《概率论与数理统计电子教案第一章
- 格式:ppt
- 大小:829.00 KB
- 文档页数:6
《概率论与数理统计》课程教案第一章 随机事件及其概率一.本章的教学目标及基本要求(1) 理解随机试验、样本空间、随机事件的概念;(2) 掌握随机事件之间的关系与运算,;(3) 掌握概率的基本性质以及简单的古典概率计算; 学会几何概率的计算;(4) 理解事件频率的概念,了解随机现象的统计规律性以及概率的统计定义。
了解概率的公理化定义。
(5) 理解条件概率、全概率公式、Bayes 公式及其意义。
理解事件的独立性。
二.本章的教学内容及学时分配第一节 随机事件及事件之间的关系第二节 频率与概率 2学时第三节 等可能概型(古典概型) 2 学时第四节 条件概率第五节 事件的独立性 2 学时三.本章教学内容的重点和难点1) 随机事件及随机事件之间的关系;2) 古典概型及概率计算;3)概率的性质;4)条件概率,全概率公式和Bayes 公式5)独立性、n 重伯努利试验和伯努利定理四.教学过程中应注意的问题1) 使学生能正确地描述随机试验的样本空间和各种随机事件;2) 注意让学生理解事件,,,,,A B A B A B A B AB A ⊂⋃⋂-=Φ…的具体含义,理解事件的互斥关系;3) 让学生掌握事件之间的运算法则和德莫根定律;4) 古典概率计算中,为了计算样本点总数和事件的有利场合数,经常要用到排列和组合,复习排列、组合原理;5) 讲清楚抽样的两种方式——有放回和无放回;五.思考题和习题思考题:1. 集合的并运算⋃和差运算-是否存在消去律?2. 怎样理解互斥事件和逆事件?3. 古典概率的计算与几何概率的计算有哪些不同点?哪些相同点?习题:第二章 随机变量及其分布一.本章的教学目标及基本要求(1) 理解随机变量的概念,理解随机变量分布函数的概念及性质, 理解离散型和连续型随机变量的概率分布及其性质,会运用概率分布计算各种随机事件的概率;(2) 熟记两点分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的分布律或密度函数及性质;二.本章的教学内容及学时分配第一节 随机变量第二节 第二节 离散型随机变量及其分布离散随机变量及分布律、分布律的特征第三节 常用的离散型随机变量常见分布(0-1分布、二项分布、泊松分布) 2学时第四节 随机变量的分布函数分布函数的定义和基本性质,公式第五节 连续型随机变量及其分布连续随机变量及密度函数、密度函数的性质 2学时第六节 常用的连续型随机变量常见分布(均匀分布、指数分布、正态分布)及概率计算 2学时三.本章教学内容的重点和难点a) 随机变量的定义、分布函数及性质;b) 离散型、连续型随机变量及其分布律或密度函数,如何用分布律或密度函数求任何事件的概率;c) 六个常见分布(二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布);四.教学过程中应注意的问题a) 注意分布函数(){}F x P X x =<的特殊值及左连续性概念的理解;b) 构成离散随机变量X 的分布律的条件,它与分布函数()F x 之间的关系;c) 构成连续随机变量X 的密度函数的条件,它与分布函数()F x 之间的关系;d) 连续型随机变量的分布函数()F x 关于x 处处连续,且()0P X x ==,其中x 为任意实数,同时说明了()0P A =不能推导A =Φ。
《概率论与数理统计教程》教案第一章随机事件与概率教材:《概率论与数理统计教程》总安排学时:90本章学时:14第一讲:随机事件及其运算教学内容:引言、概率论的基本概念、事件之间的关系及运算、事件之间的运算规律。
教学目的:(1)了解概率论这门学科的研究对象,主要任务和应用领域;(2)深刻理解随机试验、基本事件、样本空间、随机事件的概念;掌握一个随机试验的样本空间、基本事件和有关事件的表示方法。
(3)深刻理解事件的包含关系、和事件、积事件、互斥事件、互逆事件和差事件的意义;掌握事件之间的各种运算,熟练掌握用已知事件的运算表示随机事件;(4)掌握事件之间的运算规律,理解对偶律的意义。
教学的过程和要求:(1)概率论的研究对象及主要任务(10分钟)举例说明概率论的研究对象和任务,与高等数学和其它数学学科的不同之处,简单介绍概率论发展的历史和应用;(i)概率论的研究对象:确定性现象或必然现象:在相同的条件下,每次观察(试验)得到的结果是完全相同的现象。
例:向空中抛掷一物体,此物体上升到一定高度后必然下落;例:在一个标准大气压下把水加热到100℃必然会沸腾等现象。
随机现象或偶然现象:在相同的条件下,每次观察(试验)可能出现不同结果的现象。
例:在相同的条件下抛一枚均匀的硬币,其结果可能是正面(分值面)向上,也可能是反面向上,重复投掷,每次的结果在出现之前都不能确定;例:从同一生产线上生产的灯泡的寿命等现象。
(ii)概率论的研究任务:概率论与数理统计就是研究和揭示随机现象的统计规律性的一门数学学科。
(iii)概率论发展的历史:概率论起源于赌博问题。
大约在17世纪中叶,法国数学家帕斯卡(B•Pascal)、费马(fermat)及荷兰数学家惠更斯(C•Hugeness)用排列组合的方法,研究了赌博中一些较复杂的问题。
随着18、19世纪科学的迅速发展,起源于赌博的概率论逐渐被应用于生物、物理等研究领域,同时也推动了概率理论研究的发展. 概率论作为一门数学分支日趋完善,形成了严格的数学体系。
概率论与数理统计教案【篇一:概率论与数理统计教案】《概率论与数理统计》课程教案第一章随机事件及其概率一.本章的教学目标及基本要求(1) 理解随机试验、样本空间、随机事件的概念; (2) 掌握随机事件之间的关系与运算,;(3) 掌握概率的基本性质以及简单的古典概率计算; 学会几何概率的计算; (4) 理解事件频率的概念,了解随机现象的统计规律性以及概率的统计定义。
了解概率的公理化定义。
(5) 理解条件概率、全概率公式、bayes 公式及其意义。
理解事件的独立性。
二.本章的教学内容及学时分配第一节随机事件及事件之间的关系第二节频率与概率 2学时第三节等可能概型(古典概型) 2 学时第四节条件概率第五节事件的独立性 2 学时三.本章教学内容的重点和难点1)随机事件及随机事件之间的关系; 2)古典概型及概率计算;3)概率的性质;4)条件概率,全概率公式和bayes公式 5)独立性、n 重伯努利试验和伯努利定理四.教学过程中应注意的问题1)使学生能正确地描述随机试验的样本空间和各种随机事件;2)注意让学生理解事件a?b,a?b,a?b,a?b,ab??,a…的具体含义,理解事件的互斥关系;3)让学生掌握事件之间的运算法则和德莫根定律;4)古典概率计算中,为了计算样本点总数和事件的有利场合数,经常要用到排列和组合,复习排列、组合原理;5)讲清楚抽样的两种方式——有放回和无放回;五.思考题和习题思考题:1. 集合的并运算?和差运算-是否存在消去律?2. 怎样理解互斥事件和逆事件?3. 古典概率的计算与几何概率的计算有哪些不同点?哪些相同点?习题:第二章随机变量及其分布一.本章的教学目标及基本要求(1) 理解随机变量的概念,理解随机变量分布函数的概念及性质, 理解离散型和连续型随机变量的概率分布及其性质,会运用概率分布计算各种随机事件的概率; (2) 熟记两点分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的分布律或密度函数及性质;二.本章的教学内容及学时分配第一节随机变量第二节第二节离散型随机变量及其分布离散随机变量及分布律、分布律的特征第三节常用的离散型随机变量常见分布(0-1分布、二项分布、泊松分布) 2学时第四节随机变量的分布函数分布函数的定义和基本性质,公式第五节连续型随机变量及其分布连续随机变量及密度函数、密度函数的性质 2学时第六节常用的连续型随机变量常见分布(均匀分布、指数分布、正态分布)及概率计算 2学时三.本章教学内容的重点和难点a) 随机变量的定义、分布函数及性质;b) 离散型、连续型随机变量及其分布律或密度函数,如何用分布律或密度函数求任何事件的概率;c) 六个常见分布(二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布);四.教学过程中应注意的问题a) 注意分布函数f(x)?p{x?x}的特殊值及左连续性概念的理解; b)构成离散随机变量x的分布律的条件,它与分布函数f(x)之间的关系;c) 构成连续随机变量x的密度函数的条件,它与分布函数f(x)之间的关系; d) 连续型随机变量的分布函数f(x)关于x处处连续,且p(x?x)?0,其中x为任意实数,同时说明了p(a)?0不能推导a??。
概率论与数理统计教案第一章第1节[推荐]第一篇:概率论与数理统计教案第一章第1节[推荐]第一章随机事件及其概率概率论与数理统计是从数量化的角度来研究现实世界中一类不确定现象(随机现象)规律性的一门应用数学学科,20世纪以来,广泛应用于工业、国防、国民经济及工程技术等各个领域.本章介绍的随机事件与概率是概率论中最基本、最重要的概念之一.第一节随机事件内容分布图示★ 随机现象★ 样本空间★ 随机现象的统计规律性★ 随机事件★ 事件的集合表示★ 事件的关系与运算★ 事件的运算规律★ 例1 ★ 例4 ★ 内容小结★ 习题1-1★ 例2 ★ 例5 ★ 课堂练习★ 例3 内容要点:一.随机现象从亚里士多德时代开始,哲学家们就已经认识到随机性在生活中的作用, 但直到20世纪初, 人们才认识到随机现象亦可以通过数量化方法来进行研究.概率论就是以数量化方法来研究随机现象及其规律性的一门数学学科.而我们已学过的微积分等课程则是研究确定性现象的数学学科.二.随机现象的统计规律性由于随机现象的结果事先不能预知, 初看似乎毫无规律.然而人们发现同一随机现象大量重复出现时, 其每种可能的结果出现的频率具有稳定性, 从而表明随机现象也有其固有的规律性.人们把随机现象在大量重复出现时所表现出的量的规律性称为随机现象的统计规律性.概率论与数理统计是研究随机现象统计规律性的一门学科.为了对随机现象的统计规律性进行研究,就需要对随机现象进行重复观察, 我们把对随机现象的观察称为随机试验, 并简称为试验,记为E.例如, 观察某射手对固定目标进行射击;抛一枚硬币三次,观察出现正面的次数;记录某市120急救电话一昼夜接到的呼叫次数等均为随机试验.随机试验具有下列特点: 1.可重复性: 试验可以在相同的条件下重复进行;2.可观察性: 试验结果可观察,所有可能的结果是明确的;3.不确定性: 每次试验出现的结果事先不能准确预知.三.样本空间尽管一个随机试验将要出现的结果是不确定的, 但其所有可能结果是明确的, 我们把随机试验的每一种可能的结果称为一个样本点, 记为e(或ω);它们的全体称为样本空间, 记为S(或Ω).基本事件的称谓是相对观察目的而言它们是不可再分解的、最基本的事件,其它事件均可由它们复合而成,一般地,我们称由基本事件复合而成的事件为复合事件.四.事件的集合表示按定义, 样本空间S是随机试验的所有可能结果(样本点)的全体, 故样本空间就是所有样本点构成的集合, 每一个样本点是该集合的元素.一个事件是由具有该事件所要求的特征的那些可能结果所构成的, 所以一个事件对应于S中具有相应特征的样本点(元素)构成的集合, 它是S的一个子集.于是, 任何一个事件都可以用S的某一子集来表示,常用字母A,B,Λ等表示.五.事件的关系与运算因为事件是样本空间的一个集合, 故事件之间的关系与运算可按集合之间的关系和运算来处理.六.事件的运算规律事件间的关系及运算与集合的关系及运算是一致的,为了方便,给出下列对照表:表1.1 记号Ω∅概率论样本空间,必然事件不可能事件基本事件事件A的对立事件事件A发生导致B发生事件A与事件B相等事件A与事件B至少有一个发生事件A与事件B同时发生事件A发生而事件B不发生事件A和事件B互不相容集合论全集空集元素子集A的余集A是B的子集A与B的相等A与B的和集A与B的交集A与B的差集A 与B没有相同的元素ωAAA⊂BA=BA Y BABA-BAB=∅例题选讲:例1在管理系学生中任选一名学生, 令事件A表示选出的是男生, 事件B表示选出的是三年级学生, 事件C表示该生是运动员.(1)叙述事件ABC的意义;(2)在什么条件下ABC=C成立?(3)什么条件下C⊂B?(4)什么条件下A=B成立? 解(1)ABC是指当选的学生是三年级男生, 但不是运动员.(2)只有在C⊂AB, 即C⊂A,C⊂B同时成立的条件下才有ABC=C 成立, 即只有在全部运动员都是男生, 且全部运动员都有是三年级学生的条件下才有ABC=C.(3)C⊂B表示全部运动员都是三年级学生, 也就是说, 若当选的学生是运动员, 那么一定是三年级学生, 即在除三年级学生之外其它年级没有运动员当选的条件下才有C⊂B.(4)A⊂B表示当选的女生一定是三年级学生, 且B⊂A表示当选的三年级学生一定是女生.换句话说, 若选女生, 只能在三年级学生中选举, 同时若选三年级学生只有女生中选举.在这样的条件下, A=B成立.例2 考察某一位同学在一次数学考试中的成绩, 分别用A, B, C, D, P, F表示下列各事件(括号中表示成绩所处的范围):A--优秀([90,100]), B--良好([80,90)),C--中等([70,80)),D--及格([60,70)),P--通过([60,100]),F--未通过([0,60)),则A,B,C,D,F是两两不相容事件P与F是互为对立事件,即有P=F;A,B,C,D均为P的子事件,且有P=A Y B Y C Y D.例3(讲义例1)甲,乙,丙三人各射一次靶,记A-“甲中靶” B-“乙中靶” C-“丙中靶” 则可用上述三个事件的运算来分别表示下列各事件:(1)“甲未中靶”:A;(2)“甲中靶而乙未中靶”:AB;(3)“三人中只有丙未中靶”:ABC;(4)“三人中恰好有一人中靶”:ABC Y ABC Y ABC;(5)“ 三人中至少有一人中靶”:A YB Y C;(6)“三人中至少有一人未中靶”: A Y B Y C;或ABC;(7)“三人中恰有兩人中靶”:ABC Y ABC Y ABC;(8)“三人中至少兩人中靶”:AB Y AC Y BC;(9)“三人均未中靶”:ABC;(10)“三人中至多一人中靶”:ABC Y ABC Y ABC Y ABC;(11)“三人中至多兩人中靶”:ABC或A Y B Y C.注:用其他事件的运算来表示一个事件, 方法往往不惟一,如上例中的(6)和(11)实际上是同一事件,读者应学会用不同方法表达同一事件, 特别在解决具体问题时,往往要根据需要选择一种恰当的表示方法.例4指出下列各等式命题是否成立, 并说明理由:(1)A Y B=(AB)Y B;(2)AB=A Y B;(3)A Y B I C=ABC;(4)(AB)(AB)=∅.解(1)成立.(AB)Y B=(A Y B)I(B Y B)(分配律)=(A Y B)I S=A Y B.(2)不成立.若A发生, 则必有A Y B发生, A发生, 必有A不发生, 从而AB不发生, 故AB=A Y B不成立.(3)不成立.若A Y B I C发生, 即C发生且A Y B发生, 即必然有C发生.由于C发生, 故C必然不发生, 从而ABC不发生, 故(3)不成立.(4)成立.(AB)(AB)=(AB)(BA)=A(BB)A=(A∅)A=∅A=∅.例5 化簡下列事件:(1)(A Y B)(A Y B);(2)AB Y AB Y AB.解(1)(A Y B)(A Y B)=[A(A Y B)]Y[B(A Y B)](分配律)=(AA Y AB)Y(BA Y BB)=(A Y AB)]Y(BA Y∅)(因AB⊂A)=A Y BA=A.(2)AB Y AB Y AB=AB Y AB Y AB Y AB=AB Y AB Y AB Y AB(交换律)=(AB Y AB)Y(AB Y AB)(结合律)=(A Y A)B Y A(B Y B)=B Y A=AB.(对偶律)课堂练习1.设当事件A与B同时发生时C也发生, 则().(A)A Y B是C的子事件;(B)ABC;或A Y B Y C;(C)AB是C的子事件;(D)C是AB的子事件.2.设事件A={甲种产品畅销, 乙种产品滞销}, 则A的对立事件为().(A)甲种产品滞销,乙种产品畅销;(B)甲种产品滞销;(C)甲、乙两种产品均畅销;(D)甲种产品滞销或者乙种产品畅销.第二篇:概率论与数理统计概率论与数理统计,运筹学,计算数学,统计学,还有新增的应用数学,每个学校情况不太一样,每个导师研究的方向也不太一样。
概率论与数理统计教案(48课时)第一章随机事件及其概率本章的教学目标及基本要求(1)理解随机试验、样本空间、随机事件的概念;(2)掌握随机事件之间的关系与运算,;(3)掌握概率的基本性质以及简单的古典概率计算;学会几何概率的计算;(4)理解事件频率的概念,了解随机现象的统计规律性以及概率的统计定义。
了解概率的公理化定义。
(5)理解条件概率、全概率公式、Bayes公式及其意义。
理解事件的独立性。
本章的教学内容及学时分配第一节随机事件及事件之间的关系第二节频率与概率2学时第三节等可能概型(古典概型)2学时第四节条件概率第五节 事件的独立性2学时三.本章教学内容的重点和难点1)随机事件及随机事件之间的关系;2)古典概型及概率计算;3)概率的性质;5)独立性、n 重伯努利试验和伯努利定理四.教学过程中应注意的问题1)使学生能正确地描述随机试验的样本空间和各种随机事件;2)注意让学生理解事件4uB,AuB 、AcB,4-B,4B = ®,A... 的具体含义,理解事件的互斥关系;根定律;4)条件概率, 全概率公式和Bayes 公式 3) 让学生掌握事件之间的运算法则和德莫4)古典概率计算中,为了计算样本点总数和1)事件的有利场合数,经常要用到排列和组合,复习排列、组合原理;2)讲清楚抽样的两种方式有放回和无放回;思考题和习题思考题:1.集合的并运算和差运算-是否存在消去律?2.怎样理解互斥事件和逆事件?3.古典概率的计算与几何概率的计算有哪些不同点?哪些相同点?习题:第二章随机变量及其分布本章的教学目标及基本要求(1)理解随机变量的概念,理解随机变量分布函数的概念及性质,理解离散型和连续型随机变量的概率分布及其性质,会运用概率分布计算各种随机事件的概率;(2)熟记两点分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的分布律或密度函数及性质;二.本章的教学内容及学时分配第一节随机变量第二节第二节离散型随机变量及其分布离散随机变量及分布律、分布律的特征第三节常用的离散型随机变量常见分布(0-1分布、二项分布、泊松分布)2学时第四节随机变量的分布函数分布函数的定义和基本性质,公式第五节连续型随机变量及其分布连续随机变量及密度函数、密度函数的性质2学时第六节常用的连续型随机变量常见分布(均匀分布、指数分布、正态分布)及概率计算2学时三.本章教学内容的重点和难点a)随机变量的定义、分布函数及性质;b)离散型、连续型随机变量及其分布律或密度函数,如何用分布律或密度函数求任何事件的概率;C)六个常见分布(二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布);四.教学过程中应注意的问题a)注意分布函数F(x) P{X x}的特殊值及左连续性概念的理解;b)构成离散随机变量X的分布律的条件,它与分布函数F(x)之间的关系;c)构成连续随机变量X的密度函数的条件,它与分布函数F(x)之间的关系;d)连续型随机变量的分布函数F(x)关于x处处连续,且P(X x) 0,其中x为任意实数,同时说明了P(A) 0不能推导A 。
《概率论与数理统计》教案第一章:概率论的基本概念1.1 随机现象与样本空间1.2 事件及其运算1.3 概率的定义与性质1.4 条件概率与独立性第二章:随机变量及其分布2.1 随机变量的概念2.2 离散型随机变量的概率分布2.3 连续型随机变量的概率密度2.4 随机变量函数的分布第三章:多维随机变量及其分布3.1 二维随机变量的联合分布3.2 边缘分布与条件分布3.3 随机变量的独立性3.4 多维随机变量函数的分布第四章:大数定律与中心极限定理4.1 大数定律4.2 中心极限定理4.3 样本均值的分布4.4 样本方差的估计第五章:数理统计的基本概念5.1 统计量与抽样分布5.2 参数估计与点估计5.3 置信区间与置信水平5.4 假设检验与p值第六章:参数估计6.1 总体参数与样本参数6.2 估计量的性质6.3 最大似然估计6.4 点估计与区间估计第七章:假设检验7.1 假设检验的基本概念7.2 检验的错误与功效7.3 常用检验方法7.4 似然比检验与正态分布检验第八章:回归分析8.1 线性回归模型8.2 回归参数的估计8.3 回归模型的检验与诊断8.4 多元线性回归分析第九章:方差分析9.1 方差分析的基本概念9.2 单因素方差分析9.3 多因素方差分析9.4 协方差分析与重复测量方差分析第十章:时间序列分析10.1 时间序列的基本概念10.2 平稳性检验与时间序列模型10.3 自回归模型与移动平均模型10.4 指数平滑模型与状态空间模型第十一章:非参数统计11.1 非参数统计的基本概念11.2 非参数检验方法11.3 非参数回归分析11.4 非参数时间序列分析第十二章:生存分析12.1 生存分析的基本概念12.2 生存函数与生存曲线12.3 生存分析的统计方法12.4 生存分析的应用实例第十三章:贝叶斯统计13.1 贝叶斯统计的基本原理13.2 贝叶斯参数估计13.3 贝叶斯假设检验13.4 贝叶斯回归分析第十四章:多变量分析14.1 多变量数据分析的基本概念14.2 多元散点图与主成分分析14.3 因子分析与聚类分析14.4 判别分析与典型相关分析第十五章:统计软件与应用15.1 统计软件的基本使用方法15.2 R语言与Python在统计分析中的应用15.3 统计软件的实际操作案例15.4 统计分析在实际领域的应用重点和难点解析本《概率论与数理统计》教案涵盖了概率论的基本概念、随机变量及其分布、多维随机变量、大数定律与中心极限定理、数理统计的基本概念、参数估计、假设检验、回归分析、方差分析、时间序列分析、非参数统计、生存分析、贝叶斯统计、多变量分析以及统计软件与应用等多个方面。
第一章随机事件与及其概率§1.1随机事件及其运算教学目的要求:掌握几个基本概念,为后面的学习打下基础,并对本书内容体系有一个大致的了解.教材分析:1.概括分析:概率论是数理统计的理论基础,本节是概率论中的最基本的与最基础的内容之一.学习本节,要求学生掌握随机事件、样本空间、事件域、布尔代数等基本概念,了解事件之间的关系和事件之间的一些运算.2.教学重点:随机事件、样本空间、事件域、布尔代数等基本概念,事件之间的关系和事件之间的一些运算.3.教学难点:事件之间的关系和事件之间的一些运算的证明.教学过程:1.1.1随机现象必然现象(确定性现象):只有一个结果的现象。
例如“在一个标准大气压下,纯水加热到100C 时必然沸腾。
”“同性电荷相吸。
”随机现象(偶然现象):是在一定条件下,并不总是出现相同的结果的现象。
特点:1、结果不只一个;2、哪一种结果出现,人们事先又不知道。
例1.1.1随机现象的例子(1)抛一枚质地均匀的硬币,可能是正面朝上,也可能是反面朝上;(2)掷一颗骰子,出现的点数‘(3)一天内进入某超市的顾客数;(4)某种型号电视机的寿命;(5)测量某物理量(长度、直径等)的误差。
概率论与数理统计是一门处理随机现象的学科。
概率论是从数量侧面研究随机现象及其统计规律性的数学学科,它的理论严谨,应用广泛,并且有独特的概念和方法,同时与其它数学分支有着密切的联系它是近代数学的重要组成部分;数理统计是对随机现象统计规律归纳的研究,就是利用概率论的结果,深入研究统计资料,观察这些随机现象并发现其内在的规律性,进而作出一定精确程度的判断,将这些研究结果加以归纳整理,形成一定的数学模型。
虽然概率论与数理统计在方法上如此不同,但做为一门学科,它们却相互渗透,互相联系。
随机试验:对在相同条件下可以重复的随机现象的观察、记录、试验。
1.1.2样本空间在一个试验中,不论可能的结果有多少,总可以从中找出一组基本结果,满足:1)每进行一次试验,必然出现且只能出现其中的一个基本结果;2)任何结果,都是由其中的一些基本结果所组成。