基于三种映射结构非线性模型检测方法及其应用
- 格式:pdf
- 大小:1.61 MB
- 文档页数:5
177数据库技术Database Technology电子技术与软件工程Electronic Technology & Software Engineering1 序言专利是衡量一个国家创新能力的重要标准,在各行各业都起着重要的知识产权的保护作用。
分类检索系统是专利系统重要组成部分,一方面通过分类检索系统能够有效的节约研究者的搜集时间,另一方面也能通过精准的检索标签为研究者提供最新的研究方向。
传统的专利子分类模型是采用机器学习方式,在准确率方面一直都有所不足,面对复杂的文本有些捉襟见肘。
而深度学习能够应对复杂文本类型,是当前专利自分类模型新的研究方向,本文基于多标签分类、专利文本和大样本数据处理等问题进行研究,使用深度学习中的卷积神经网络来对专利自分类模型进行研究,希望能为相关模型的构建提供参考。
2 专利文本分类技术专利文本分类技术可以分为文本输入、文本预处理、文本表示、分类器和类别输入。
利用计算机技术对现有的文本特征进行提取,转变为可视化的特征值,进而转换为专利的类别值后输出。
所以专利文本技术本质是在挖掘专利文本的所属特征信息,然后基于训练分类模型去学习各个类别专利的相应特征,最后进行表述性的判断[1]。
2.1 专类文本预处理首先是针对专利数据集中的标题、摘要等信息进行相应的文本提取,对其中所出现的网络符号和乱码等文字进行清理,然后是对文本进行分词,保证文本的词语变成有序文本,方便下一步提取文本的特征词,同时去除文本的停用词,最后将文本的转化成分类器能读取的数值形式。
其中分词是保证文本处理质量的关键步骤,相较于英文的自然分割,汉语的分词步骤显然更加复杂,基于汉语特殊的表现形式,当前研究人员将中文专利分词算法分为四个类型:2.1.1 基于词典的机械方法基于词典的机械方法是针对字符进行匹配,在进行分词之前导入相关词汇的大辞典,按照相应的算法将带分词的文本与词典中的词条进行匹配,进而确定文本的词语,导出分词结果。
结构三维非线性分析软件Opensees的研究及应用I. 综述随着计算机科学技术的飞速发展,三维非线性分析已经成为工程领域中的一个重要研究方向。
在这个背景下,结构三维非线性分析软件(如Opensees)的研究和应用日益受到学术界和工程界的关注。
本文将对结构三维非线性分析软件Opensees的研究及应用进行综述,以期为相关领域的研究者提供参考。
首先本文将介绍结构三维非线性分析的基本概念和方法,结构三维非线性分析是一种研究结构在复杂载荷作用下的动力学行为的方法,它涉及到结构动力学、有限元方法、边界元方法等多种数学工具和技术。
通过这些方法,可以求解结构在不同工况下的应力、应变、位移等响应变量,从而预测结构的性能和寿命。
其次本文将重点介绍结构三维非线性分析软件Opensees的发展历程、功能特点以及在实际工程中的应用。
Opensees是一款专门针对结构三维非线性分析的软件,具有强大的计算能力和灵活的操作界面。
它支持多种有限元模型和材料本构关系,可以实现多种求解算法和后处理功能。
在实际工程中,Opensees已经成功应用于多个领域的结构设计、优化和可靠性评估等问题,取得了显著的研究成果。
本文将对结构三维非线性分析软件Opensees的未来发展趋势进行展望。
随着计算机硬件性能的不断提高和计算方法的不断创新,结构三维非线性分析将在更广泛的领域得到应用,如航空航天、能源化工、生物医学等。
同时为了满足不同应用场景的需求,Opensees将继续优化其功能和性能,提高计算效率和精度,拓展与其他软件和工具的集成能力。
研究背景和意义随着计算机技术的飞速发展,三维非线性分析在工程领域中的应用日益广泛。
结构三维非线性分析软件作为一种重要的工具,为工程师提供了强大的计算能力,有助于更准确地评估结构的性能和稳定性。
然而目前市场上的三维非线性分析软件往往功能有限,难以满足复杂结构分析的需求。
因此研究和开发一种高效、功能完善的结构三维非线性分析软件具有重要的理论和实际意义。
基于RBF神经网络的非线性系统对象辨识
基于径向基函数(RBF)神经网络的非线性系统对象辨识是一种用于建立模型和预测非线性系统行为的方法。
它通过输入-输出数据的关系来训练神经网络模型,以便能够预测输入的未知输出。
RBF神经网络是一种前馈神经网络,它由至少三层组成:输入层,隐藏层和输出层。
隐藏层的神经元使用径向基函数作为其激活函数。
常见的径向基函数包括高斯函数和多项式函数。
在非线性系统辨识中,我们通过将输入-输出数据对应关系映射到RBF神经网络的训练数据集中来训练模型。
训练过程包括以下几个步骤:
1. 数据准备:收集一定量的输入-输出数据对,将其划分为训练集和测试集。
2. 网络初始化:初始化RBF神经网络的参数,包括权重、偏置和径向基函数的中心和宽度。
3. 特征提取:从输入数据中提取特征,并用特征向量表示。
4. 网络训练:将特征向量和对应的输出数据输入到网络中,利用误差反向传播算法来调整网络参数,使得网络能够更好地拟合输入-输出数据对应关系。
5. 模型评估:使用训练好的网络模型对测试集进行预测,并计算预测结果与真实结果之间的误差,评估模型的准确性。
RBF神经网络的优点是可以较好地逼近非线性系统的输入-输出关系,并且具有较强的泛化能力。
它也有一些限制,例如对于大规模数据集的处理效果不佳,并且需要通过交叉验证等方法来选择合适的网络结构和参数。
非线性模型在进化计算中的应用进化计算是一种模拟生物进化过程的计算机处理方法,广泛应用于优化问题和机器学习中,其中非线性模型是进化计算的重要组成部分。
非线性模型是指一类不满足线性叠加性质的数学模型,通常需要用计算机算法来求解。
在进化计算中,非线性模型的应用能够提高算法的效率和精度,从而实现更好的优化和学习。
非线性模型是进化计算中常见的优化目标函数,如支持向量机(SVM)、神经网络(NN)等。
SVM是一种基于最大间隔分类原理的机器学习算法,其模型为非线性函数。
NN是一种基于神经元模型的计算机算法,其输入和输出之间的映射函数也是非线性函数。
在处理大量数据时,这些非线性模型可以识别数据之间的复杂关系,进而提高处理的准确度和效率。
除了优化目标函数,非线性模型在演化计算中还有其他应用。
例如,在多目标优化(MO)问题中,可能存在多个目标函数需要优化。
由于不同目标函数之间通常是相互影响的,因此需要使用非线性模型来解决这种问题。
非线性模型可以将多个目标函数进行合并和优化,得出一个全局最优的解。
另外,非线性模型在进化计算的种群初始化和调整中也有应用。
在种群初始化中,随机数发生器通常无法生成最优的种群。
因此,需要使用基于非线性模型的初始化方法来生成种群,以尽可能提高种群质量和效率。
在种群调整中,需要使用非线性模型来确定种群中每个个体的适应度,以保证种群中每个个体都能够适应环境的变化。
总之,非线性模型的应用在进化计算中发挥了重要作用。
非线性模型不仅能够实现更好的优化和学习,还能够提高进化计算的效率和精度。
在未来,随着计算机算法和技术的不断提升,非线性模型在进化计算中的应用将会更加广泛和深入。
非线性系统的建模与控制方法研究概述非线性系统在现实世界中广泛存在,例如机械系统、电路系统、化学反应系统等,其动态行为往往更加复杂和困难于线性系统。
因此,研究非线性系统的建模和控制方法显得尤为重要。
本文将讨论非线性系统的建模方法和常见的控制策略,包括模糊控制、神经网络控制和自适应控制等。
一、非线性系统的建模方法1.1 相似方法相似方法是一种经验性的建模方法,通过观察和分析系统的特征和行为,将其与已知的线性或非线性系统进行类比,并利用类比得出的模型来描述和预测系统的行为。
相似方法适用于从现有的非线性系统中推导出近似模型的情况。
1.2 描述函数法描述函数法是一种常用的非线性系统建模方法,它通过将非线性系统的输入和输出之间的函数关系表示为一个描述函数,从而得到系统的数学模型。
描述函数法适用于特定类型的非线性系统,如非线性饱和系统和非线性运动学系统等。
1.3 状态空间法状态空间法是一种基于系统状态的建模方法,它将系统的动态行为表示为一组状态方程。
通过对系统的状态变量和状态方程进行数学描述,可以得到非线性系统的状态空间模型。
状态空间法适用于具有多个输入和多个输出的非线性系统。
二、模糊控制方法2.1 模糊集合和模糊逻辑模糊集合理论是描述模糊现象和不确定性的数学工具,它将某个事物的隶属度表示为一个介于0和1之间的数值,而不是传统的二值逻辑。
模糊逻辑是一种基于模糊集合的推理方法,它通过定义模糊规则和模糊推理机制来实现对非线性系统的控制。
2.2 模糊控制器的设计流程模糊控制器的设计流程通常包括以下几个步骤:确定输入和输出的模糊化程度、建立模糊规则库、设计模糊推理机制、进行模糊推理和去模糊化处理。
通过这些步骤,可以将非线性系统的输入和输出之间的关系表示为一组简单的模糊规则,并将其用于控制器的设计和实现。
三、神经网络控制方法3.1 神经网络的基本原理神经网络是一种模拟生物神经系统的信息处理方法,它由一组相互连接的神经元组成,这些神经元通过调整其连接权值来实现对输入和输出之间的映射关系进行学习和训练。