椭圆练习题及答案(人教版)
- 格式:doc
- 大小:1.44 MB
- 文档页数:23
椭圆的定义例题解析例1过椭圆4x2+y2=1的一个焦点F1的直线与椭圆交于A、B两点,则A、B与椭圆的另一个焦点F2构成△ABF2的周长是[ ]略解:∵|AF1|+|AF2|=2,|BF1|+|BF2|=2,∴|AF1|+|BF1|+|AF2|+|BF2|=4,即|AB|+|AF2|+|BF2|=4.∴选B.评注:此题明是求周长,实际上是用椭圆的定义.题中提现了转化的思想.例2M点为椭圆上一点,椭圆两焦点为F1,F2.且2a=10,2c=6,点I为△MF1F2解:如图,I为△MF1F2的内心,∴∠1=∠2,比较①、②,并应用等比定理,得评注:此题三步用到了椭圆的定义,内角平分线定理,等比定理.等比定理是桥梁把内角平分线分线段比与椭圆的第一定义联系起来.例3已知椭圆两焦点为F1,F2,M点为椭圆上一点(不在直线F1F2上),∠F1MF2=θ,|F1F2|=2c,|MF1|+|MF2|=2a.求△MF1F2的面积.解:由余弦定理,得(2c)2=|F1F2|2=|MF1|2+|MF2|2-2|MF1|·|MF2|cos∠F1MF2=(|MF1|+|MF2|)2-2|MF1|·|MF2|(1+cosθ)=(2a)2-2|MF1|·|MF2|(1+cosθ)评注:例4已知方程2(k2-2)x2+k2y2+k2-k-6=0表示椭圆,求实数k的取值范围.解:按题意,得评注:解这种类型的题目,要注意椭圆的两种类型,同时要注意椭圆与圆的区别.例5解:设所求椭圆方程为Ax2+By2=k,①评注:此题不知道椭圆的类型,因此采取这种“模糊”的设法,简化了计算.例6分析:解:设|PF1|=m,|PF2|=n,m+n=20,即m2+n2-mn=144.(1) ∴(m+n)2-3mn=144.评注:在上述方法中运用了椭圆的定义和余弦定理,这是解决椭圆中三角形问题时常求|PF1|·|PF2|的最大值.解:∵a=10,∴|PF1|+|PF2|=20.当且仅当|PF1|=|PF2|时“=”号成立,∴|PF1|·|PF2|的最大值为100.例7证在椭圆外,(1)∵P在椭圆内,(2)∵P评注:1.本题涉及的知识点是椭圆方程与坐标概念.2.这是常用的知识点,了解坐标概念和曲线方程概念即不难证明.例8时,求|AM|+2|MF|的最小值,并求此时点M的坐标.解析:本题按常规思路,设M(x,y),则又M在椭圆上,y可用x表示,这样|AM|+2|MF|可表示为x的一元函数,再求此函数的最小值.虽说此法看上去可行,但实际操作起来十分困难,但我们可以由椭圆的第二定义,转化到点到直线的距离来求,如图.∴|AM|+2|MF|=|AM|+d由于点A在椭圆内,过A作AK⊥l,K为垂足,易证|AK|即为|AM|+d的最小值,其值为8-(-2)=10例9[ ]A.椭圆 B.双曲线C.线段 D.抛物线略解:即点P(x,y)到定点F(1,1)的距离与到定直线l:x+y+2=0的距离的比值∴点P的轨迹是椭圆,故选A.评注:此题很妙:妙在利用椭圆的第二定义,定义不能直接运用,必须进行变形后,才知答案.若利用两边平方解会很麻烦的.例10离为[ ] A.8略解:如图|PF1|+|PF2|=2a=10,∴|PF1|=2.∴|PF2|=10-|PF1|=10-2=8.选A.评注:此题是椭圆第一定义与第二定义的综合运用.例11如图椭圆中心为O,F是焦点,A为顶点,准线l交OA延长线于B,P、Q在椭圆上,且PD⊥l于D,QF⊥OA于F,则椭圆离心率为[ ] A.0 B.2C.2 D.5答案:D.评注:此题灵活利用离心率、深化对椭圆第二定义的理解.例12则有|PF1|=a+ex,|PF2|=a-ex.证明:由椭圆第二定义,得评注:有的书中把上述结论叫做焦半径公式.按照人民教育出版社出版的教材要求这样做是不科学的,容易陷入单纯记忆公式,忽视椭圆第二定义的理解和应用.由于叙述的方便,后面我们还是采用焦半径的提法.但是要注重理解.实际上,上述结论是椭圆第二定义的延伸,抓住椭圆第二定义,及点与直线位置关系极易推导和记住,使用时,前面冠以“根据椭圆第二定义,得”即可应用.|PF1|=a+ex,|PF2|=a-ex,例13分析:只要解方程组即可.此种方法,思路自然,但计算量较大,需要换一个角度,寻求新的解法.解:由椭圆第二定义,得评注:充分理解椭圆第二定义,可记忆有关结论.。
高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明评卷人得分一、选择题1.(汇编陕西文数)9.已知抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=16相切,则p的值为()(A)12(B)1(C)2 (D)4第II卷(非选择题)请点击修改第II卷的文字说明评卷人得分二、填空题2.已知圆C的圆心与抛物线y2=4x的焦点关于直线y=x对称.直线4x-3y-2=0与圆C相交于A 、B 两点,且|AB |=6,则圆C 的方程为________.解析:抛物线y 2=4x ,焦点为F (1,0).∴圆心C (0,1),C 到直线4x -3y -2=0的距离d=55=1,且圆的半径r 满足r 2=12+32=10.∴圆的方程为x 2+(y -1)2=10.3.以抛物线y 2=4x 的焦点为圆心、2为半径的圆,与过点A (-1,3)的直线l 相切,则直线l 的方程是______________________.评卷人得分三、解答题4.如图,在平面直角坐标系xoy 中,已知1(4,0)F -,2(4,0)F ,(0,8)A ,直线(08)y t t =<<与线段1AF 、2AF 分别交于点P 、Q . (1)当3t =时,求以12,F F 为焦点,且过PQ 中点的椭圆的标准方程; (2)过点Q 作直线1QR AF 交12F F 于点R ,记1PRF∆的外接圆为圆C .①求证:圆心C 在定直线7480x y ++=上;②圆C 是否恒过异于点1F 的一个定点?若过,求出该点的坐标;若不过,请说明理由.5.在平面直角坐标系xOy 中,已知圆1C :22(1)16x y -+=,圆2C :22(1)1x y ++=,点S 为圆1C 上的一个动点,现将坐标平面折叠,使得圆心2(10)C -, 恰与点S 重合,折痕与直线1SC 交于点P .(1)求动点P 的轨迹方程;(2)过动点S 作圆2C 的两条切线,切点分别为M N 、,求MN 的最小值; (3)设过圆心2(10)C -, 的直线交圆1C 于点A B 、,以点A B 、分别为切点的两条切第20题P AR OF 1Q xy F 2O A 1A 2B 1B 2xy (第17F(-c,0)A(-1,0)C(1,0)B(0,b)y xo线交于点Q ,求证:点Q 在定直线上.6.在平面直角坐标系xOy 中,如图,已知椭圆E :22221(0)y x a b a b+=>>的左、右顶点分别为1A 、2A ,上、下顶点分别为1B 、2B .设直线11A B 的倾斜角的正弦值为13,圆C 与以线段2OA 为直径的圆关于直线11A B 对称.(1)求椭圆E 的离心率;(2)判断直线11A B 与圆C 的位置关系,并说明理由; (3)若圆C 的面积为π,求圆C 的方程.7.已知椭圆2221(01)y x b b+=<<的左焦点为F ,左右顶点分别为A,C 上顶点为B ,过F,B,C 三点作⊙P ,其中圆心P 的坐标为(,)m n .(1) 若椭圆的离心率32e =,求⊙P 的方程; (2)若⊙P 的圆心在直线0x y +=上,求椭圆的方程.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.C 本题考查抛物线的相关几何性质及直线与圆的位置关系 法一:抛物线y 2=2px (p >0)的准线方程为2p x -=,因为抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,所以2,423==+p p法二:作图可知,抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切与点(-1,0) 所以2,12=-=-p p第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.x2+(y -1)2=103.x =-1或5x +12y -31=0. 评卷人得分三、解答题4. 解:(Ⅰ)设椭圆的方程为22221(0)x y a b a b+=>>,当3t =时,PQ 的中点为(0,3),所以b=3 ------------------3分而2216a b -=,所以225a =,故椭圆的标准方程为221204x y +=---------5分(Ⅱ)①解法一:易得直线12:28;:28AF y x AF y x =+=-+, 所以可得88(,),(,)22t tP t Q t --,再由1QR AF ,得(4,0)R t - ---------8分则线段1F R 的中垂线方程为2t x =-, 线段1PF 的中垂线方程为151628t y x -=-+, 由1516282t y x t x -⎧=-+⎪⎪⎨⎪=-⎪⎩,解得1PRF ∆的外接圆的圆心坐标为7(,2)28t t ----------10分经验证,该圆心在定直线7480x y ++=上 …---------11分解法二: 易得直线12:28;:28AF y x AF y x =+=-+,所以可得88(,),(,)22t tP t Q t --, 再由1QR AF ,得(4,0)R t - ---------8分设1PRF ∆的外接圆C 的方程为220x y Dx Ey F ++++=,则2222(4)(4)0(4)4088()022t t D F y D F t t t D tE F ⎧⎪-+-+=⎪=--+=⎨⎪--⎪++++=⎩,解得744416D t E t F t =⎧⎪⎪=-⎨⎪=-⎪⎩---------10分所以圆心坐标为7(,2)28t t--,经验证,该圆心在定直线7480x y ++=上 ---------11分②由①可得圆C 的方程为227(4)41604x y tx t y t +++-+-=---------13分该方程可整理为227(216)(4)04x y y t x y ++-+-+=, 则由2241607404x y y x y ⎧++-=⎪⎨-+=⎪⎩,解得4133213x y ⎧=⎪⎪⎨⎪=⎪⎩或40x y =-⎧⎨=⎩, 所以圆C 恒过异于点1F 的一个定点,该点坐标为432(,)1313---------16分5.命题立意:本题主要考查直线、圆、椭圆基础知识,考查运算求解、综合应用能力.解:(1)由题意得121124PC PC PC PS C C +=+=>,故P 点的轨迹是以C 1、C 2为焦点,4为长轴长的椭圆,则24 1a c ==,,所以2a =,3b =, 故P 点的轨迹方程是22143y x +=.(5分) (2)法1(几何法) 四边形SMC 2N 的面积=211222SC MN SM MC SM ⋅=⋅⨯=,所以222222212cos 21sin 21SM MN MSC MSC SC SC ==∠=-∠=-,(9分)从而SC 2取得最小值时,MN 取得最小值, 显然当(3 0)S -,时,SC 2取得最大值2,所以m i n 12134MN =-=.(12分)法2(代数法) 设S (x 0,y 0),则以SC 2为直径的圆的标准方程为()()()()22220000112222x y x yx y -+-+-=+,该方程与圆C 2的方程相减得,()00010x x y y x +++=,(8分) 则圆心2C 到直线MN 的距离()220011d x y ==++22000121x y x +++,因为()2200116x y -+=,所以22000152x y x +=+, 从而01164d x =+,[]03 5x ∈-,,故当03x =-时d m a x 12=,因为221MN d =-,所以()2m i n 1212MN =-=3.(12分)(3)设( )Q m n ,,则“切点弦”AB 的方程为()1(1)16m x ny --+=,将点(-1,0)代入上式得7m =-, R n ∈, 故点Q 在定直线7x =-上.(16分)6.(1)设椭圆E 的焦距为2c (c >0), 因为直线11A B 的倾斜角的正弦值为13,所以2213b a b =+, 于是228a b =,即228()a a c =-,所以椭圆E的离心率22147.84c e a=== …………4分 (2)由144e =可设()40a k k =>,14c k =,则2b k =, 于是11A B 的方程为:2240x y k -+=, 故2OA 的中点()20k ,到11A B 的距离d =2423k kk +=, …………………………6分 又以2OA 为直径的圆的半径2r k =,即有d r =,所以直线11A B 与圆C 相切. …………………………8分 (3)由圆C的面积为π知圆半径为1,从而12k =, …………………………10分设2OA 的中点()10,关于直线11A B :2220x y -+=的对称点为()m n , , 则21,141222022n m m n ⎧⋅=-⎪-⎨+⎪-⋅+=⎩. …………………………12分解得42133m n ==, .所以,圆C 的方程为()()22421133x y -+=-.…………………14分7.。
人教版高中数学精品资料2.2.1 椭圆及其标准方程课时演练·促提升A组1.若F1,F2是两个定点,且|F1F2|=6,动点M满足|MF1|+|MF2|=8,则点M的轨迹是()A.椭圆B.直线C.圆D.线段解析:由椭圆定义知,点M的轨迹是椭圆.答案:A2.“m>n>0”是“方程mx2+ny2=1表示焦点在y轴上的椭圆”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:方程可化为=1,表示焦点在y轴上的椭圆时,应满足>0,即m>n>0.所以是充要条件.答案:C3.设P是椭圆=1上一点,P到两焦点F1,F2的距离之差为2,则△PF1F2是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形解析:由椭圆定义知|PF1|+|PF2|=2a=8.又|PF1|-|PF2|=2,∴|PF1|=5,|PF2|=3.又|F1F2|=2c=2=4,∴|PF1|2=|PF2|2+|F1F2|2,∴△PF1F2为直角三角形.答案:B4.已知椭圆的焦点坐标为(0,-1),(0,1),且过点,则椭圆方程为()A.=1B.=1C.+y2=1D.+x2=1解析:由已知椭圆焦点在y轴上,设方程为=1(a>b>0).则2a==4,故a=2.又c=1,则b2=a2-c2=3,故椭圆方程为=1.答案:B5.已知椭圆的焦点是F1,F2,P是椭圆上的一动点,如果延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹是()A.圆B.椭圆C.直线D.抛物线解析:由题意,得|PF1|+|PF2|=2a(a>0是常数).∵|PQ|=|PF2|,∴|PF1|+|PQ|=2a,即|QF1|=2a,∴动点Q的轨迹是以F1为圆心,2a为半径的圆,故选A.答案:A6.若方程=1表示焦点在x轴上的椭圆,则m的取值范围是.解析:将方程化为=1,依题意,得8>2-m>0,解得-6<m<2.答案:-6<m<27.若椭圆=1的焦距为6,则k的值为.解析:由已知,得2c=6,∴c=3,∴c2=9,∴20-k=9或k-20=9,∴k=11或k=29.答案:11或298.若椭圆的焦点在y轴上,其上任意一点到两焦点的距离和为8,焦距为2,则此椭圆的标准方程为.解析:由已知,得2a=8,2c=2,∴a=4,c=,∴b2=a2-c2=16-15=1,故椭圆的标准方程为+x2=1.答案:+x2=19.已知椭圆=1(a>b>0)的焦点分别是F1(0,-1),F2(0,1),且3a2=4b2.(1)求椭圆的方程;(2)设点P在这个椭圆上,且|PF1|-|PF2|=1,求∠F1PF2的余弦值.解:(1)依题意知c=1,又c2=a2-b2,且3a2=4b2,所以a2-a2=1,即a2=1.所以a2=4.因此b2=3.从而椭圆方程为=1.(2)因为点P在椭圆上,所以|PF1|+|PF2|=2a=2×2=4.又|PF1|-|PF2|=1,所以|PF1|=,|PF2|=.又|F1F2|=2c=2,所以由余弦定理,得cos ∠F1PF2==.即∠F1PF2的余弦值等于.10.已知圆A:x2+(y+6)2=400,圆A内有一定点B(0,6),动圆C过点B且与圆A内切,求动圆圆心C的轨迹方程.解:设动圆C的半径为r,则|CB|=r.因为圆C与圆A内切,所以|CA|=20-r,所以|CA|+|CB|=20>12,所以点C的轨迹是以A,B两点为焦点的椭圆.因为2a=20,2c=|AB|=12,所以a=10,c=6,b2=64.因为点A,B在y轴上,所以点C的轨迹方程为=1.B组1.已知F1,F2是椭圆=1的两个焦点,P是椭圆上一点,且|PF1|∶|PF2|=4∶3,则三角形PF1F2的面积等于()A.24B.26C.22D.24解析:因为a2=49,所以|PF1|+|PF2|=2a=14.又|PF1|∶|PF2|=4∶3,所以|PF1|=8,|PF2|=6.又因为|F1F2|=2c=2=10,所以|PF1|2+|PF2|2=|F1F2|2,所以PF1⊥PF2.故△PF1F2的面积S=|PF1|·|PF2|=×8×6=24.答案:A2.设F1,F2是椭圆C:=1的焦点,在曲线C上满足=0的点P的个数为()A.0B.2C.3D.4解析:∵=0,∴PF1⊥PF2.∴点P为以线段F1F2为直径的圆与椭圆的交点,且此圆的半径为c==2.∵b=2,∴点P为该椭圆y轴的两个端点.答案:B3.F1,F2分别为椭圆=1(a>b>0)的左、右焦点,点P在椭圆上,△POF2是面积为的正三角形,则b2的值是.解析:∵|OF2|=c,∴由已知得,∴c2=4,c=2.设点P的坐标为(x0,y0),由△POF2为正三角形,∴|x0|=1,|y0|=,代入椭圆方程得=1.∵a2=b2+4,∴b2+3(b2+4)=b2(b2+4),即b4=12,∴b2=2.答案:24.已知圆C:(x+1)2+y2=25及点A(1,0),Q为圆上一点,AQ的垂直平分线交CQ于点M,求点M的轨迹方程.解:如图,M是AQ的垂直平分线与CQ的交点,连接MA,则|MQ|=|MA|,∴|MC|+|MA|=|MC|+|MQ|=|CQ|=5,且|AC|=2,∴动点M的轨迹是椭圆,且其焦点为C,A.易知2a=5,2c=2,∴a=,c=1,∴b2=a2-c2=-1=,故动点M的轨迹方程为=1.5.已知椭圆的焦点在x轴上,且焦距为4,P为椭圆上一点,且|F1F2|是|PF1|和|PF2|的等差中项.(1)求椭圆的方程;(2)若△PF1F2的面积为2,求点P坐标.解:(1)由题意知,2c=4,c=2,|PF1|+|PF2|=2|F1F2|=8,即2a=8,∴a=4.∴b2=a2-c2=16-4=12.∵椭圆的焦点在x轴上,∴椭圆的方程为=1.(2)设点P坐标为(x0,y0),依题意知,|F1F2||y0|=2,∴|y0|=,y0=±.代入椭圆方程=1,得x0=±2,∴点P坐标为(2)或(2,-)或(-2)或(-2,-).6.已知P是椭圆+y2=1上的一点,F1,F2是椭圆上的两个焦点.(1)当∠F1PF2=60°时,求△F1PF2的面积;(2)当∠F1PF2为钝角时,求点P横坐标的取值范围.解:(1)由椭圆的定义,得|PF1|+|PF2|=4且F1(-,0),F2(,0).①在△F1PF2中,由余弦定理,得|F1F2|2=|PF1|2+|PF2|2-2|PF1|·|PF2|cos 60°.②由①②得|PF1|·|PF2|=.所以|PF1||PF2|·sin ∠F1PF2=.(2)设点P(x,y),由已知∠F1PF2为钝角,得<0,即(x+,y)·(x-,y)<0.又y2=1-,所以x2<2,解得-<x<.所以点P横坐标的范围是。
高中数学专题复习《圆锥曲线与方程椭圆双曲线抛物线》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编年普通高等学校招生统一考试山东数学(理)试题(含答案))已知抛物线1C :212y x p =(0)p >的焦点与双曲线2C :2213x y -=的右焦点的连线交1C 于第一象限的点M .若1C 在点M 处的切线平行于2C 的一条渐近线,则p =( )A .316B .38C .233D .4332.(汇编年高考浙江理)若双曲线122=-y mx 上的点到左准线的距离是到左焦点距离的31,则=m C (A)21 (B)23 (C)81 (D)89 【考点分析】本题考查双曲线的第二定义,基础题。
3.(汇编年高考重庆文)设11229(,),(4,),(,)5A x yBC x y 是右焦点为F 的椭圆221259x y +=上三个不同的点,则“,,AF BF CF 成等差数列”是 “128x x +=”的( A )(A )充要条件 (B )必要不充分条件 (C )充分不必要条件 (D )既非充分也非必要4.(汇编全国1文8)设抛物线x y 82=的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A .]21,21[-B .[-2,2]C .[-1,1]D .[-4,4]5.(汇编全国2文)抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为( )(A )2 (B )3(C )4 (D )56.(汇编辽宁文数)(7)设抛物线28y x =的焦点为F ,准线为l ,P 为抛物线上一点,PA l ⊥,A 为垂足,如果直线AF 斜率为3-,那么PF =( )A .43 B . 8 C . 83 D . 167.(汇编全国2理)已知ABC ∆的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则ABC ∆的周长是 ( )(A )23 (B )6 (C )43 (D )12解析(数形结合)由椭圆的定义椭圆上一点到两焦点的距离之和等于长轴长2a,可得ABC ∆的周长为4a=43,所以选C8.(汇编安徽卷理)下列曲线中离心率为62的是( )A.22124x y -= B.22142x y -= C.22146x y -= D.221410x y -=9.设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32ax =上一点,12PF F ∆是底角为30的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34()D 4510.在抛物线25(0)y x ax a==-≠上取横坐标为14x =-,22x =的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆225536x y +=相切,则抛物线顶点的坐标为( )(A )(2,9)-- (B )(0,5)- (C )(2,9)- (D )(1,6)- (汇编年高考四川卷理科10)第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题11. 抛物线24y x =的焦点到准线的距离是 △ .12. O 为原点,F 为抛物线x y 42=焦点,A 为抛物线上一点,4-=⋅AF OA ,则点A 坐标为 .13.抛物线22y x =的焦点坐标是 ▲ . 14.抛物线22x y =的焦点坐标是 .15.已知点M (-3,0),N (3,0),B (1,0),圆C 与直线MN 切于点B ,过M 、N 与 圆C 相切的两直线相交于点P ,则P 点的轨迹方程为 .16. 抛物线24y x =的焦点到准线的距离是 △ . 评卷人得分三、解答题17.(本小题满分16分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点P (-1,-1),c 为椭圆的半焦距,且c =2b .过点P 作两条互相垂直的直线l 1,l 2与椭圆C 分别交于另两点M ,N . (1)求椭圆C 的方程;(2)若直线l 1的斜率为-1,求△PMN 的面积; (3)若线段MN 的中点在x 轴上,求直线MN 的方程.18.在平面直角坐标系xOy 中, 椭圆22221(0)x y a b a b +=>>的离心率为22,右顶点为A ,直线BC 过原点O ,且点B 在x 轴上方,直线AB 与AC 分别交直线:1l x a =+于点,E F .(1)若点(2,3)B ,求ABC ∆的面积;(2)若点B 为动点,设直线AB 与AC 的斜率分别为12,k k .y xODCBA①试探究12k k ⋅是否为定值.若为定值,请求出值;若不为定值,请说明理由. ②求AEF ∆的面积的最小值.19.如图,已知椭圆1E 方程为22221(0)x y a b a b+=>>,圆2E 方程为222x y a +=,过椭圆的左顶点A 作斜率为1k 直线1l 与椭圆1E 和圆2E 分别相交于B 、C .(Ⅰ)若11k =时,B 恰好为线段AC 的中点,试求椭圆1E 的离心率e ;(Ⅱ)若椭圆1E 的离心率e =12,2F 为椭圆的右焦点,当2||||2BA BF a +=时,求1k 的值;(Ⅲ)设D 为圆2E 上不同于A 的一点,直线AD 的斜率为2k ,当2122k b k a =时,试问直线BD 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.20.已知椭圆22221(0)x y C a b a b+=>>:的离心率为22,其中左焦点F (-2,0).(1)求椭圆C 的方程;(2)若直线y x m =+与椭圆C 交于不同的两点AB ,且线段AB 的中点M 在圆x 2+y 2=1上,求m 的值.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.D 2.C解析:由题离心率mm e 1+=,由双曲线的第二定义知 811931=⇒+=⇒=+=m m m m m e ,故选择C 。
课时作业52 椭圆一、选择题1.设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点的距离为( A )A .4B .3C .2D .5解析:由题意知|OM |=12|PF 2|=3, ∴|PF 2|=6,∴|PF 1|=2a -|PF 2|=10-6=4.2.(2019·开封模拟)曲线C 1:x 225+y 29=1与曲线C 2:x 225-k +y 29-k =1(k <9)的( D )A .长轴长相等B .短轴长相等C .离心率相等D .焦距相等解析:因为c 21=25-9=16,c 22=(25-k )-(9-k )=16,所以c 1=c 2,所以两个曲线的焦距相等.3.已知实数4,m,9构成一个等比数列,则圆锥曲线x 2m +y 2=1的离心率为( C )A.306B.7C.306或7D.56或7 解析:由题意知m 2=36,解得m =±6.当m =6时,该圆锥曲线表示椭圆,此时a =6,b =1,c =5,则e =306;当m =-6时,该圆锥曲线表示双曲线,此时a =1,b =6,c =7,则e =7.故选C.4.(2019·贵州六盘水模拟)已知点F 1,F 2分别为椭圆C :x 24+y 23=1的左、右焦点,若点P 在椭圆C 上,且∠F 1PF 2=60°,则|PF 1|·|PF 2|=( A )A .4B .6C .8D .12解析:由|PF 1|+|PF 2|=4, |PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos60° =|F 1F 2|2,得3|PF 1|·|PF 2|=12, 所以|PF 1|·|PF 2|=4,故选A.5.焦点在x 轴上的椭圆方程为x 2a 2+y 2b 2=1(a >b >0),短轴的一个端点和两个焦点相连构成一个三角形,该三角形内切圆的半径为b3,则椭圆的离心率为( C )A.14B.13C.12D.23 解析:由短轴的一个端点和两个焦点相连构成一个三角形,又由三角形面积公式得12×2c ·b =12(2a +2c )·b 3,得a =2c ,即e =c a =12,故选C.6.正方形ABCD 的四个顶点都在椭圆x 2a 2+y 2b 2=1(a >b >0)上,若椭圆的焦点在正方形的内部,则椭圆的离心率的取值范围是( B )A.⎝ ⎛⎭⎪⎫5-12,1B.⎝ ⎛⎭⎪⎫0,5-12 C.⎝ ⎛⎭⎪⎫3-12,1 D.⎝ ⎛⎭⎪⎫0,3-12解析:设正方形的边长为2m ,∵椭圆的焦点在正方形的内部,∴m >c .又正方形ABCD 的四个顶点都在椭圆x 2a 2+y 2b 2=1(a >b >0)上,∴m 2a 2+m 2b 2=1>c 2a 2+c 2b 2=e 2+e 21-e 2,整理得e 4-3e 2+1>0,e 2<3-52=(5-1)24,∴0<e <5-12.故选B. 二、填空题7.(2019·河北保定一模)与圆C 1:(x +3)2+y 2=1外切,且与圆C 2:(x -3)2+y 2=81内切的动圆圆心P 的轨迹方程为x 225+y 216=1.解析:设动圆的半径为r ,圆心为P (x ,y ),则有|PC 1|=r +1,|PC 2|=9-r .所以|PC 1|+|PC 2|=10>|C 1C 2|=6,即P 在以C 1(-3,0),C 2(3,0)为焦点,长轴长为10的椭圆上,得点P 的轨迹方程为x 225+y 216=1.8.(2019·四川南充模拟)已知椭圆x 24+y 2b 2=1(0<b <2)的左、右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是 3.解析:由椭圆的方程可知a =2,由椭圆的定义可知,|AF 2|+|BF 2|+|AB |=4a =8,所以|AB |=8-(|AF 2|+|BF 2|)≥3.由椭圆的性质可知过椭圆焦点的弦中,通径最短,则2b 2a =3,所以b 2=3,即b = 3.9.(2019·云南昆明质检)椭圆x 29+y 225=1上的一点P 到两焦点的距离的乘积为m ,当m 取最大值时,点P 的坐标是(-3,0)或(3,0).解析:记椭圆的两个焦点分别为F 1,F 2, 有|PF 1|+|PF 2|=2a =10.则m =|PF 1|·|PF 2|≤⎝⎛⎭⎪⎫|PF 1|+|PF 2|22=25, 当且仅当|PF 1|=|PF 2|=5,即点P 位于椭圆的短轴的顶点处时,m 取得最大值25.所以点P 的坐标为(-3,0)或(3,0).10.(2019·南宁市摸底联考)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一条弦所在的直线方程是x -y +5=0,弦的中点坐标是M (-4,1),则椭圆的离心率是32.解析:设直线x -y +5=0与椭圆x 2a 2+y 2b 2=1相交于A (x 1,y 1),B (x 2,y 2)两点,因为AB 的中点M (-4,1),所以x 1+x 2=-8,y 1+y 2=2.易知直线AB 的斜率k =y 2-y 1x 2-x 1=1.由⎩⎪⎨⎪⎧x 21a 2+y 21b2=1,x 22a 2+y 22b2=1,两式相减得,(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b 2=0, 所以y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2,所以b 2a 2-=14,于是椭圆的离心率e =c a =1-b 2a 2=32.三、解答题11.(2019·云南曲靖模拟)已知椭圆C 的两个焦点分别为F 1(-3,0),F 2(3,0),且椭圆C 过点P ⎝⎛⎭⎪⎫1,32.(1)求椭圆C 的标准方程;(2)若与直线OP (O 为坐标原点)平行的直线交椭圆C 于A ,B 两点,当OA ⊥OB 时,求△AOB 的面积.解:(1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),由题意可得⎩⎨⎧a 2-b 2=3,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.故椭圆C 的方程为x 24+y 2=1.(2)直线OP 的方程为y =32x ,设直线AB 的方程为y =32x +m ,A (x 1,y 1),B (x 2,y 2).将直线AB 的方程代入椭圆C 的方程并整理得x 2+3mx +m 2-1=0,由Δ=3m 2-4(m 2-1)>0,得m 2<4,⎩⎪⎨⎪⎧x 1+x 2=-3m ,x 1x 2=m 2-1.由OA ⊥OB ,得OA →·OB →=0,OA →·OB →=x 1x 2+y 1y 2=x 1x 2+32x 2+m 32x 1+m =74x 1x 2+32m (x 1+x 2)+m 2=74(m 2-1)+32m ·(-3m )+m 2=54m 2-74=0,得m 2=75.又|AB |=1+34(x 1+x 2)2-4x 1x 2=72·4-m 2,O 到直线AB 的距离d =|m |1+34=|m |72. 所以S △AOB =12|AB |·d =12×72×4-m 2×|m |72=9110.12.已知椭圆C :x 23m +y 2m =1,直线l :x +y -2=0与椭圆C 相交于两点P ,Q ,与x 轴交于点B ,点P ,Q 与点B 不重合.(1)求椭圆C 的离心率;(2)当S △OPQ =2时,求椭圆C 的方程;(3)过原点O 作直线l 的垂线,垂足为N .若|PN |=λ|BQ |,求λ的值.解:(1)a 2=3m ,b 2=m ,c 2=2m ,e 2=c 2a 2=23,故e =63.(2)设P (x 1,y 1),Q (x 2,y 2),将x +y -2=0代入椭圆C 的方程并整理得4x 2-12x +12-3m =0,依题意,由Δ=(-12)2-4×4×(12-3m )>0得m >1.且有⎩⎨⎧x 1+x 2=3,x 1x 2=12-3m4,|PQ |=1+k 2|x 1-x 2|=2·9-(12-3m )=6m -1, 原点到直线l 的距离d =2,所以S △OPQ =12|PQ |·d =12×6·m -1×2=2,解得m =73>1,故椭圆方程为x 27+3y 27=1.(3)直线l 的垂线为ON :y =x ,由⎩⎪⎨⎪⎧y =x ,x +y -2=0,解得交点N (1,1). 因为|PN |=λ|BQ |,又x 1+x 2=3,所以λ=|PN ||BQ |=|x 1-1||x 2-2|=|2-x 2||x 2-2|=1,故λ的值为1.13.(2019·合肥市质量检测)如图,椭圆x 2a 2+y 24=1(a >0)的左、右焦点分别为F 1,F 2,过F 1的直线交椭圆于M ,N 两点,交y 轴于点H .若F 1,H 是线段MN 的三等分点,则△F 2MN 的周长为( D )A .20B .10C .2 5D .4 5解析:由F 1,H 是线段MN 的三等分点,得H 是F 1N 的中点,又F 1(-c,0),∴点N 的横坐标为c ,联立方程,得⎩⎨⎧x =c ,x 2a 2+y 24=1,得N (c ,4a ),∴H (0,2a ),M (-2c ,-2a ).把点M 的坐标代入椭圆方程得4c 2a 2+(-2a )24=1,化简得c 2=a 2-14,又c 2=a 2-4,∴a 2-14=a 2-4,解得a 2=5,∴a = 5.由椭圆的定义知|NF 2|+|NF 1|=|MF 2|+|MF 1|=2a ,∴△F 2MN 的周长为|NF 2|+|MF 2|+|MN |=|NF 2|+|MF 2|+|NF 1|+|MF 1|=4a =45,故选D.14.(2019·南昌摸底调研)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,短轴长为2.(1)求椭圆C 的标准方程;(2)设直线l :y =kx +m 与椭圆C 交于M ,N 两点,O 为坐标原点,若k OM ·k ON =54,求原点O 到直线l 的距离的取值范围.解:(1)由题知e =c a =32,2b =2,又a 2=b 2+c 2, ∴b =1,a =2,∴椭圆C 的标准方程为x 24+y 2=1. (2)设M (x 1,y 1),N (x 2,y 2),联立方程,得⎩⎨⎧y =kx +m ,x 24+y 2=1,得(4k 2+1)x 2+8kmx +4m 2-4=0,依题意,Δ=(8km )2-4(4k 2+1)(4m 2-4)>0,化简得m 2<4k 2+1,①x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-44k 2+1,y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2, 若k OM ·k ON =54,则y 1y 2x 1x 2=54,即4y 1y 2=5x 1x 2,∴4k 2x 1x 2+4km (x 1+x 2)+4m 2=5x 1x 2,∴(4k 2-5)·4(m 2-1)4k 2+1+4km ·(-8km4k 2+1)+4m 2=0,即(4k 2-5)(m 2-1)-8k 2m 2+m 2(4k 2+1)=0,化简得m 2+k 2=54,②由①②得0≤m 2<65,120<k 2≤54, ∵原点O 到直线l 的距离d =|m |1+k 2, ∴d 2=m 21+k 2=54-k 21+k 2=-1+94(1+k 2),又120<k 2≤54,∴0≤d 2<87,∴原点O 到直线l 的距离的取值范围是[0,2147). 尖子生小题库——供重点班学生使用,普通班学生慎用15.(2019·郑州市第一次质量预测)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左顶点和上顶点分别是A ,B ,左、右焦点分别是F 1,F 2,在线段AB 上有且只有一个点P 满足PF 1⊥PF 2,则椭圆的离心率的平方为( B )A.32B.3-52 C.-1+52D.3-12解析:如图,由题意得,A (-a,0),B (0,b ),由在线段AB 上有且只有一个点P 满足PF 1⊥PF 2,得点P 是以点O 为圆心,线段F 1F 2为直径的圆x 2+y 2=c 2与线段AB 的切点,连接OP ,则OP ⊥AB ,且OP =c ,即点O 到直线AB 的距离为c .又直线AB 的方程为y =ba x +b ,整理得bx -ay +ab =0,点O 到直线AB 的距离d =abb 2+a 2=c ,两边同时平方整理得,a 2b 2=c 2(a 2+b 2)=(a 2-b 2)(a 2+b 2)=a 4-b 4,可得b 4+a 2b 2-a 4=0,两边同时除以a 4,得(b 2a 2)2+b 2a 2-1=0,可得b 2a 2=-1+52,则e 2=c 2a 2=a 2-b 2a 2=1-b 2a 2=1--1+52=3-52,故选B. 16.(2019·重庆六校联考)如图,记椭圆x 225+y 29=1,y 225+x 29=1内部重叠区域的边界为曲线C ,P 是曲线C 上的任意一点,给出下列四个命题:①P 到F 1(-4,0),F 2(4,0),E 1(0,-4),E 2(0,4)四点的距离之和为定值;②曲线C 关于直线y =x ,y =-x 均对称; ③曲线C 所围区域的面积必小于36; ④曲线C 的总长度不大于6π. 其中正确命题的序号是②③.解析:对于①,若点P 在椭圆x 225+y 29=1上,P 到F 1(-4,0),F 2(4,0)两点的距离之和为定值,到E 1(0,-4),E 2(0,4)两点的距离之和不为定值,故①错;对于②,联立两个椭圆的方程,得⎩⎪⎨⎪⎧x 225+y 29=1,y 225+x 29=1,得y 2=x 2,结合椭圆的对称性知,曲线C 关于直线y =x ,y =-x 均对称,故②正确;对于③,曲线C 所围区域在边长为6的正方形内部,所以其面积必小于36,故③正确;对于④,曲线C 所围区域的内切圆为半径为3的圆,所以曲线C 的总长度必大于圆的周长6π,故④错.故答案为②③.。
椭圆练习21.若直线mx +ny =4与⊙O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数是( ) A .至多为1 B .2 C .1D .02.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为( )A .63 B .33C .23D .133.过椭圆x 2+2y 2=4的左焦点作倾斜角为π3的弦AB ,则弦AB 的长为( )A .67B .167C .716D .764.已知椭圆C :y 29+x 2=1,过点P ⎝⎛⎭⎫12,12的直线与椭圆C 相交于A ,B 两点,且弦AB 被点P 平分,则直线AB 的方程为( )A .9x -y -4=0B .9x +y -5=0C .4x +2y -3=0D .4x -2y -1=05.已知椭圆x 22+y 2=1与直线y =x +m 交于A ,B 两点,且|AB |=423,则实数m 的值为( )A .±1B .±12C . 2D .±26.直线y =kx +k 与焦点在y 轴上的椭圆x 2m +y 24=1总有两个公共点,则实数m 的取值范围是________.7.已知F 1为椭圆C :x 22+y 2=1的左焦点,直线l :y =x -1与椭圆C 交于A ,B 两点,那么|F 1A |+|F 1B |的值为________.8.过椭圆x 25+y 24=1的右焦点F 作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,则△OAB 的面积为________.9.焦点分别为(0,52)和(0,-52)的椭圆截直线y=3x-2所得椭圆的弦的中点的横坐标为12,求此椭圆方程.10.顺次连接椭圆C:x2a2+y2b2=1(a>b>0)的四个顶点恰好构成了一个边长为3且面积为2 2 的菱形.(1)求椭圆C的方程;(2)过点Q(0,-2)的直线l与椭圆C交于A,B两点,k OA•k OB=-1,其中O为坐标原点,求|AB|.。
2.2.2 椭圆的简单几何性质第1课时 椭圆的简单几何性质及其应用基础过关练题组一 椭圆的性质及应用1.焦点在x 轴上,右焦点到短轴端点的距离为2,到左顶点的距离为3的椭圆的标准方程是( )A.x 24+y 23=1B.x 24+y 2=1 C.y 24+x 23=1 D.x 2+y24=1 2.过椭圆x 24+y 23=1的焦点的最长弦和最短弦的长分别为()A.8,6B.4,3C.2,√3D.4,2√3 3.(2019陕西宝鸡高二上学期期末)把椭圆x 225+y 216=1的长轴AB 分成8等份,过每个分点作x 轴的垂线分别交椭圆的上半部分于点P 1,P 2,…,P 7,F 是左焦点,则|P 1F|+|P 2F|+…+|P 7F|等于( ) A.21 B.28 C.35 D.424.设AB 是椭圆的长轴,点C 在椭圆上,且∠CBA=π4,若AB=4,BC=√2,则椭圆的两个焦点之间的距离为 .题组二 与椭圆离心率有关的问题5.已知椭圆的两个焦点和短轴的两个端点恰好是一个正方形的四个顶点,则该椭圆的离心率为( ) A.13 B.12C.√33D.√226.已知焦点在y 轴上的椭圆mx 2+y 2=1的离心率为√32,则m 的值为( )A.1B.2C.3D.4 7.已知焦点在x轴上的椭圆方程为x 2a2+y 2=1(a>0),过焦点作垂直于x轴的直线交椭圆于A,B 两点,且|AB|=1,则该椭圆的离心率为( ) A.√32B.12C.√154D.√338.已知椭圆x 2a 2+y 2b2=1(a>b>0)的左焦点为F 1,右顶点为A,点B 在椭圆上,且BF 1⊥x 轴,直线AB 与y 轴交于点P,其中AP ⃗⃗⃗⃗⃗ =2PB ⃗⃗⃗⃗⃗ ,则椭圆的离心率为 .题组三 与椭圆有关的范围问题 9.若点O 和点F分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP ⃗⃗⃗⃗⃗ ·FP ⃗⃗⃗⃗⃗ 的最大值为( ) A.2 B.3 C.6 D.8 10.已知F 1,F 2是椭圆x 2a 2+y 2b2=1(a>b>0)的两个焦点,若椭圆上存在一点P,使得∠F 1PF 2=60°,则椭圆的离心率e 的取值范围是( ) A.[√22,1) B.(0,√22)C.[12,1) D.[12,√22) 11.已知点P 为椭圆x 2+2y 2=98上的一个动点,点A 的坐标为(0,5),则|PA|的最小值为 .12.已知椭圆C:x 2a 2+y 2b 2=1(a>b>0)的左、右焦点分别为F 1,F 2,离心率e=√22,连接椭圆的四个顶点所得四边形的面积为4√2. (1)求椭圆C 的标准方程;(2)设A,B 是直线l:x=2√2上的不同两点,若AF 1⃗⃗⃗⃗⃗⃗⃗ ·BF 2⃗⃗⃗⃗⃗⃗⃗ =0,求|AB|的最小值.能力提升练一、选择题1.(2019辽宁抚顺六校期末联考,★★☆)已知椭圆x 2+y 2b 2+1=1(b>0)的离心率为√1010,则b 等于( )A.3B.13C.910D.3√10102.(2019山西大同高三开学考试,★★☆)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为√22,过F 1的直线l交C 于A,B 两点,且△ABF 2的周长为16,那么椭圆C 的方程为( )A.x 236+y 218=1B.x 216+y 210=1 C.x 24+y 22=1 D.x 216+y 28=1 3.(2020重庆沙坪坝高二期末,★★☆)已知F 是椭圆E:x 2a 2+y 2b2=1(a>b>0)的左焦点,经过原点的直线l 与椭圆E 交于P,Q 两点,若|PF|=2|QF|,且∠PFQ=120°,则椭圆E 的离心率为( ) A.√33 B.12C.13D.√224.(2019黑龙江大庆四中高二上学期期中,★★★)已知点P(x,y)(x≠0,y≠0)是椭圆x 216+y 28=1上的一个动点,F 1,F 2分别为椭圆的左、右焦点,O 是坐标原点,若M 是∠F 1PF 2的平分线上的一点,且F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ·PM ⃗⃗⃗⃗⃗⃗ =0,则|OM ⃗⃗⃗⃗⃗⃗ |的取值范围为( ) A.[0,3) B.(0,2√2) C.[2√2,3) D.[0,4]二、填空题5.(2019皖西南联盟高二期末联考,★★☆)阿基米德不仅是著名的物理学家,也是著名的数学家,他最早利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆C 的对称轴为坐标轴,焦点在y轴上,且椭圆C的离心率为35,面积为20π,则椭圆C的标准方程为.6.(2019河北石家庄二中高二月考,★★☆)已知椭圆x 2a2+y2b2=1(a>b>0),点P是椭圆上且在第一象限的点,F1,F2分别为椭圆的左、右焦点,O是坐标原点,过F2作∠F1PF2的外角的平分线的垂线,垂足为A,若|OA|=2b,则椭圆的离心率为.三、解答题7.(2019河北张家口高三开学考试,★★☆)设F1,F2分别是椭圆C:x 2a2+y2b2=1(a>b>0)的左、右焦点,M是C上且在第一象限内的一点,且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为34,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b的值.8.(★★★)如图,F1,F2分别是椭圆C:x 2a2+y2b2=1(a>b>0)的左、右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,AF1=F1F2.(1)求椭圆C的离心率;(2)已知△AF1B的面积为40√3,求a,b的值.答案全解全析 基础过关练1.A 依题意得a=2,a+c=3,故c=1,b=√22-12=√3,故所求椭圆的标准方程是x 24+y 23=1.2.B 过椭圆焦点的最长弦为长轴,其长度为4,最短弦为垂直于长轴的弦.易知c=1,将x=1代入x 24+y 23=1,得124+y 23=1,解得y 2=94,即y=±32,所以最短弦的长为2×32=3.故选B.3.C 设椭圆的右焦点为F',则由椭圆的定义得|P 1F|+|P 1F'|=10,由椭圆的对称性,知|P 1F'|=|P 7F|,∴|P 1F|+|P 7F|=10.同理,|P 2F|+|P 6F|=10,|P 3F|+|P 5F|=10.又|P 4F|=5,∴|P 1F|+|P 2F|+…+|P 7F|=35. 4.答案4√63解析 不妨设椭圆的标准方程为x 2a 2+y 2b 2=1(a>b>0),由题意知2a=4,∴a=2. ∵∠CBA=π4,BC=√2,∴不妨设点C 的坐标为(-1,1). ∵点C 在椭圆上,∴14+1b 2=1,∴b 2=43,∴c 2=a 2-b 2=4-43=83,c=2√63,则椭圆的两个焦点之间的距离为4√63. 5.D 依题意得椭圆的焦距和短轴长相等,故b=c,∴a 2-c 2=c 2,∴e=√22. 6.D 将椭圆的方程化为标准形式为y 2+x 21m=1,由题意得a 2=1,b 2=1m ,∴c 2=a 2-b 2=1-1m ,∴离心率e=ca =√1-1m =√32,∴m=4.7.A 易知椭圆的焦点坐标为(±√a 2-1,0),∵|AB|=1,∴当x=±√a 2-1时,y=±12.不妨设A (√a 2-1,12),则a 2-1a 2+14=1,解得a=2,∴椭圆的离心率为e=√a 2-1a=√32.故选A.8.答案 12解析 如图,易知△ABF 1∽△APO, 则|AP ||AB |=|AO ||AF 1|,即23=aa+c ,所以a=2c,所以e=c a =12.9.C 由题意得F(-1,0),设点P(x 0,y 0),则y 02=3(1-x 024)(-2≤x 0≤2),OP ⃗⃗⃗⃗⃗ ·FP ⃗⃗⃗⃗⃗ =x 0(x 0+1)+y 02=x 02+x 0+y 02=x 02+x 0+3(1-x 024)=14(x 0+2)2+2,当x 0=2时,OP⃗⃗⃗⃗⃗ ·FP ⃗⃗⃗⃗⃗ 取得最大值,最大值为6. 10. C 在△PF 1F 2中,设|PF 1|=m,|PF 2|=n,则m+n=2a,根据余弦定理,得(2c)2=m 2+n 2-2mncos 60°,整理得(m+n)2-3mn=4c 2,所以3mn=4a 2-4c 2, 所以4a 2-4c 2=3mn≤3(m+n 2)2=3a 2(当且仅当m=n 时,等号成立),即a 2≤4c 2,故e 2=c 2a 2≥14,又0<e<1, 所以12≤e<1.11.答案 2解析 设P(x,y),则|PA|=√x 2+(y -5)2=√x 2+y 2-10y +25. 因为点P 为椭圆x 2+2y 2=98上的一点,所以x 2=98-2y 2,-7≤y≤7,则|PA|=√98-2y 2+y 2-10y +25 =√-(y +5)2+148, 因为-7≤y≤7,所以当y=7时,|PA|min =2. 12.解析 (1)由题意得{ e =c a =√22,a 2=b 2+c 2,12×2a ×2b =4√2,解得{a =2,b =√2,c =√2.所以椭圆的标准方程为x 24+y 22=1.(2)由(1)知,F 1(-√2,0),F 2(√2,0),设直线l:x=2√2上的不同两点A,B 的坐标分别为(2√2,y 1),(2√2,y 2),则AF 1⃗⃗⃗⃗⃗⃗⃗ =(-3√2,-y 1),BF 2⃗⃗⃗⃗⃗⃗⃗ =(-√2,-y 2),由AF 1⃗⃗⃗⃗⃗⃗⃗ ·BF 2⃗⃗⃗⃗⃗⃗⃗ =0,得y 1y 2+6=0, 即y 2=-6y 1,不妨设y 1>0,则|AB|=|y 1-y 2|=y 1+6y 1≥2√6,当且仅当y 1=√6,y 2=-√6时等号成立,所以|AB|的最小值是2√6.能力提升练一、选择题1.B 易知b 2+1>1,由题意得(b 2+1)-1b 2+1=b 2b 2+1=110,解得b=13或b=-13(舍去),故选B.2.D 由△ABF 2的周长为16,得|BF 2|+|AF 2|+|BF 1|+|AF 1|=16,根据椭圆的性质,得4a=16,即a=4.又椭圆的离心率为√22,即c a =√22,所以c=2√2,b 2=a 2-c 2=8,则椭圆C 的方程为x 216+y 28=1.3.A 如图,设椭圆的右焦点为F',连接PF',QF',根据椭圆的对称性知,线段FF'与线段PQ 在点O 处互相平分,所以四边形PFQF'为平行四边形,∴|FQ|=|PF'|,∠FPF'=60°.根据椭圆的定义,得|PF|+|PF'|=2a,又|PF|=2|QF|,∴|PF'|=23a,|PF|=43a,而|FF'|=2c.在△F'PF 中,由余弦定理,得(2c)2=(23a)2+(43a)2-2×23a×43a×cos 60°,即c 2a2=13,∴椭圆的离心率e=c a =√33.4.B 如图,延长PF 2,F 1M 交于点N,则△PF 1N 为等腰三角形,M 为F 1N 的中点,|OM ⃗⃗⃗⃗⃗⃗ |=12|F 2N ⃗⃗⃗⃗⃗⃗⃗ |=12(|PN ⃗⃗⃗⃗⃗⃗ |-|PF 2⃗⃗⃗⃗⃗⃗⃗ |)=12·||PF 1⃗⃗⃗⃗⃗⃗⃗ |-|PF 2⃗⃗⃗⃗⃗⃗⃗ ||.由图可知,当P 在短轴端点时,|OM ⃗⃗⃗⃗⃗⃗ |取得最小值,此时|OM⃗⃗⃗⃗⃗⃗ |=0,当P 在长轴端点时,|OM ⃗⃗⃗⃗⃗⃗ |取得最大值,此时|OM ⃗⃗⃗⃗⃗⃗ |=2√2,但点P 不能在坐标轴上,所以|OM⃗⃗⃗⃗⃗⃗ |的取值范围为(0,2√2).二、填空题 5.答案y 225+x 216=1解析 设椭圆C 的标准方程为y 2a 2+x 2b 2=1(a>b>0),则椭圆C 的面积为S=πab=20π,又e=√1-b 2a 2=35,解得a 2=25,b 2=16.所以椭圆C 的标准方程为y 225+x 216=1.6.答案√32解析 如图,延长F 2A 交F 1P 的延长线于点M.由题意可知|PM|=|PF 2|,由椭圆的定义可知|PF 1|+|PF 2|=2a, 则|PF 1|+|PM|=|MF 1|=2a. 易知OA 是△F 1F 2M 的中位线, ∴|OA|=12|MF 1|=a. 又|OA|=2b,∴2b=a,则a 2=4b 2=4(a 2-c 2), 即c 2=34a 2,∴e 2=34,又e∈(0,1),∴e=√32.三、解答题 7.解析 (1)根据c=√a 2-b 2及题设知M (c ,b 2a ),由k MN =k MF 1=34,得b 2a-0c -(-c )=34,即2b 2=3ac.将b 2=a 2-c 2代入,得2c 2+3ac-2a 2=0,即2e 2+3e-2=0,解得e=12或e=-2(舍去).故C 的离心率为12.(2)由题意知,原点O 为F 1F 2的中点,MF 2∥y 轴,设直线MF 1与y 轴的交点为D,则D(0,2)是线段MF 1的中点,故b 2a =4,即b 2=4a.①由|MN|=5|F 1N|,得|DF 1|=2|F 1N|, 则F 1D ⃗⃗⃗⃗⃗⃗⃗ =2NF 1⃗⃗⃗⃗⃗⃗⃗ .设N(x 1,y 1),由题意知y 1<0,则{2(-c -x 1)=c ,-2y 1=2,即{x 1=-32c ,y 1=-1, 代入C 的方程,得9c 24a 2+1b 2=1.② 由①②及a 2=b 2+c 2得9(a 2-4a )4a 2+14a =1,解得a=7,则b=√4a =2√7. 8.解析 (1)∵AF 1=F 1F 2, ∴a=2c,∴e=c a =12.(2)设|BF 2|=m,则|BF 1|=2a-m.∵AF 1=F 1F 2=AF 2,∴△AF 1F 2是等边三角形, ∴∠F 1F 2B=180°-∠F 1F 2A=180°-60°=120°.在△BF 1F 2中,|BF 1|2=|BF 2|2+|F 1F 2|2-2|BF 2||F 1F 2|cos∠F 1F 2B,即(2a-m)2=m 2+a 2-2am×(-12), ∴m=35a. ∵△AF 1B 的面积S=12|BA||F 1A|sin 60° =12×(a +35a)×a×√32=40√3,∴a=10,∴c=5,b=5√3.。
人教版三年级上册数学圆形和椭圆形的周
长练习题
1. 圆形的周长练题
练题一
求下列圆形的周长。
1. 半径为5cm的圆形的周长是多少?
半径为5cm的圆形的周长是:10π cm。
2. 直径为6cm的圆形的周长是多少?
直径为6cm的圆形的周长是:6π cm。
练题二
计算下列圆形的直径,如果给定的是周长。
1. 圆形的周长是25cm,它的直径是多少?
圆形的周长是25cm,它的直径是:25 ÷ π cm。
2. 圆形的周长是16π cm,它的直径是多少?
圆形的周长是16π cm,它的直径是:16 cm。
2. 椭圆形的周长练题
练题一
求下列椭圆形的周长。
1. 长轴为6cm,短轴为4cm的椭圆形的周长是多少?长轴为6cm,短轴为4cm的椭圆形的周长是:4π cm。
2. 长轴为10cm,短轴为8cm的椭圆形的周长是多少?
长轴为10cm,短轴为8cm的椭圆形的周长是:8π cm。
练题二
计算下列椭圆形的短轴,如果给定的是周长。
1. 椭圆形的周长是12cm,它的短轴是多少?
椭圆形的周长是12cm,它的短轴是:12 ÷ 2π cm。
2. 椭圆形的周长是10π cm,它的短轴是多少?
椭圆形的周长是10π cm,它的短轴是:5 cm。
以上是人教版三年级上册数学圆形和椭圆形的周长练习题。
希望能对你有所帮助!。
3.1椭圆测试卷(原卷版)1.已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是()A.x 23+y 24=1 B.x 24+y 23=1C.x 24+y 22=1 D.x 24+y 23=12.若椭圆ax 2+by 2=1与直线y =1-x 交于A ,B 两点,过原点与线段AB 中点的直线的斜率为32,则ab的值为()A.32B.233C.932D.23273.(2018·课标全国Ⅱ,文)已知F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点.若PF 1⊥PF 2,且∠PF 2F 1=60°,则C 的离心率为()A .1-32B .2-3C.3-12D.3-14.如图,圆柱形玻璃杯中水的液面呈椭圆形状,则该椭圆的离心率为()A.33B.12C.22D.325.已知F 1,F 2是椭圆的两个焦点,满足MF 1→·MF 2→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是()A .(0,1),12D.22,6.【多选题】设椭圆的方程为x 22+y 24=1,斜率为k 的直线l 不经过原点O ,且与椭圆相交于A ,B 两点,M 为线段AB 的中点,则下列结论正确的是()A .k AB ·k OM =-1B .若点M 坐标为(1,1),则直线l 的方程为2x +y -3=0C .若直线l 的方程为y =x +1,则点M 的坐标为(13,43)D .若直线l 的方程为y =x +2,则|AB |=4237.与椭圆4x 2+9y 2=36有相同的焦点,且过点(-3,2)的椭圆方程为________.8.椭圆x 2+4y 2=16被直线y =12x +1截得的弦长为________.9.椭圆C :x 28+y 24=1的弦AB 的中点为点Q (2,1),则弦AB 所在直线的方程为________,若点P 为椭圆上的任意一点,F 为左焦点,O 为原点,则OP →·FP →的取值范围为________.10.已知椭圆G :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,右焦点为(22,0),斜率为1的直线l与椭圆G 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2).(1)求椭圆G 的方程;(2)求△PAB 的面积.11.过点M (-2,0)的直线m 与椭圆x 22+y 2=1交于P 1,P 2,线段P 1P 2的中点为P ,设直线m 的斜率为k 1(k 1≠0),直线OP 的斜率为k 2,则k 1k 2的值为()A .2B .-2C.12D .-1212.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,左顶点为A ,下顶点为B ,离心率为32,且△BF 1F 2的面积为3.则椭圆C 的标准方程为________,若点P 在椭圆C 上,且以AP 为直径的圆过B 点,则直线AP 的斜率为________.13.已知中心为坐标原点O ,焦点在y 轴上的椭圆M 的焦距为4,且椭圆M 过点(1,3).(1)求椭圆M 的方程;(2)若过点C (0,1)的直线l 与椭圆M 交于A ,B 两点,且AC →=2CB →,求直线l 的方程.1.设a >0,则椭圆x 2+2y 2=2a 的离心率是()A.12B.22C.13D .与a 的取值有关2.已知点P 是椭圆x 216+y 24=1上一点,其左、右焦点分别为F 1,F 2,若△F 1PF 2外接圆的半径为4,则△F 1PF 2的面积是()A.433B .43C .4D.433或433.已知A ,B 是椭圆x 2a 2+y 2b 2=1(a >b >0)长轴的两个端点,M ,N 是椭圆上关于x 轴对称的两点,直线AM ,BN 的斜率分别为k 1,k 2(k 1k 2≠0).若椭圆的离心率为32,则|k 1|+|k 2|的最小值为()A .1 B.2C.32D.34.已知直线x 4+y 3=1与椭圆x 216+y 29=1相交于A ,B 两点,若椭圆上存在点P 使△ABP 的面积等于12,则这样的点P 共有()A .1个B .2个C .3个D .4个5.若椭圆的对称轴在坐标轴上,短轴的一个端点与两个焦点组成一个正三角形,焦点到椭圆上的最短距离为3,则这个椭圆的方程为________.6.2013年我国载人航天飞船神舟十号飞行获得圆满成功.已知神舟十号飞船变轨前的运行轨道是一个以地心为焦点的椭圆,飞船近地点、远地点离地面的距离分别为200km ,350km.设地球半径为R km ,则此时飞船轨道的离心率为________(结果用含R 的式子表示).7.椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F (c ,0)关于直线l :y =bc x 的对称点Q 在椭圆上,则椭圆的离心率是________.8.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2作x 轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴相交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率等于________.9.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)4,F 1,F 2是椭圆的两个焦点.(1)求椭圆C 的方程;(2)⊙O (O 为坐标原点)是以F 1F 2为直径的圆,直线l :y =kx +m 与⊙O 相切,并与椭圆C 交于不同的两点A ,B ,若OA →·OB →=-32,求k 的值.10.如图,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为(3,0)1M 是x 轴上的一点,过M 点的直线l 与椭圆C 交于A ,B 两点(点A 在x 轴的上方).(1)求椭圆C的方程;(2)若AM→=2MB→,且直线l与圆O(O为坐标原点):x2+y2=47相切于点N,求MN的长.11.已知椭圆C过点(-1,0),(1,0).(1)求椭圆C的方程;(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值.3.1椭圆测试卷(解析版)1.已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是()A.x 23+y 24=1 B.x 24+y 23=1C.x 24+y 22=1 D.x 24+y 23=1答案D2.若椭圆ax 2+by 2=1与直线y =1-x 交于A ,B 两点,过原点与线段AB 中点的直线的斜率为32,则ab的值为()A.32B.233C.932D.2327答案A 3.(2018·课标全国Ⅱ,文)已知F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点.若PF 1⊥PF 2,且∠PF 2F 1=60°,则C 的离心率为()A .1-32B .2-3C.3-12 D.3-1答案D解析在Rt △PF 1F 2中,∠PF 2F 1=60°,不妨设椭圆焦点在x 轴上,且焦距|F 1F 2|=2,则|PF 2|=1,|PF 1|=3,由椭圆的定义可知,|PF 1|+|PF 2|=2a ,所以2a =1+3,2c =2,得a =1+32,c =1.所以离心率e =ca =21+3=3-1.故选D.4.如图,圆柱形玻璃杯中水的液面呈椭圆形状,则该椭圆的离心率为()A.33B.12C.22D.32答案B解析设圆柱的底面半径为1,则椭圆的短半轴长为1,长轴长为2sin 60°=433,即长半轴长为233,所以半焦距为33,故离心率为12.5.已知F 1,F 2是椭圆的两个焦点,满足MF 1→·MF 2→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是()A .(0,1),12D.22,答案C解析依题意,以F 1,F 2为直径且过点M 的圆在椭圆内,得c <b ,即c 2<b 2,c 2<a 2-c 2,2c 2<a 2.故-22<e =c a <22,又0<e <1,所以0<e <22.6.【多选题】设椭圆的方程为x 22+y 24=1,斜率为k 的直线l 不经过原点O ,且与椭圆相交于A ,B 两点,M 为线段AB 的中点,则下列结论正确的是()A .k AB ·k OM =-1B .若点M 坐标为(1,1),则直线l 的方程为2x +y -3=0C .若直线l 的方程为y =x +1,则点M 的坐标为(13,43)D .若直线l 的方程为y =x +2,则|AB |=423答案BD解析设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0)+y 124=1,+y 224=1,两式相减,得x 12-x 222+y 12-y 224=0,即y 1-y 2x 1-x 2·y 1+y 2x 1+x 2=-2,即k AB ·k OM =-2,所以A 不正确;对于B ,由k AB ·k OM =-2,M (1,1),得k AB =-2,所以直线l 的方程为y -1=-2(x -1),即2x +y -3=0,所以B 正确;对于C ,若直线l 的方程为y =x +1,k AB ·k OM =1×4=4≠-2,所以C 不正确;对于D ,由x +2,+y 24=1,得3x 2+4x =0,解得x =0或x =-43,所以|AB |=1+12|-43-0|=423,所以D 正确.故选BD.7.与椭圆4x 2+9y 2=36有相同的焦点,且过点(-3,2)的椭圆方程为________.答案x 215+y 210=18.椭圆x 2+4y 2=16被直线y =12x +1截得的弦长为________.答案35解析2+4y 2=16,=12x +1,消去y 并化简得x 2+2x -6=0,Δ>0.设直线与椭圆的交点为M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-212所以弦长|MN |x 1-x 2|=54[(x 1+x 2)2-4x 1x 2]=54×(4+24)=35.9.椭圆C :x 28+y 24=1的弦AB 的中点为点Q (2,1),则弦AB 所在直线的方程为________,若点P 为椭圆上的任意一点,F 为左焦点,O 为原点,则OP →·FP →的取值范围为________.答案x +y -3=0[2,8+42]解析设A (x 1,y 1),B (x 2,y 2)+y 124=1,+y 224=1,即x 12-x 22+2(y 12-y 22)=0,变形为y 1-y 2x 1-x 2=-12·x 1+x 2y 1+y 2.又AB 的中点为点Q (2,1),则有x 1+x 22=2,y 1+y 22=1,所以y 1-y 2x 1-x 2=-1,即直线AB 的斜率为-1,所以弦AB 所在直线的方程为y =-(x -2)+1,即x +y -3=0.设P (x 0,y 0),又F (-2,0),所以OP →=(x 0,y 0),FP →=(x 0+2,y 0),所以OP →·FP →=2x 0+x 02+y 02=2x 0+x 02+4-x 022=12(x 0+2)2+2.又-22≤x 0≤22,所以当x 0=-2时,OP →·FP →有最小值2;当x 0=22时,OP →·FP →有最大值8+42,所以OP →·FP →∈[2,8+42].10.已知椭圆G :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,右焦点为(22,0),斜率为1的直线l与椭圆G 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2).(1)求椭圆G 的方程;(2)求△PAB 的面积.解析(1)由已知得c =22,c a =63,解得a =2 3.则b 2=a 2-c 2=4,所以椭圆G 的方程为x 212+y 24=1.(2)设直线l 的方程为y =x +m ,x +m ,+y 24=1,得4x 2+6mx +3m 2-12=0.①由Δ=(6m )2-4×4×(3m 2-12)>0,得m 2<16.设A,B的坐标分别为(x1,y1),(x2,y2)(x1<x2),AB的中点为E(x0,y0),则x1+x2=-3m2,则x0=x1+x22=-3m4,y0=x0+m=m4.因为AB是等腰△PAB的底边,所以PE⊥AB.所以PE的斜率k=2-m4-3+3m4=-1,解得m=2,满足Δ>0.此时方程①为4x2+12x=0,解得x1=-3,x2=0.所以y1=-1,y2=2.所以|AB|=32.此时,点P(-3,2)到直线AB:x-y+2=0的距离d=|-3-2+2|2=322.所以△PAB的面积S=12|AB|·d=92.11.过点M(-2,0)的直线m与椭圆x22+y2=1交于P1,P2,线段P1P2的中点为P,设直线m的斜率为k1(k1≠0),直线OP的斜率为k2,则k1k2的值为()A.2B.-2C.12D.-12答案D解析设P1(x1,y1),P2(x2,y2),P(x,y)y12=1,①y22=1.①-②,得(x1+x2)(x1-x2)2+(y1+y2)(y1-y2)=0.即2x·(x1-x2)2+2y(y1-y2)=0.∴k1=y1-y2x1-x2=-x2y.又k2=yx,∴k1·k2=-12.12.已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,左顶点为A,下顶点为B,离心率为32,且△BF1F2的面积为3.则椭圆C的标准方程为________,若点P在椭圆C上,且以AP为直径的圆过B点,则直线AP的斜率为________.答案x24+y2=1310解析由题意可知ca=32,S△BF1F2=bc=3.又a2-b2=c2,所以b=1,c=3,a=2,所以椭圆C的标准方程为x24+y2=1.以AP为直径的圆过B点,即AB⊥BP.因为k AB=-ba=-12,所以k BP=2.所以直线BP的方程为y=2x-1.2x-1,y2=1,=0,=-1=1617,=1517,所以点PAP的斜率k AP=1517-01617+2=310.13.已知中心为坐标原点O,焦点在y轴上的椭圆M的焦距为4,且椭圆M过点(1,3).(1)求椭圆M的方程;(2)若过点C(0,1)的直线l与椭圆M交于A,B两点,且AC→=2CB→,求直线l的方程.解析(1)设椭圆M的方程为y2a2+x2b2=1(a>b>0).∵2c=4,∴c=2,∴a2-b2=c2=4.又椭圆M过点(1,3),∴3a2+1b2=1.b2=4,+1b2=1,解得a2=6,b2=2.∴椭圆M的方程为y26+x22=1.(2)当直线l的斜率不存在时,直线l的方程为x=0.设此时点A,B的坐标为(0,-6)和(0,6),不满足AC→=2CB→,∴直线l的斜率一定存在.设直线l的方程为y=kx+1,kx+1,+x22=1,消去y并整理,得(3+k2)x2+2kx-5=0.则Δ=4k2+20(3+k2)=24k2+60>0.设A(x1,y1),B(x2,y2),则x1+x2=-2k3+k2,x1x2=-53+k2.又∵AC→=2CB→,∴(-x 1,1-y 1)=2(x 2,y 2-1),∴x 1=-2x 2,∴x 1+x 2=-x 2=-2k3+k 2,x 1x 2=-2x 22=-53+k 2,∴8k 2(3+k 2)2=53+k 2,即8k 23+k 2=5,解得k 2=5,∴k =± 5.故直线l 的方程为y =±5x +1.1.设a >0,则椭圆x 2+2y 2=2a 的离心率是()A.12B.22C.13D .与a 的取值有关答案B2.已知点P 是椭圆x 216+y 24=1上一点,其左、右焦点分别为F 1,F 2,若△F 1PF 2外接圆的半径为4,则△F 1PF 2的面积是()A.433B .43C .4 D.433或43答案D解析由正弦定理得|F 1F 2|sin ∠F 1PF 2=2×4=8,∴sin ∠F 1PF 2=32.∴cos ∠F 1PF 2=±12,符合题意.由余弦定理得|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos ∠F 1PF 2=|F 1F 2|2.又|PF 1|+|PF 2|=8,∴|PF 1||PF 2|=16或163.∴S △F 1PF 2=12PF 1||PF 2|sin ∠F 1PF 2=433或4 3.3.已知A ,B 是椭圆x 2a 2+y 2b 2=1(a >b >0)长轴的两个端点,M ,N 是椭圆上关于x 轴对称的两点,直线AM ,BN 的斜率分别为k 1,k 2(k 1k 2≠0).若椭圆的离心率为32,则|k 1|+|k 2|的最小值为()A .1 B.2C.32D.3答案A 解析不妨令A (-a ,0),B (a ,0).设M (x ,y ),N (x ,-y )(-a <x <a ),则k 1=y x +a ,k 2=y a -x.又椭圆的离心率为32,所以b a =1-e 2=12,所以|k 1|+|k 2|=|y |x +a +|y |a -x≥2y 2a 2-x 2=2b a =1(当且仅当|y |x +a =|y |a -x,即x =0时等号成立).故选A.4.已知直线x 4+y 3=1与椭圆x 216+y 29=1相交于A ,B 两点,若椭圆上存在点P 使△ABP 的面积等于12,则这样的点P 共有()A .1个B .2个C .3个D .4个答案B解析可求出|AB |=5,设P (4cos θ,3sin θ),θ∈[0,2π),则P 点到AB 的距离为d =|12(cos θ+sin θ)-12|5=245.∴θ=π或3π2,∴这样的点P 有2个.5.若椭圆的对称轴在坐标轴上,短轴的一个端点与两个焦点组成一个正三角形,焦点到椭圆上的最短距离为3,则这个椭圆的方程为________.答案x 212+y 29=1或y 212+x 29=1解析依题意可得a =2c ,a -c =3,∴c = 3.∴a =23,b 2=9.故椭圆的方程为x 212+y 29=1或y 212+x 29=1.6.2013年我国载人航天飞船神舟十号飞行获得圆满成功.已知神舟十号飞船变轨前的运行轨道是一个以地心为焦点的椭圆,飞船近地点、远地点离地面的距离分别为200km ,350km.设地球半径为R km ,则此时飞船轨道的离心率为________(结果用含R 的式子表示).答案75275+R解析由题意得a -c =200+R ,a +c =350+R ,求得a =275+R ,c =75.所以离心率e =c a =75275+R.7.椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F (c ,0)关于直线l :y =b cx 的对称点Q 在椭圆上,则椭圆的离心率是________.答案22解析设椭圆的左焦点为F 1,O 为坐标原点,连接OQ ,QF 1,QF ,由F 关于直线l :y =b c x 的对称点Q 在椭圆上,得|OQ |=|OF |.又|OF 1|=|OF |,所以F 1Q ⊥QF .所以F 1Q ∥l .不妨设|QF 1|=ck (k >0),则|QF |=bk ,|F 1F |=ak ,因此2c =ak .又2a =ck +bk ,由以上二式可得2c a =k =2a b +c,即c a =a b +c ,即a 2=c 2+bc ,所以b =c ,e =22.8.设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2作x 轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴相交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率等于________.答案33解析利用直线与直线、直线与椭圆的位置关系求交点坐标,再利用两直线垂直时斜率的关系列式以确定离心率.直线AB :x =c ,代入x 2a 2+y 2b 2=1,得y =±b 2a.不妨令∴kBF 1=-b 2a -0c -(-c )=-b 2a 2c=-b 22ac .∴直线BF 1:y -0=-b 22ac(x +c ).令x =0,则y =-b 22a.∴k AD =b 2a +b 22a c=3b 22ac .∵AD ⊥BF 1,∴-b 22ac ·3b 22ac=-1.∴3b 4=4a 2c 2,∴3b 2=2ac ,即3(a 2-c 2)=2ac .∴3e 2+2e -3=0.∴e =-2±4-4×3×(-3)23=-2±423.∵e >0,∴e =-2+423=33.9.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)4,F 1,F 2是椭圆的两个焦点.(1)求椭圆C 的方程;(2)⊙O (O 为坐标原点)是以F 1F 2为直径的圆,直线l :y =kx +m 与⊙O 相切,并与椭圆C 交于不同的两点A ,B ,若OA →·OB →=-32,求k 的值.解析(1)∵2a =4,∴a =2.∴椭圆C 的方程为x 24+y 2b2=1.∵椭圆C,∴14+94b2=1.∴b 2=3,∴椭圆C 的方程为x 24+y 23=1.(2)设O 到l 的距离为d ,⊙O 的半径为r ,则d =r =1.即|m |1+k2=1,∴m 2=1+k 2.①+y 23=1,kx +m ,得(3+4k 2)x 2+8kmx +4m 2-12=0.则Δ=(8km )2-4(3+4k 2)(4m 2-12)=192k 2-48m 2+144=144k 2+96>0.设A ,B 坐标分别为A (x 1,y 1),B (x 2,y 2),∴x 1+x 2=-8km 3+4k 2,x 1·x 2=4m 2-123+4k2.∴y 1·y 2=k 2x 1x 2+km (x 1+x 2)+m 2=3m 2-12k 23+4k 2.∴x 1x 2+y 1y 2=7m 2-12k 2-123+4k 2.②将①代入②,得x 1x 2+y 1y 2=-5-5k 23+4k 2.∵OA →·OB →=x 1x 2+y 1y 2=-32,∴-5-5k 23+4k 2=-32,∴k =±22.10.如图,已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为(3,0)1M 是x 轴上的一点,过M 点的直线l 与椭圆C 交于A ,B 两点(点A 在x 轴的上方).(1)求椭圆C 的方程;(2)若AM →=2MB →,且直线l 与圆O (O 为坐标原点):x 2+y 2=47相切于点N ,求MN 的长.解析(1)2=3,1,解得a 2=4,b 2=1,∴椭圆C 的方程为x 24+y 2=1.(2)设M (m ,0),直线l :x =ty +m ,A (x 1,y 1),B (x 2,y 2).∵直线l 与圆O :x 2+y 2=47相切,∴原点O 到直线l 的距离d =|m |1+t 2=47,即t 2=74m 2-1.由AM →=2MB →,得y 1=-2y 2.y 2=1,ty +m ,得(t 2+4)y 2+2tmy +m 2-4=0,则Δ=16(t 2-m 2+4)=12m 2+48>0.∴y 1+y 2=-2tm t 2+4,y 1y 2=m 2-4t 2+4.∵y 1y 2=-2y 22,y 1+y 2=-2y 2+y 2=-y 2,∴y 1y 2=-2[-(y 1+y 2)]2=-2(y 1+y 2)2,即m 2-4t 2+4=-,化简得(m 2-4)(t 2+4)=-8t 2m 2.m 2-4)(t 2+4)=-8t 2m 2,=74m 2-1,消去t 2,得21m 4-16m 2-16=0,即(3m 2-4)(7m 2+4)=0,解得m 2=43,此时t 2=43,∴±233,连接ON ,在Rt △OMN 中,|MN |=43-47=42121,∴MN 的长为42121.11.已知椭圆C 过点(-1,0),(1,0).(1)求椭圆C 的方程;(2)E ,F 是椭圆C 上的两个动点,如果直线AE 的斜率与AF 的斜率互为相反数,证明直线EF 的斜率为定值,并求出这个定值.解析(1)由题意,得c =1,可设椭圆方程为x 21+b 2+y 2b 2=1(b >0).因为点A 在椭圆上,所以11+b 2+94b 2=1,解得b 2=3或b 2=-34(舍去).所以椭圆C 的方程为x 24+y 23=1.(2)设直线AE 的方程为y =k (x -1)+32,代入x 24+y 23=1得(3+4k 2)x 2+4k (3-2k )x +-12=0.由Δ=36(2k +1)2>0,得k ≠-12.设E (x E ,y E ),F (x F ,y F ).因为点A所以x E y E =kx E +32-k .又直线AF 的斜率与AE 的斜率互为相反数,在上式中以-k 代替k ,可得k ≠12,且x F y F =-kx F +32+k .所以直线EF 的斜率k EF =y F -y E x F -x E =-k (x F +x E )+2k x F -x E=12.即直线EF 的斜率为定值,其值为12.。
考点50 椭圆1.(市昌平区2019届高三5月综合练习二模理)嫦娥四号月球探测器于2018年12月8日搭载长征三号乙运载火箭在某某卫星发射中心发射.12日下午4点43分左右,嫦娥四号顺利进入了以月球球心为一个焦点的椭圆形轨道,如图中轨道③所示,其近月点与月球表面距离为100公里,远月点与月球表面距离为400公里.已知月球的直径为3476公里,则该椭圆形轨道的离心率约为A.125B.340C.18D.35【答案】B 【解析】如下图,F为月球的球心,月球半径为:12×3476=1738,依题意,|AF|=100+1738=1838,|BF|=400+1738=2138. 2a=1838+2138,a=1988,a+c=2138,c=2138-1988=150,椭圆的离心率为:1503198840cea==≈,选B.2.(某某省实验中学等四校2019届高三联合考试理)已知椭圆C :22221x y a b+=,()0a b >>的左、右焦点分别为1F ,2F ,M 为椭圆上异于长轴端点的一点,12MF F ∆的内心为I ,直线MI 交x 轴于点E ,若2MI IE=,则椭圆C 的离心率是( )A .22B .12C .32D .13【答案】B 【解析】解:12MF F ∆的内心为I ,连接1IF 和2IF , 可得1IF 为12MF F ∠的平分线,即有11MF MI F EIE=,22MF MI F EIE=,可得12122MF MF MI F E F E IE===,即有1212222MF MF aF EEF c===, 即有12e =, 故选:B .3.(某某2019届高三高考一模试卷数学理)以椭圆的两个焦点为直径的端点的圆与椭圆交于四个不同的点,顺次连接这四个点和两个焦点恰好组成一个正六边形,那么这个椭圆的离心率为( )A .32-B .31-C .22D .32【答案】B 【解析】解:设椭圆的两个焦点为1F ,2F ,圆与椭圆交于A ,B ,C ,D 四个不同的点, 设122F F c =,则1DF c =,23DF c =. 椭圆定义,得122||||3a DF DF c c =+=+, 所以23131c e a ===-+, 故选:B .4.(某某省某某市高级中学2019届高三适应性考试(6月)数学理)在平面直角坐标系xOy 中,已知点, A F分别为椭圆2222:1(0)x y C a b a b+=>>的右顶点和右焦点,过坐标原点O 的直线交椭圆C 于,P Q 两点,线段AP 的中点为M ,若, , Q F M 三点共线,则椭圆C 的离心率为( ) A .13B .23C .83D .32或83【答案】A 【解析】 如图设()()0000,,,P x y Q x y --,又(,0),(,0)A a F c ,00,22x a y M +⎛⎫∴ ⎪⎝⎭,,,Q F M 三点共线,MF QF k k =000022y y x a c x c -∴=++-, 即00002y y c x x a c=++-, 002c x x a c ∴+=+-,3a c ∴=,13c e a ∴==,故选A. 5.(某某省某某市2019届高三全真模拟考试数学理)已知1F 、2F 分别是椭圆()2222:10x y C a b a b+=>>的左、右焦点,点A 是1F 关于直线bx ay ab +=的对称点,且2AF x ⊥轴,则椭圆C 的离心率为_________.【解析】1F 、2F 分别是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,点A 是1F 关于直线bx ay ab +=的对称点,且2AF x ⊥轴,可得2AF 的方程为x c =,1AF 的方程()a y x c b =+,可得2(,)acA c b, 1AF 的中点为(0,)acb ,代入直线bx ay ab +=,可得:222ac b c a ==-,1c e a=<, 可得210e e --=,解得12e =.6.(某某省某某市2018-2019学年高二5月质量检测(期末)数学(理)已知F 是椭圆()222210x y a b a b+=>>的右焦点,A 是椭圆短轴的一个端点,直线AF 与椭圆另一交点为B ,且2AF FB =,则椭圆的离心率为______.【答案】33【解析】设()0,A b -,(),0F c ,作BC y ⊥轴,垂足为C ,如下图所示:则:22AF b c a =+=由2AF FB =得:23AF c ABBC==32BC c ∴=,即:32B x c = 由椭圆的焦半径公式可知:B BF a ex =-232B AF a ac c a ex FBa a ∴===--⋅,整理可得:223a c =213e ∴=,即3e =本题正确结果:337.(某某省某某市2019届高三第三次教学质量检测数学理)如图是数学家Germinal Dandelin 用来证明一个平面截圆锥得到的截口曲线是椭圆的模型(称为“Dandelin 双球”);在圆锥内放两个大小不同的小球,使得它们分别与圆锥的侧面、截面相切,设图中球1O ,球2O 的半径分别为3和1,球心距离128OO =,截面分别与球1O ,球2O 切于点E ,F ,(E ,F 是截口椭圆的焦点),则此椭圆的离心率等于______.25【解析】如图,圆锥面与其内切球1O ,2O 分别相切与B,A ,连接12,O B O A 则1O BAB ,2O A AB ,过1O 作12O D O A 垂直于D ,连接12,O F O E ,EF 交12O O 于点C设圆锥母线与轴的夹角为α ,截面与轴的夹角为β 在12Rt O O D 中,2312DO ,22182215O D11221515cos84O O O D 128O O = 218CO O C21EO CFO C11218O C O CO E O F 解得1=2O C 222211213CFO FO C即13cos2CF O C则椭圆的离心率3cos 252cos 5154e8.(某某省某某市师X 大学某某市附属中学2019届高三第四次模拟考试)已知椭圆()2222:10x y E a b a b+=>>与y 轴正半轴交于点(3M ,离心率为12.直线l 经过点()(),00P t t a <<和点()0,1Q .且与椭图E 交于A 、B 两点(点A 在第二象限). (1)求椭圆E 的标准方程; (2)若AP PB λ=,当230t <≤时,求λ的取值X 围. 【答案】(1)22143x y +=(2)35λ⎛+∈ ⎝⎦【解析】解析:(1).由题意,12c e a ==且3b =2a =,所以椭圆E 的标准方程为22143x y +=.(2).因为直线l 经过点()(),00P t t a <<和点()0,1Q ,所以直线l 的斜率为1t -,设1:1l y x t=-+,将其代入椭圆方程22143x y +=中,消去x 得()22223463120t y t y t +-+-=,当∆>0时,设()11,A x y 、()22,B x y ,则2122634t y y t +=+……①,212231234t y y t -=+……②因为AP PB λ=,所以()()1122,,t x y x t y λ--=-,所以12y y λ=-……③ 联立①②③,消去1y 、2y ,整理得()222124141t λλ⎛⎫=+- ⎪⎝⎭-.当0t <≤时,()[)2221241412,1t λλ⎛⎫=+-∈+∞ ⎪⎝⎭-,解351,2λ⎫⎛+∈⎪ ⎪ ⎣⎭⎝⎦由()2122261034t y y y t λ+=-=>+且20y <,故1λ>,所以λ⎛∈ ⎝⎦. 9.(某某省威海市2019届高三二模考试数学理)在直角坐标系xOy 中,设椭圆2222:1(0)x y C a b a b+=>>的左焦点为1F ,短轴的两个端点分别为,A B ,且160AF B ∠=︒,点1)2在C 上. (Ⅰ)求椭圆C 的方程;(Ⅱ)若直线:(0)l y kx m k =+>与椭圆C 和圆O 分别相切于P ,Q 两点,当OPQ ∆面积取得最大值时,求直线l 的方程.【答案】(Ⅰ) 2214x y +=.(Ⅱ) y x =【解析】(Ⅰ)由160AF B ∠=︒,可得2a b =,①由椭圆C经过点1)2,得2231144b b+=,② 由①②得224,1a b ==,所以椭圆C 的方程为2214x y +=.(Ⅱ)由2214x y y kx m ⎧+=⎪⎨⎪=+⎩消去y 整理得()222148440k x kmx m +++-=(*),由直线l 与椭圆相切得,()()222264161140k m m k ∆=--+=,整理得2241m k =+,故方程(*)化为2228160m x kmx k ++=,即2(4)0mx k +=, 解得4kx m-=, 设()11,P x y ,则124414km k x k m--==+,故111y kx m m =+=, 因此41(,)k P m m-. 又直线:(0)l y kx m k =+>与圆O相切,可得||OQ =所以||PQ ==所以1||||2OPQS PQ OQ ∆=⋅= 将2241m k =+式代入上式可得OPQS ∆===21321k k =⋅+3112k k=⋅+, 由0k >得12k k+≥,所以313124OPQ S k k∆=⋅≤+,当且仅当1k =时等号成立,即1k =时OPQ S ∆取得最大值.由22415m k =+=,得5m =±, 所以直线l 的方程为5y x =±.10.(某某省日照市2019届高三5月校际联合考试数学理)如图,已知椭圆()222210x y E a b a b +=:>>,()4,0A 是长轴的一个端点,弦BC 过椭圆的中心O ,且213213cos OA CA OC OB BC BA 〈〉=-=-,,.(1)求椭圆E 的方程.(2)过椭圆E 右焦点F 的直线,交椭圆E 于11,A B 两点,交直线8x =于点M ,判定直线11,,CA CM CB 的斜率是否依次构成等差数列?请说明理由.【答案】(1)2211612x y +=;(2)是,理由见详解. 【解析】 (1)由2OC OB BC BA -=-,得2B A C C =,即2O A C C =,所以AOC ∆是等腰三角形, 又4a OA ==,∴点C 的横坐标为2;又213cos OACA 〈〉=,, 设点C 的纵坐标为C y 222132C y =+,解得3C y =±, 应取(2,3)C ,又点C 在椭圆上,∴22222314b +=,解得212b =,∴所求椭圆的方程为2211612x y +=;(2)由题意知椭圆的右焦点为(2,0)F ,(2,3)C , 由题意可知直线11,,CA CM CB 的斜率存在, 设直线11A B 的方程为(2)y k x =-,代入椭圆2211612x y +=并整理,得2222(34)1616480k x k x k +-+-=;设11(,)A x y ,22(,)B x y ,直线11,,CA CM CB 的斜率分别为123,,k k k ,则有21221634k x x k+=+,2122164834k x x k -=+, 可知M 的坐标为(8,6)M k ;∴()()12121312122323332222k x k x y y k k x x x x ------+=+=+---- 1212124232142()x x k k x x x x +-=-•=-+-+,又263222182k k k -=•=--; 所以1322k k k +=,即直线11,,CA CM CB 的斜率成等差数列.11.(某某市某某区2019届高三一模数学理)已知椭圆C :22221(0)x y a b a b +=>>过点()2,1,且离心率为(Ⅰ)求椭圆C 的方程;(Ⅱ)若过原点的直线1l 与椭圆C 交于P 、Q 两点,且在直线2:0l x y -+=上存在点M ,使得MPQ 为等边三角形,求直线1l 的方程。
人教版三年级下册数学椭圆和正方体的面积练习题1. 椭圆的面积 (Area of an Ellipse)题目一:一个椭圆的长轴长10厘米,短轴长6厘米,请计算这个椭圆的面积。
Solution:首先,我们需要知道椭圆面积的计算公式,即椭圆的面积为$π × 长轴半径 ×短轴半径$。
已知椭圆的长轴长为10厘米,短轴长为6厘米。
根据椭圆的性质,长轴的一半即为长轴半径,短轴的一半即为短轴半径。
长轴半径 = 10厘米 ÷ 2 = 5厘米短轴半径 = 6厘米 ÷ 2 = 3厘米将数据代入公式,可以计算出椭圆的面积:椭圆的面积= π × 5厘米 × 3厘米接下来,我们需要确定π的值。
通常我们可以使用近似值3.14。
椭圆的面积≈ 3.14 × 5厘米 × 3厘米计算结果:椭圆的面积≈ 47.1平方厘米2. 正方体的面积 (Area of a Cube)题目二:一个正方体的棱长为8厘米,请计算这个正方体的总面积。
Solution:正方体的总面积由六个平面构成,每个平面的面积相等。
已知正方体的棱长为8厘米。
我们需要知道正方形的面积计算公式,即面积等于边长的平方。
正方体的总面积 = 6 ×正方形的面积正方形的面积 = 边长 ×边长代入已知数据,我们可以计算正方体的总面积:正方形的面积 = 8厘米 × 8厘米正方形的面积 = 64平方厘米正方体的总面积 = 6 × 64平方厘米计算结果:正方体的总面积 = 384平方厘米以上是关于人教版三年级下册数学椭圆和正方体的面积练习题的解答。
希望能帮助到您!。
人教版八年级数学上册椭圆练习题
1. 椭圆的定义和特点
椭圆是指平面上到两个定点的距离之和等于常数的点的集合。
椭圆的特点包括:
- 两个焦点:椭圆上每个点到两个焦点的距离之和等于常数(且常数小于两个焦点之间的距离)。
- 长轴和短轴:椭圆的长轴是两个焦点之间的距离,短轴是椭圆的中心与椭圆上任意一点的距离。
- 中心:椭圆的中心是椭圆的对称中心。
- 直线:椭圆的长轴上有两个端点,被称为顶点,椭圆上除了顶点外,还存在其他点,与椭圆上任意一点和中心连线的交点,称为焦点。
- 离心率:椭圆的离心率是一个介于0和1之间的数,可以通过椭圆的长轴和短轴计算得出。
2. 椭圆的练题
下面是一些椭圆的练题供同学们练:
1. 已知椭圆的长轴长度为10cm,短轴长度为6cm,求椭圆的离心率。
2. 椭圆的焦距为8cm,长轴长度为12cm,求椭圆的短轴长度。
3. 已知椭圆的中心为(2, 3),焦点A的坐标为(4, 3),离心率为0.5,求椭圆的方程。
4. 椭圆的中心为原点,焦点A的坐标为(3, 0),焦点B的坐标
为(-3, 0),过焦点A的直线与椭圆的交点为C和D,求证AC = BD。
5. 已知椭圆的长轴和短轴分别是a和b,证明椭圆上任意一点
P到两个焦点的距离之和等于2a。
以上是关于椭圆的一些基本定义和练习题,希望同学们通过练
习能更好地理解和掌握椭圆的性质和计算方法。
►基础梳理1.椭圆的定义及标准方程.(1)平面内与两个定点F 1,F 2的距离之和等于常数(大于|F 1F 2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两点间的距离叫做椭圆的焦距.(2)椭圆的标准方程(请同学们自己填写表中空白的内容):焦点在x 轴上 焦点在y 轴上标准方程 x 2a 2+y 2b 2=1(a >b >0) y 2a 2+x 2b 2=1(a >b >0)焦点 (±c ,0) (0,±c )a ,b ,c 的关系:c 2=a 2-b 22.只有当||PF 1+||PF 2=2a >||F 1F 2时,点P 的轨迹才是椭圆; 当||PF 1+||PF 2=2a =||F 1F 2时,点P 的轨迹是线段F 1F 2; 当||PF 1+||PF 2=2a <||F 1F 2时,点P 的轨迹不存在. 3.正确理解椭圆的两种标准形式. (1)要熟记a ,b ,c 三个量的关系.椭圆方程中,a 表示椭圆上的点M 到两焦点间距离和的一半,正数a ,b ,c 恰构成一个直角三角形的三条边,a 是斜边,所以a >b ,a >c ,且a 2=b 2+c 2,其中c 是焦距的一半,叫做半焦距.(2)通过标准方程可以推断焦点的位置,其方法是:看x 2,y 2的分母大小,哪个分母大,焦点就在哪个坐标轴上.4.用待定系数法求椭圆标准方程的步骤.(1)作推断:依据条件推断椭圆的焦点在x 轴上还是在y 轴上. (2)设方程:①依据上述推断设方程为x 2a 2+y 2b 2=1或x 2b 2+y 2a2=1.②在不能确定焦点位置的状况下也可设mx 2+ny 2=1(m >0,n >0且m ≠n ). (3)找关系,依据已知条件,建立关于a ,b ,c 或m ,n 的方程组. (4)解方程组,代入所设方程即为所求.,►自测自评1.到两定点F 1(-4,0)和F 2(4,0)的距离之和为8的点M 的轨迹是线段F 1F 2.2.椭圆的焦点坐标为(4,0),(-4,0),椭圆上一点到两焦点的距离之和为10,则椭圆的标准方程为x 225+y 29=1. 3.已知a =4,c =3,焦点在y 轴上的椭圆的标准方程为x 27+y 216=1.4.椭圆x 225+y 29=1的焦点坐标为(4,0),(-4,0).1.已知两定点F 1(-2,0),F 2(2,0),点P 是平面上一动点,且|PF 1|+|PF 2|=6,则点P 的轨迹是(C ) A .圆 B .直线 C .椭圆 D .线段2.若椭圆的两焦点为(-2,0),(2,0),且过点⎝⎛⎭⎫52,-32,则该椭圆的方程是(D ) A.y 28+x 24=1 B.y 210+x26=1 C.y 24+x 28=1 D.y 26+x 210=1 解析:由题意知,所求椭圆的焦点在x 轴上,可以排解A 、B ;再把点⎝⎛⎭⎫52,-32代入方程,可知应选D. 3.过椭圆4x 2+2y 2=1的一个焦点F 1的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一焦点F 2构成△ABF 2,那么△ABF 2的周长是______.答案:2 24.写出适合下列条件的椭圆的标准方程: (1)a =4,b =3焦点在x 轴上; (2)a =5,c =2焦点在y 轴上;(3)求中心在原点,焦点在坐标轴上,且经过点⎝⎛⎭⎫63,3和点⎝⎛⎭⎫223,1.答案:(1)x 216+y 29=1;(2)y 225+x 221=1;(3)x 2+y 29=1.5.设F 1、F 2分别为椭圆C :x 2a 2+y2b2=1,(a >b >0)的左右两焦点,若椭圆C上的点A ⎝⎛⎭⎫1,32到F 1、F 2两点的距离之和为4,求椭圆C 的方程及焦点坐标.解析:椭圆C 的焦点在x 轴上,由椭圆上的点A 到F 1,F 2两点的距离之和是4,得2a =4,即a =2.又A ⎝⎛⎭⎫1,32在椭圆C 上, ∴122+⎝⎛⎭⎫322b 2=1,解得b 2=3. ∴c 2=a 2-b 2=1.∴椭圆C 的方程为x 24+y 23=1,焦点坐标为F (±1,0).。
人教版小学五年级上册第六章椭圆的周长知识点及习题人教版小学五年级上册第六章椭圆的周长知识点及题椭圆的定义椭圆是指平面上到两个定点的距离之和等于常数的点的集合。
椭圆的周长计算公式椭圆的周长可以通过以下公式计算:周长= π * (a + b)其中,a和b分别表示椭圆的长轴和短轴。
椭圆的题以下是一些椭圆周长方面的题,供同学们练:1. 一个椭圆的长轴长为8cm,短轴长为6cm,求该椭圆的周长是多少?2. 某个椭圆的周长为50cm,长轴是短轴的3倍,求该椭圆的长轴和短轴长度分别是多少?3. 某个椭圆的周长是30cm,长轴和短轴之差是6cm,求该椭圆的长轴和短轴长度分别是多少?4. 若一个椭圆的周长等于其长轴长的2倍,求该椭圆的短轴长度是多少?以上题希望可以帮助同学们掌握椭圆的周长计算方法。
参考答案1. 周长= π * (8 + 6) = 22π cm2. 设短轴长度为x,则长轴长度为3x。
根据周长计算公式,可得50 = π * (3x + x)。
解方程得 x = 10。
因此,长轴为30cm,短轴为10cm。
3. 设短轴长度为x,则长轴长度为x + 6。
根据周长计算公式,可得30 = π * (x + x + 6)。
解方程得 x = 6。
因此,长轴为12cm,短轴为6cm。
4. 设短轴长度为x,则长轴长度为2x。
根据周长计算公式,可得2x = π * (2x + x)。
解方程得 x = 0。
因此,短轴长度为0cm,椭圆退化成直线。
以上就是关于椭圆周长的知识点和习题的内容,希望对同学们的学习有所帮助。
椭圆练习1一.选择题1.已知椭圆x 210-m +y 2m -2=1的长轴在y 轴上,若焦距为4,则m 等于( ) A .4B .5C .7D .82.已知△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .2 3B .6C .4 3D .123.(2018·全国卷Ⅰ)已知椭圆C :x 2a 2+y 24=1的一个焦点为(2,0),则C 的离心率为( ) A .13B .12C .22D .2234.(2019·北京高考)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,则( ) A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b 5.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF ⊥x 轴,直线AB 交y 轴于点P .若AP ―→=2PB ―→,则椭圆的离心率是( ) A .32 B .22C .13D .12二.填空题 6.若焦点在x 轴上的椭圆与x 轴的一个交点到两焦点的距离分别为3和1,则椭圆的标准方程为________.7.已知F 1,F 2是椭圆x 24+y 22=1的左、右焦点,过F 1的直线交椭圆于A ,B 两点,则该椭圆的离心率是________;△ABF 2的周长是________.8.已知中心是坐标原点的椭圆C 过点⎝⎛⎭⎫1,255,且它的一个焦点为(2,0),则C 的标准方程为________.三.简答题9.已知F1,F2是椭圆x2100+y264=1的两个焦点,P是椭圆上任意一点.(1)若∠F1PF2=π3,求△PF1F2的面积;(2)求|PF1|·|PF2|的最大值.10.设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为1的直角三角形.(1)求该椭圆的离心率和标准方程;(2)点M为该椭圆上任意一点,求|MA|的取值范围.。
人教版高二上学期数学(选择性必修1)《3.1.2椭圆的标准方程及性质的应用》练习题及答案学校:___________班级:___________姓名:___________学号:___________一、选择题1.直线y =kx -k 与椭圆x 29+y 24=1的位置关系为( ) A.相交 B.相切C.相离D.不确定2.直线y =kx +2和椭圆x 23+y 22=1有公共点,则k 的取值范围是( ) A.k <-63或k >63 B.k ≤-63或k ≥63C.-63<k <63D.-63≤k ≤633.德国天文学家开普勒发现天体运行轨道是椭圆,已知地球运行的轨道是一个椭圆,太阳在它的一个焦点上,轨道近日点到太阳中心的距离和远日点到太阳中心的距离之比是29∶30,那么地球运行轨道所在椭圆的离心率是( ) A.159 B.259 C.2959 D.30594.已知过圆锥曲线x 2m +y 2n =1上一点P (x 0,y 0)的切线方程为x 0x m +y 0y n =1.过椭圆x 212+y 24=1上的点A (3,-1)作椭圆的切线l ,则过点A 且与直线l 垂直的直线方程为( )A.x -y -3=0B.x +y -2=0C.2x +3y -3=0D.3x -y -10=05.美学四大构件是:史诗、音乐、造型(绘画、建筑等)和数学.素描是学习绘画的必要一步,它包括了明暗素描和结构素描,而学习几何体结构素描是学习素描最重要的一步.某同学在画“切面圆柱体”(用与圆柱底面不平行的平面去截圆柱,底面与截面之间的部分叫做切面圆柱体)的过程中,发现“切面”是一个椭圆(如图所示),若“切面”所在平面与底面成60°角,则该椭圆的离心率为( )A.12B.22C.32D.136.如图是一个篮球在太阳光照射下的影子,已知篮球的直径为22 cm ,现太阳光与地面的夹角为60°,则此椭圆形影子的离心率为( )A.13B.12C.22D.327.(多选)若直线y =kx +2与椭圆x 23+y 22=1相切,则斜率k 的值是( ) A.63 B.-63C.-33 D.33 8.(多选)如图所示,某探月卫星沿地月转移轨道飞向月球,在月球附近一点P 处变轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点处第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,且轨道Ⅱ的右顶点为轨道Ⅰ的中心.设椭圆Ⅰ与Ⅱ的长半轴长分别为a 1和a 2,半焦距分别为c 1和c 2,离心率分别为e 1,e 2,则下列结论正确的是( )A .a 1+c 1>2(a 2+c 2)B .a 1-c 1=a 2-c 2C .e 1=e 2+12D .椭圆Ⅱ比椭圆Ⅰ更扁 二、填空题9.某隧道的拱线设计为半个椭圆的形状,最大拱高h 为6米(如图所示),路面设计是双向车道,车道总宽为87 米,如果限制通行车辆的高度不超过4.5米,那么隧道设计的拱宽d 至少应是________米.10.过点M(1,1)作斜率为-12的直线与椭圆C:x2a2+y2b2=1(a>b>0)相交于A,B两点,若M是线段AB的中点,则椭圆C的离心率为________11.若直线y=x+2与椭圆x2m+y23=1有两个公共点,则m的取值范围是________________12.罗马竞技场,建于公元72年到82年,是古罗马文明的象征,其内部形状近似为一个椭圆形,其长轴长约为188米,短轴长约为156米,竞技场分为表演区与观众区,中间的表演区也近似为椭圆形,其长轴长为86米,短轴长为54米,若椭圆的面积为πab(其中a,b分别为椭圆的长半轴长与短半轴长,π取3.14),已知观众区可以容纳9万人,由此推断,观众区每个座位所占面积约为________平方米(保留小数点后两位).三、解答题13.已知椭圆x2+8y2=8,在椭圆上求一点P,使P到直线l:x-y+4=0的距离最短,并求出最短距离.14.已知点A,B的坐标分别是(-1,0),(1,0),直线AM,BM相交于点M,且它们的斜率之积为-2.(1)求动点M 的轨迹方程;(2)若过点N ⎝ ⎛⎭⎪⎫12,1的直线l 交动点M 的轨迹于C ,D 两点,且N 为线段CD 的中点,求直线l 的方程.15.如图,某市新城公园将在长34米、宽30米的矩形地块内开凿一个“挞圆”形水池,水池边缘由两个半椭圆x 2a 2+y 2b 2=1(x ≤0)和y 2b 2+x 281=1(x ≥0)组成,其中a >b >9,“挞圆”内切于矩形(即“挞圆”与矩形各边均有且只有一个公共点).(1)求“挞圆”的方程;(2)在“挞圆”形水池内建一矩形网箱养殖观赏鱼,若该矩形网箱的一条边所在直线方程为y =t (t ∈(0,15)),求该网箱所占水面面积的最大值.参考答案及解析一、选择题1.A 解析:由⎩⎪⎨⎪⎧ y =kx -k ,x 29+y 24=1,消去y 得(4+9k 2)x 2-18k 2x +9k 2-36=0Δ=(-18k 2)2-4(4+9k 2)(9k 2-36)=576(2k 2+1),易知Δ>0恒成立∴直线y =kx -k 与椭圆x 29+y 24=1的位置关系为相交. 2.B 解析:将y =kx +2代入椭圆方程x 23+y 22=1,消去y ,可得(2+3k 2)x 2+12kx +6=0 ∴Δ=144k 2-24(2+3k 2)=72k 2-48∵直线和椭圆有公共点,∴72k 2-48≥0,∴k ≤-63或k ≥63. 3.A 解析:设椭圆的长半轴长为a ,半焦距为c ,由题意可得a -c a +c =2930整理得a =59c ,即c a =159. ∴地球运行轨道所在椭圆的离心率是159. 4.B 解析:过椭圆x 212+y 24=1上的点A (3,-1)的切线l 的方程为3x 12+(-y )4=1,即x -y -4=0,切线l 的斜率为1.与直线l 垂直的直线的斜率为-1,故过点A 且与直线l 垂直的直线方程为y +1=-(x -3),即x +y -2=0.5.C 解析:设椭圆长轴长为2a ,短轴长为2b ,由“切面”所在平面与底面成60°角可得2b 2a =cos 60°,即a =2b ,所以e =c a =a 2-b 2a 2=32. 6.B 解析:如图,l 1,l 2 是两条与球相切的直线,分别切于点A ,C ,与底面交于点B ,D ,设篮球的半径为R∴AC =2R =22,R =11过点C 作CE ∥BD 交l 1于点E ,则CE =BD在△ACE 中,CE =AC sin 60°,∴CE =22×23=2a ,∴a =223=2R 3,b =R ∴c =4R 23-R 2=33R ,∴e =c a =3R 32R 3=12. 7.AB 解析:由⎩⎪⎨⎪⎧ y =kx +2,x 23+y 22=1,得(3k 2+2)x 2+12kx +6=0,由题意知Δ=144k 2-24(3k 2+2)=0 解得k =±63. 8.ABC 解析:对A ,由题可知a 1=2a 2,c 1=a 2+c 2>2c 2,所以a 1+c 1>2(a 2+c 2),所以选项A正确;对B ,由a 1-c 1=|PF |,a 2-c 2=|PF |,得a 1-c 1=a 2-c 2,所以选项B 正确;对C ,由a 1=2a 2,c 1=a 2+c 2,得c 1a 1=a 2+c 22a 2=1+c 2a 22,即e 1=e 2+12,所以选项C 正确;对D ,根据选项C 知,2e 1=e 2+1>2e 2,所以e 1>e 2,即椭圆Ⅰ比椭圆Ⅱ更扁,所以选项D 错误.故选ABC .二、填空题9.答案:32解析:设椭圆方程为x 2a 2+y 236=1,当点(47,4.5)在椭圆上时,16×7a 2+⎝ ⎛⎭⎪⎫92236=1,解得a =16 ∵车辆高度不超过4.5米,∴a ≥16,d =2a ≥32,故拱宽至少为32米.10.答案:22解析:设A (x 1,y 1),B (x 2,y 2),则x 21a 2+y 21b2=1,① x 22a 2+y 22b 2=1.② ∵M 是线段AB 的中点,∴x 1+x 22=1,y 1+y 22=1. ∵直线AB 的方程是y =-12(x -1)+1,∴y 1-y 2=-12(x 1-x 2). 由①②两式相减可得x 21-x 22a 2+y 21-y 22b 2=0,即2a 2+⎝ ⎛⎭⎪⎫-12·2b 2=0.∴a =2b ,∴c =b ,∴e =c a =22. 11.答案:(1,3)∪(3,+∞)解析:∵x 2m +y 23=1表示椭圆,∴m >0且m ≠3. 由⎩⎪⎨⎪⎧ y =x +2,x 2m +y 23=1,得(m +3)x 2+4mx +m =0∴Δ=16m 2-4m (m +3)>0,解得m >1或m <0.∴m >1且m ≠3∴m 的取值范围是(1,3)∪(3,+∞).12.答案:0.22解析:由条件可得,竞技场的总面积为π×1882×1562=7 332π(平方米),表演区的面积为π×862×542=1 161π(平方米),故观众区的面积为7 332π-1 161π=6 171π(平方米),故观众区每个座位所占面积为6 171π90 000≈6 171×3.1490 000≈0.22(平方米).三、解答题13.解:设与直线x -y +4=0平行且与椭圆相切的直线方程为x -y +a =0(a ≠4) 由⎩⎨⎧ x 2+8y 2=8,x -y +a =0,消x 得9y 2-2ay +a 2-8=0 由Δ=4a 2-36(a 2-8)=0,解得a =3或a =-3∴与直线l 距离较近的切线为x -y +3=0,两条直线之间的距离即为所求最短距离 且直线x -y +3=0与椭圆的切点即为所求点P .故所求最短距离d =|4-3|2=22. 由⎩⎨⎧ x 2+8y 2=8,x -y +3=0,得⎩⎪⎨⎪⎧ x =-83,y =13,即P ⎝ ⎛⎭⎪⎫-83,13.14.解:(1)设M (x ,y ).因为k AM ·k BM =-2,所以y x +1·y x -1=-2(x ≠±1),化简得2x 2+y 2=2(x ≠±1). 即点M 的轨迹方程为2x 2+y 2=2(x ≠±1).(2)设C (x 1,y 1),D (x 2,y 2).当直线l ⊥x 轴时,直线l 的方程为x =12,易知此时线段CD 的中点不是N ,不符合题意. 当直线l 不与x 轴垂直时,设直线l 的方程为y -1=k ⎝ ⎛⎭⎪⎫x -12,将点C (x 1,y 1),D (x 2,y 2)的坐标代入2x 2+y 2=2(x ≠±1),得2x 21+y 21=2,① 2x 22+y 22=2,② ①-②整理得k =y 1-y 2x 1-x 2=-2(x 1+x 2)y 1+y 2=-2×2×122×1=-1 故直线l 的方程为y -1=-⎝ ⎛⎭⎪⎫x -12,即所求直线l 的方程为2x +2y -3=0. 15.解:(1)由题意知b =15,a +9=34,解得a =25,b =15.所以“挞圆”方程为x 2252+y 2152=1(x ≤0)和y 2152+x 292=1(x ≥0). (2)设P (x 0,t )为矩形在第一象限内的顶点,Q (x 1,t )为矩形在第二象限内的顶点则t 2152+x 2092=1,x 21252+t 2152=1,可得x 1=-259x 0.所以内接矩形的面积S =2t (x 0-x 1)=2t ×349x 0=15×34×2·x 09·t 15≤15×34⎝ ⎛⎭⎪⎫x 2092+t 2152=510 当且仅当x 09=t 15时,S 取最大值510. 所以网箱所占水面面积的最大值为510平方米。
人教版六年级上册椭圆的周长练习题题一一个椭圆的长轴为12cm,短轴为8cm,求该椭圆的周长。
解答:椭圆的周长公式为:C = 2π * √((a² + b²) / 2)其中,a为长轴的一半,b为短轴的一半。
本题中,长轴 a = 12cm,短轴 b = 8cm。
代入公式计算,得到:C = 2π * √((12² + 8²) / 2)2π * √((144 + 64) / 2)2π * √(208 / 2)2π * √1042π * 10.19864.079cm所以,该椭圆的周长约为64.079cm。
题二一个椭圆的周长为48πcm,且长轴是短轴的2倍,求该椭圆的长轴和短轴长度。
解答:设长轴为 a,短轴为 b。
题目中已知长轴是短轴的2倍,即 a = 2b。
椭圆的周长为48πcm,代入周长公式,得到:48π = 2π * √((a² + b²) / 2)24 = √((a² + b²) / 2)由 a = 2b,可得到 a² = 4b²。
代入上式,并整理方程,得到:24 = √((4b² + b²) / 2)24 = √(5b² / 2)576 = 5b² / 21152 = 5b²b² = 230.4b ≈ √230.4b ≈ 15.166cm由 a = 2b,可得到a ≈ 2 * 15.166a ≈ 30.332cm所以,该椭圆的长轴约为30.332cm,短轴约为15.166cm。
题三已知一个椭圆的长轴为16cm,短轴上的焦点到椭圆周上一点的距离为6cm,求该点到椭圆周上另一焦点的距离。
解答:根据椭圆的定义,两焦点到椭圆周上任一点的距离之和等于椭圆的长轴长度。
即,焦点到椭圆周上一点的距离 + 焦点到椭圆周上另一焦点的距离 = 长轴长度。
已知长轴为16cm,焦点到椭圆周上一点的距离为6cm。
椭圆习题1.圆6x 2+ y 2=6的长轴的端点坐标是A.(-1,0)、(1,0)B.(-6,0)、(6,0)C.(-6,0)、(6,0)D.(0,-6)、(0,6)2.椭圆x 2+ 8y 2=1的短轴的端点坐标是A.(0,-42)、(0,42) B.(-1,0)、(1,0) C.(22,0)、(-2,0) D.(0,22)、(0,-22)3.椭圆3x 2+2y 2=1的焦点坐标是A.(0,-66)、(0,66)B.(0,-1)、(0,1)C.(-1,0)、(1,0)D.(-66,0)、(66,0)4.椭圆12222=+a y b x (a >b >0)的准线方程是A.222b a a y +±= B.222b a a y -±= C.222b a b y -±= D.222b a a y +±=5.椭圆14922=+y x 的焦点到准线的距离是A.559554和B.5514559和C.5514554和D.55146.已知F 1、F 2为椭圆12222=+b y a x (a >b >0)的两个焦点,过F 2作椭圆的弦AB ,若△AF 1B 的周长为16,椭圆离心率23=e ,则椭圆的方程是A.13422=+y xB.131622=+y xC.1121622=+y xD.141622=+y x7.离心率为23,且过点(2,0)的椭圆的标准方程是A.1422=+y xB.1422=+y x 或1422=+y xC.14122=+y x D.1422=+y x 或116422=+y x8.椭圆12222=+b y a x 和k b y a x =+2222(k >0)具有A.相同的离心率B.相同的焦点C.相同的顶点D.相同的长、短轴9.点A (a ,1)在椭圆12422=+y x 的内部,则a 的取值范围是A.-2<a <2B.a <-2或a >2C.-2<a <2D.-1<a <110.设F 是椭圆12222=+b y a x 的右焦点,P (x ,y )是椭圆上一点,则|FP |等于A.ex +aB.ex -aC.ax -eD.a -ex11.已知椭圆12222=+b y a x (a >b >0)的离心率等于53,若将这个椭圆绕着它的右焦点按逆时针方向旋转2π后,所得的新椭圆的一条准线的方程y =316,则原来的椭圆方程是A.14812922=+y xB.16410022=+y xC.1162522=+y xD.191622=+y x 12.椭圆145222++a y a x =1的焦点在x 轴上,则它的离心率的取值范围是 A.(0,51) B.(51,55)] C.⎥⎦⎤ ⎝⎛55,0 D.⎪⎪⎭⎫⎢⎣⎡1,55 13.椭圆1)6(4)3(22=++-m y x 的一条准线为7=x ,则随圆的离心率e 等于 A.21 B.22 C.23D.4114.已知椭圆的两个焦点为F 1、F 2,过F 2引一条斜率不为零的直线与椭圆交于点A 、B ,则三角形ABF 1的周长是A.20B.24C.32D.4015.已知椭圆的长轴为8,短轴长为43,则它的两条准线间的距离为A.32B.16C.18D.6416.已知(4,2)是直线L 被椭圆193622=+y x 所截得的线段的中点,则L 的方程是A.x -2y =0B.x +2y -4=0C.2x +3y+4=0D.x +2y -8=017.若椭圆经过原点,且焦点为F 1(1,0),F 2(3,0),则其离心率为A.21B.32C.43D.4118.椭圆的短轴上的两个三等分点与两个焦点构成一个正方形,则椭圆的离心率e 为A.1010B.1717C.13132D.373719.椭圆ax 2+by 2=1与直线y =1-x 交于A 、B 两点,若过原点与线段AB 中点的直线的倾角为30°,则b a的值为A.43B.33C.23D.320.过椭圆)0(12222>>=+b a b y a x 的中心的弦为PQ ,焦点为F 1,F 2,则△PQF 1的最大面积是A. a bB. b cC. c aD. a b c21.一广告气球被一束平行光线投射到地平面上,其投影呈椭圆形,若此椭圆的离心率为21,则光线与地平面所成的角为A.3πB.6πC.arccos 31D.4π22.如果椭圆的焦距是8,焦点到相应的准线的距离为49,则椭圆的离心率为 A. 54 B. 43 C.32 D.-4323.线段A 1A 2、B 1B 2分别是已知椭圆的长轴和短轴,F 2是椭圆的一个焦点(|A 1F 2|>|A 2F 2|),若该椭圆的离心率为215-,则∠A 1B 1F 2等于A.30°B.45°C.120°D.90°24.已知椭圆1222=+y a x (a >1)的两个焦点为F 1,F 2,P 为椭圆上一点,且∠F 1PF 2=60o ,则|PF 1|·|PF 2|的值为A.1B.31C.34D.3225.椭圆12222=+b y a x 和k b y a x =+2222(k >0)具有A..相同的长短轴B.相同的焦点C.相同的离心率D.相同的顶点26.椭圆125922=+y x 的准线方程是 A.x =425±B.y =425±C.x =49±D.y =49±27.若椭圆13422=+y x 上一点P 到右焦点的距离为3,则P 到右准线的距离是 A.43 B.23C.6D.1228.自椭圆12222=+b y a x (a >b >0)上任意一点P ,作x 轴的垂线,垂足为Q ,则线段PQ 的中点M 的轨迹方程是 14.A 2222=+b y a x 14.B 2222=+b y a x 14.C 2222=+b y a x 14.D 2222=+b y a x29.椭圆的一个顶点与两个焦点构成等边三角形,则此椭圆的离心率是A.51B.43C.33D.2130.若椭圆两准线间的距离等于焦距的4倍,则这个椭圆的离心率为A.41B.22C.42D.2131.椭圆121322=++m y m x 的准线平行于x 轴,则m 的取值范围是A.m >0B.0<m <1C.m >1D.m >0且m ≠132.椭圆x 2+ 9y 2=36的右焦点到左准线的距离是A.2217B.217C.217D.22933.到定点(2,0)的距离与到定直线x =8的距离之比为22的动点的轨迹方程是A.1121622=+y xB.1161222=+y x C.0568222=-++x y x D.0688222=+-+x y x 34.直线x -y -m =0与椭圆1922=+y x 且只有一个公共点,则m 的值是A.10B.±10C.±10D.1035.如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是A.(0,+∞)B.(0,2)C.(1,+∞)D.(0,1)36.椭圆192522=+y x 上点P 到右准线等于4.5,则点P 到左准线的距离等于A.8B.12.5C.4.5D.2.2537.若椭圆的两焦点把两准线间的距离等分成三份,则椭圆的离心率等于A.3B.23C.33D.4338.中心在原点,长轴长是短轴长的2倍,一条准线方程是x =4,则此椭圆的方程是A.131222=+y xB.1422=+y xC.1422=+y x D.112322=+y x39.椭圆的一个焦点和短轴的两端点构成一个正三角形,则该椭圆的离心率是A.21B.23C.33D.不能确定40.函数y =2sin(arccos x )的图象是A.椭圆B.半椭圆C.圆D.直线41.若F (c ,0)是椭圆12222=+b y a x 的右焦点,F 与椭圆上点的距离的最大值为M ,最小值为m ,则椭圆上与F 点的距离等于2mM +的点的坐标是 A.(c ,±a b 2) B.(-c ,±a b 2) C.(0,±b ) D.不存在42.已知点P (233,25)为椭圆92522y x +=1上的点,F 1,F 2是椭圆的两焦点,点Q 在线段F 1P 上,且│PQ │=│PF 2│,那么Q 分F 1P 之比是A.43B.34C.52D.3543.若将离心率为43的椭圆)0( 12222>>=+b a b y a x 绕着它的左焦点按逆时针方向旋转2π后,所得新椭圆的一条准线方程是3y +14=0椭圆的另一条准线方程是A. 3y -14=0B. 3y -23=0C. 3y -32=0D. 3y -50=044.如图,直线l :x -2 y +2=0过椭圆的左焦点F 1和一个顶点B ,该椭圆的离心率为A.51B.52C.55D.55245.如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围是A.(0,+∞)B.(0,2)C.(1,+∞)D.(0,1)46.已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得||||2PF PQ =,那么动点Q 的轨迹是A.圆B.椭圆C.双曲线的一支D.抛物线47.以椭圆的右焦点F 2为圆心的圆恰好过椭圆的中心,交椭圆于点M 、N ,椭圆的左焦点为F 1,且直线MF1与此圆相切,则椭圆的离心率e为A.22B.23C.2-3D.3-148.圆02122=-+++ab by ax y x 与椭圆)0(1)2()2(2222>>=+++b a b b y a a x 的公共点的个数为A.0B.2C.3D.449.P 是椭圆16410022=+y x 上的点,F 1,F 2是焦点,若321π=∠PF F ,则△F 1 P F 2的面积是 A.)32(64+ B.)32(64- C.64 D.336450.下列各点中,是曲线14)2(9)1(22=++-y x 的顶点的是A.(1,-2)B.(0,-2)C.(1,-4)D.(-2,-1)51.已知椭圆E 的离心率为e ,两焦点为F 1,F 2,抛物线C 以F 1为顶点,F 2为焦点,P 为两曲线的一个交点,若12PF PF e =,则e 的值为A.22B.33C.21D.3252.椭圆192522=+y x 上一点P 到一个焦点的距离为5,则P 到另一个焦点的距离为A.5B.6C.4D.1053.椭圆11692522=+y x 的焦点坐标是A.(±5,0)B.(0,±5)C.(0,±12)D.(±12,0)54.已知椭圆的方程为18222=+m y x ,焦点在x 轴上,则其焦距为A.228m -B.2m -22C.282-mD.222-m55.若椭圆11622=+m y x 的离心率为31,则m 的值是 A.9128 B.9128或18 C.18 D.3128或656.已知椭圆13422=+y x 内有一点P (1,-1),F 为椭圆右焦点,在椭圆上有一点M ,使|MP |+2|MF |取得最小值,则点M 的坐标为A.(362,-1)B.)23,1(),23,1(-C.)23,1(- D.)1,362(),1,362(---57.设F 1、F 2为定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则动点M 的轨迹是A.椭圆B.直线C.圆D.线段58.椭圆171622=+y x 的左右焦点为F 1、F 2,一直线过F 1交椭圆于A 、B 两点,则△ABF 2的周长为A.32B.16C.8D.459.设α∈(0,2π),方程1cos sin 22=+ααy x 表示焦点在x 轴上的椭圆,则α∈ A.(0,4π] B.(4π,2π) C.(0,4π) D.[4π,2π)60.P 为椭圆12222=+b y a x 上一点,F 1、F 2为焦点,如果∠PF 1F 2=75°,∠PF 2F 1=15°,则椭圆的离心率为A.22B.23C.32D.36二、填空题1.椭圆的焦点F 1(0,6),中心到准线的距离等于10,则此椭圆的标准方程是______.2.椭圆14922=+y x 上的点到直线03332=+-y x 距离的最大的值是 .3.已知F 1、F 2是椭圆192522=+y x 的两个焦点,AB 是过焦点F 1的弦,若︱AB ︳=8,则︱F 2A ︳+︱F 2B ︳的值是A.16B.12C.14D.84.若A 点坐标为(1,1),F 1是5x 2+9y 2=45椭圆的左焦点,点P 是椭圆的动点,则|PA|+|PF 1|的最小值是__________.5.直线y =1-x 交椭圆mx 2+ny 2=1于M ,N 两点,弦MN 的中点为P ,若K OP ==n m则,22_______________. 6.若椭圆的一个顶点与两个焦点构成等边三角形,则此椭圆的离心率是______.7.已知椭圆的准线方程是y =±9,离心率为32,则此椭圆的标准方程是_______________.8.到定点(1,0)的距离与到定直线x =8的距离之比为22的动点P 的轨迹方程是 .9.已知椭圆x 2+2 y 2=2的两个焦点为F 1和F 2,B 为短轴的一个端点,则△BF 1F 2的外接圆方程是______________. 10.已知点A (0,1)是椭圆x 2+4y 2=4上的一点,P 是椭圆上的动点,当弦AP 的长度最大时,则点P 的坐标是_________________.11.椭圆以两条坐标轴为对称轴,一个顶点是(0,13),另一个顶点是(-10,0),则焦点坐标是 .12.P 是椭圆162722y x +=1上的点,则点P 到直线4x +3y -25=0的距离最小值为 . 13.如图,F 1,F 2分别为椭圆12222=+b y a x 的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2的值是.14.椭圆)0(12222>>=+b a b y a x 的左焦点为F ,A (-a ,0),B (0,b )是两个项点,如果占F 到直线AB 的距离等于7b ,则椭圆的离心率为___________.15.椭圆x 2+4y 2=4长轴上一个顶点为A ,以A 为直角顶点作一个内接于椭圆的等腰直角三角形,该三角形的面积是______________.16.椭圆122222=+ay a x 与连结A (1,2),B (2,3)的线段没有公共点,则正数a 的取值范围是 .17.设F 1(-c ,0)、F 2(c ,0)是椭圆2222b y a x +=1(a >b >0)的两个焦点,P 是以F 1F 2为直径的圆与椭圆的一个交点,若∠PF 1F 2=5∠PF 2F 1,则椭圆的离心率为A.23B.36C.22D.3218.椭圆131222=+y x 焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的______________.19.已知椭圆192522=+y x ,左右焦点分别为F 1、F 2,B (2,2)是其内一点,M 为椭圆上动点,则|MF 1|+|MB |的最大值与最小值分别为______________.20.如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,则k 的取值范围是______.21.方程11222=--m y m x 表示焦点在y 轴上的椭圆,则m 的取值范围是______.三、解答题1.已知,椭圆在x 轴上的焦点与短轴两个端点的连线互相垂直,且该焦点与长轴上较近的顶点距离为510-,求椭圆的标准方程.2.点M (x,y )与定点F (c ,0)的距离和它到定直线c a x l 2:=的距离的比是常数a c(a >c >0),求点M 的轨迹. 3.椭圆9x 2+25 y 2=225上有一点P ,若P 到左准线的距离是2.5,求P 到右焦点的距离.4.F 是椭圆1121622=+y x 的右焦点,M 是椭圆上的动点,已知点A (-2,3),当MF AM 2+取最小值时,求点M 的坐标.5.已知:椭圆13610022=+y x 上一点P 到左焦点的距离为15,则P 点到此椭圆两准线的距离分别是多少?6.设AB 为过椭圆1162522=+y x 中心的弦,F 1为左焦点.求:△A B F 1的最大面积.7.AB 是过椭圆14522=+y x 的一个焦点F 的弦,若AB 的倾斜角为3π,求弦AB 的长8.已知椭圆中心在原点,它在x 轴上的一个焦点与短轴两端点的连线互相垂直,并且此焦点与长轴较近的端点的距离为510-,求椭圆方程.9.设中心在原点,焦点在x 轴上的椭圆的离心率为23,并且椭圆与圆x 22y +-4x -2y +025=交于A,B 两点,若线段AB的长等于圆的直径。