的天波雷达瞬态干扰抑制陈希信【摘要】The transient interference is a common kind of interference in skywave over-the-horizon ra-dar.It often raises the range-Doppler detection background,which makes it very difficult to detect target.A transient interference suppression approach based on the compressive sensing is presented in this paper.In this approach the situations of the transient interferences are firstly found and then the clutter and target sig-nals at these situations are reconstructed using compressive sensing to realize suppression of the transient in-terferences.To avoid the effect of transient interferences on the reconstruction of signals,the measurement matrix of compressive sensing is formed from many selected rows of the identity matrix.The real skywave radar data processing shows that the presented approach can effectively suppress the transient interference and significantly improve the detection performance of radar.%瞬态干扰是天波超视距雷达中一种常见的干扰,经常抬高雷达的距离多普勒二维检测背景,造成目标检测困难,因此需要加以抑制。
基于压缩感知的SAR海面场景目标数据压缩与重构方法作者:李磊张群来源:《现代电子技术》2013年第13期摘要:针对海面场景目标SAR的海量数据压缩与重构问题,提出利用一种新的数据压缩与重构理论——压缩感知理论来完成。
首先构造随机高斯噪声观测矩阵对原始回波数据进行降维处理以达到大幅压缩的目的,然后利用平滑L0算法重构原始回波信号,在此基础上,利用传统的频率变标SAR成像算法进行成像。
仿真结果证明了该方法的有效性。
关键词:海面场景目标; SAR数据;压缩感知;平滑L0算法;频率变标算法中图分类号: TN958⁃34 文献标识码: A 文章编号: 1004⁃373X(2013)13⁃0001⁃04 SAR data compressing and reconstructing method forsea scene target based on compressed sensingLI Lei1, ZHANG Qun2(1. Xi’an Military Represent ative Bureau, Navy Material Department,Xi’an 710089,China;2. Institute of Telecommunication Engineering, AFEU,Xi’an 710077, China)Abstract: The compressed sensing theory (a new data compressing and reconstructing theory) is utilized in this paper to solve the issue of huge SAR data compressing and reconstructing for sea scene target. Firstly, random Gaussian noise matrix is designed as a measurement matrix to complete data compressing. Secondly, smooth L0 (SL0) algorithm is utilized to reconstruct original signal. On the basis of that, traditional frequency scaling (FS) algorithm is carried out to obtain the final SAR image. The effectiveness of the proposed method can be proved by simulation results.Keywords: sea scene target; SAR data; compressed sensing; smooth L0 algorithm;frequency scaling algorithm0 引言合成孔径雷达(Synthetic Aperture Radar,SAR)作为一种高分辨微波成像系统,可实现全天候、全天时、高增益的地面目标成像,因此具有重要的军事意义。
基于压缩感知的随机噪声成像雷达
作者:江海, 林月冠, 张冰尘, 洪文, Jiang Hai, Lin Yue-guan, Zhang Bing-chen,Hong Wen
作者单位:江海,林月冠,Jiang Hai,Lin Yue-guan(中国科学院电子学研究所,北京100190;微波成像技术国家级重点实验室,北京100190;中国科学院研究生院,北京100190), 张冰尘,洪文,Zhang
Bing-chen,Hong Wen(中国科学院电子学研究所,北京100190;微波成像技术国家级重点实验
室,北京100190)
刊名:
电子与信息学报
英文刊名:JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY
年,卷(期):2011,33(3)
1.Cetin M;Karl W C Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization 2001(04)
2.Tropp J A;Laska J N;Duarte M F;Romberg J K and Baraniuk R G Beyond Nyquist:efficient sampling of sparse bandlimited signals 2010(01)
3.Baraniuk R G;Davenport M A;DeVore R;Wakin M B A simple proof of the restricted isometry property for random matrices[外文期刊] 2008(03)
4.Candes E J The restricted isometry property and its implications for compressed sensing 2008(9-10)
5.Babacan S D;Molina R;Katsaggelos A K Bayesian compressive sensing using Laplace priors 2010(01)
6.Candes E J;Tao T Decoding by linear programming[外文期刊] 2005(12)
7.Herman M A;Strohmer T High-resolution radar via compressed sensing[外文期刊] 2009(06)
8.Baraniuk R G;Steeghs P Compressive radar imaging 2007
9.Donoho D L Compressed sensing[外文期刊] 2006(04)
10.Narayanan R M;Xu Y;Hoffmeyer P D;Curtis J O Design,performance,and applications of a coherent ultra wide-band random noise radar 1998(06)
本文链接:/Periodical_dzkxxk201103028.aspx。