现代控制理论7.2 变分法
- 格式:pdf
- 大小:831.79 KB
- 文档页数:65
现代控制理论(浓缩版)绪论1.经典控制理论与现代控制理论的比较。
经典控制理论也称为古典控制理论,多半是用来解决单输入-单输出的问题,所涉及的系统大多是线性定常系统,非线性系统中的相平面法也只含两个变量。
经典控制理论是以传递函数为基础、在频率域对单输入单输出控制系统进行分析和设计的理论。
它明显具有依靠手工进行分析和综合的特点,这个特点是与20世纪40~50年代生产发展的状况,以及电子计算机的发展水平尚处于初级阶段密切相关的。
在对精度要求不高的场合是完全可用的。
最大成果之一就是PID 控制规律的产生,PID 控制原理简单,易于实现,具有一定的自适应性与鲁棒性,对于无时间延时的单回路控制系统很有效,在工业过程控制中仍被广泛采用。
现代控制理论主要用来解决多输入多输出系统的问题,系统可以是线性或非线性的、定常或时变的。
确认了控制系统的状态方程描述法的实用性,是与状态方程有关的控制理论。
现代控制理论基于时域内的状态空间分析法,着重实现系统最优控制的研究。
从数学角度而言,是把系统描述为四个具有适当阶次的矩阵,从而将控制系统的一些问题转化为数学问题,尤其是线性代数问题。
而且,现代控制理论是以庞得亚金的极大值原理、别尔曼的动态规划和卡尔曼的滤波理论为其发展里程碑,揭示了一些极为深刻的理论结果。
面对现代控制理论的快速发展及成就,人们对这种理论应用于工业过程寄于乐期望。
但现代控制在工业实践中遇到的理论、经济和技术上的一些困难。
所以说,现代控制理论还存在许多问题,并不是“完整无缺”,这是事物存在矛盾的客观反应,并将推动现代控制理论向更深、更广方向发展。
如大系统理论和智能控制理论的出现,使控制理论发展到一个新阶段。
2.控制一个动态系统的几个基本步骤有四个基本步骤:建模,基于物理规律建立数学模型;系统辨识,基于输入输出实测数据建立数学模型;信号处理,用滤波、预报、状态估计等方法处理输出;综合控制输入,用各种控制规律综合输入。
§1 变分法简介作为数学的一个分支,变分法的诞生,是现实世界许多现象不断探索的结果,人们可以追寻到这样一个轨迹:约翰·伯努利(Johann Bernoulli ,1667-1748)1696年向全欧洲数学家挑战,提出一个难题:“设在垂直平面内有任意两点,一个质点受地心引力的作用,自较高点下滑至较低点,不计摩擦,问沿着什么曲线下滑,时间最短?”这就是著名的“最速降线”问题(The Brachistochrone Problem )。
它的难处在于和普通的极大极小值求法不同,它是要求出一个未知函数(曲线),来满足所给的条件。
这问题的新颖和别出心裁引起了很大兴趣,罗比塔(Guillaume Francois Antonie de l'Hospital 1661-1704)、雅可比·伯努利(Jacob Bernoulli 1654-1705)、莱布尼茨(Gottfried Wilhelm Leibniz,1646-1716)和牛顿(Isaac Newton1642—1727)都得到了解答。
约翰的解法比较漂亮,而雅可布的解法虽然麻烦与费劲,却更为一般化。
后来欧拉(Euler Lonhard ,1707~1783)和拉格朗日(Lagrange, Joseph Louis ,1736-1813)发明了这一类问题的普遍解法,从而确立了数学的一个新分支——变分学。
有趣的是,在1690年约翰·伯努利的哥哥雅可比·伯努利曾提出著名的悬链线问题 (The Hanging Chain Problem)向数学界征求答案,即,固定项链的两端,在重力场中让它自然垂下,问项链的曲线方程是什么。
在大自然中,除了悬垂的项链外,我們还可以观察到吊桥上方的悬垂钢索,挂着水珠的蜘蛛网,以及两根电线杆之间所架设的电线,这些都是悬链线(catenary )。
伽利略(Galileo, 1564~1643)比贝努利更早注意到悬链线,他猜测悬链线是抛物线,从外表看的确象,但实际上不是。
应用变分法求解最优控制问题()t x x =()[]t J J x =泛函的变分dt xdt 定理10-1返回例2:求泛函的变分tfδJ =∂ J [x + εδx] |ε =0 ∂ε& J = ∫ L[x (t ), x (t ), t ]dtt0解:δJ = ∂ ∂ε=∫tf t0& & ∫ L[x + εδx, x(t ) + εδx, t ]dt |εtf t0=0前页∂ & & L[x + εδx, x(t ) + εδx, t ]dt |ε =0 ∂ε返回t f ⎡ ∂L ∂L ⎤ & = ∫ ⎢ δx + δx ⎥ dt t0 & ∂x ⎦ ⎣ ∂x泛函的极值设 J [x(t)]:Rn→R 是线性赋范空间 Rn 上的连 续泛函,对于与x0(t) 接近的宗量x(t) ,泛函J [x(t)] 的增量:ΔJ = J [x(t )] − J [x 0 (t )] ≥ 0或者ΔJ = J [x(t )] − J [x 0 (t )] ≤ 0则称泛函 J [x(t)]在x0(t)处达到极小值(或极大值)11泛函极值的必要条件定理10-2 定理10-2设 J [x(t)]:Rn→R 是线性赋范空间 Rn 上的 连续可微泛函,且在x0(t)处达到极值,则泛函J [x(t)]在x0(t)处的变分为零:返回δJ [x 0 , δx] = 0返回变分预备定理设g(t) 是[t0, tf]上连续的n 维向量函数,h(t)是 任意的n 维连续向量函数,且 h(t0) = h(tf) = 0。
若满足:∫tft0g T (t )h(t )dt = 0∀t ∈ t0 , t f则必有: g (t ) ≡ 0[]12二、欧拉方程、横截条件 二、欧拉方程、横截条件返回1,无等式约束泛函极值的必要条件2,有等式约束泛函极值的必要条件返回最速降线问题确立一条连结定点A和B的 曲线,使质点m 在重力作用下 从A 滑动到B 所需的时间最短 (忽略摩擦和阻力)。
现代控制理论智慧树知到课后章节答案2023年下临沂大学临沂大学绪论单元测试1.现代控制理论的主要内容()A:最优控制B:非线性系统理论C:线性系统D:系统辨识答案:最优控制;非线性系统理论;线性系统;系统辨识2.现代控制理论运用哪些数学工具()A:微分方程B:线性代数C:几何学D:数理统计答案:微分方程;线性代数3.控制论是谁发表的()A:奈奎斯特B:劳伦斯C:维纳D:钱学森答案:维纳4.大系统和与智能控制理论和方法有哪些()A:鲁棒控制B:最优估计C:最优控制D:系统辨识答案:鲁棒控制;最优估计;最优控制;系统辨识5.下面哪个不是大系统的特点()A:规模庞大B:信息复杂且多C:运用人力多D:结构复杂答案:运用人力多6.哪个不是20世纪三大科技()A:进化论B:智能控制理论C:空间技术D:原子能技术答案:进化论7.经典控制理论形成的目的是采用各种自动调节装置来解决生产和军事中的简单控制问题。
()A:错 B:对答案:对8.自适应控制所要解决的问题也是寻求最优控制律,自适应控制所依据的数学模型由于先验知识缺少,需要在系统运行过程中去提取有关模型的信息,使模型逐渐完善。
()A:错 B:对答案:对9.非线性系统状态的运动规律和改变这些规律的可能性与实施方法,建立和揭示系统结构、参数、行为和性能之间的关系。
()A:错 B:对答案:对10.现代控制理论是建立在状态空间法基础上的一种控制理论。
()A:对 B:错答案:对第一章测试1.下面关于建模和模型说法正确的是()A:无论是何种系统,其模型均可用来提示规律或者因果关系。
B:为设计控制器为目的建立只需要简练就可以了。
C:工程系统模型建模有两种途径,一是机理建模,而是系统辨识。
D:建模实际上是通过数据,图表,数学表达式,程序,逻辑关系或者各种方式的组合表示状态变量,输入变量,输出变量,参数之间的关系。
答案:无论是何种系统,其模型均可用来提示规律或者因果关系。
;工程系统模型建模有两种途径,一是机理建模,而是系统辨识。
(t x x= ([]tJJ x=ty泛函的变分e ecaccatc([]([]00≥−=Δt J t J J x x ([]([]0 0≤−=Δt J t J J x xcay HOT ⎤+⎥⎥⎦0fTt t L dt δ∂⎛⎞=⎜⎟∂⎝⎠∫x x ∫⎟⎠⎞⎜⎝⎛∂∂−f t t T dt L dt d 0x xδ&(例3:设有泛函J [x] = ∫0 极值的极值轨线 x*(t 已知边界条件 x(0=0,x(π/2=2。
求使J [x]达到 & & 解:L(x, x = x (t − x (t 2 2 欧拉方程c ∂L d ∂L − =0 & ∂x dt ∂x e a 。
π 2 & [x (t − x (t ]dt 2 2 返回x * (t = 2 sin t J* = ∫ =∫ π 2 2 0 & [x (t − x (t ]dt 2 2 ∂L =−2 x ∂x π 2 0 x + && = 0 x d ∂L ∂L = && 2x =x ⇒ 2& & & dt ∂x ∂x 特征方程: r 2 + 1 = 0 x* (t = C1 cos t + C2 sin t 提醒:r1, 2 = α ± iβ x(t = eαt (C1 cos βt +C2 sin βt 横截条件 x(0=0,x(π/2=2 x(0=0,x(π/2=2 x * (t = 2 sin t t ds y c J* = ? dx = 4∫ [cos t − sin t ]dt = 4 ∫ [2 cos t − 1]dt π 2 2 2 0 c π 2 0 [(2 cos t − (2 sin t ]dt 2 2 e a π 2 0 ∫ π 2 0 cos 2 tdt 1 + cos 2t dt 2 前页=∫ π 2 0 π 2 1 π2 = ⎛ ∫ dt + ∫ cos 2tdt ⎞⎜⎟ 0 ⎠ 2⎝ 0 换元积分= = = 8∫ π 2 0 cos tdt − 4 ∫ 2 dt = 2π − 4 =0 π 2 1 π2 1 π dt + ∫ cos 2td ( 2t 2 ∫0 4 0 1 π2 1 = t |0 + sin 2t |π 2 0 2 4 = π 4 +0 t t0 y c tf 1 π cos udu 2 ∫0 例4:求平面上两固定点连线最短的曲线。
《现代控制理论》课程教学大纲学分:3 理论学时:48适合专业:机械制造及自动化课程性质:学位课大纲执笔人:大纲审定人:课程编号:M041001一、说明1.课程的性质、地位和任务《现代控制理论》是机械制造及自动化专业研究生的学位课。
通过本课程的教学,应当使学生了解现代控制理论的体系结构,掌握线性控制系统的状态空间描述、时域分析与离散化等方法,掌握利用状态空间模型分析系统和校正系统及实现最优控制的方法。
2.课程教学基本要求先修课程:《高等数学》、《矩阵理论》、《普通物理》、《电路原理》、《电子技术》、《电机原理及拖动基础》、《自动控制原理》等。
本课程教学应力求使学生掌握现代控制理论的基本概念、系统分析与设计方法,重在提高学生提出问题、分析问题、解决问题的能力和创新意识。
讲授时应及时补充本学科的最新发展成果,使学生了解本学科的重要进展及发展动向。
本课程的教学包括课堂讲授、课外作业和仿真实验等,重点培养学生应用现代控制理论分析和设计控制系统的实际能力。
3.课程教学改革为解决授课学时少授课内容多的矛盾,在有限的教学时间里较好地完成授课任务,授课时应借助多媒体尽量做到突出重点、精讲多练,必要时组织学生进行课堂讨论,调动学生的学习主动性;适当设置一些MATLAB实践课时,提高学生的学习兴趣和拓宽知识面。
二、教学内容绪论(2学时)(1)控制理论的发展(2) 现代控制理论的基本内容学习要求:明确本课程的内容、性质和任务以及学习本课程的意义,了解控制理论的发展概况及现代控制理论的主要特点、内容和研究方法。
第一章控制系统的状态空间数学模型(9学时)(1)状态变量、状态空间表达式(2)系统的一般时域描述化为状态空间描述(3)系统的频域描述化为状态空间描述(4)根据状态变量图列写线性系统的状态空间描述(5)根据系统方框图导出状态空间描述(6)将状态方程化为规范形式学习要求:正确理解线性系统的状态空间数学描述的基本概念,熟练掌握状态空间的表达式,线性变换,线性定常系统状态方程的建立方法。