立体几何体积问题-
- 格式:doc
- 大小:5.28 MB
- 文档页数:53
高中数学立体几何体积计算应用例题在高中数学中,立体几何是一个重要的章节,其中涉及到的体积计算是一个常见的考点。
本文将通过具体的例题,来说明一些常见的体积计算方法和技巧,帮助高中学生更好地理解和应用。
例题一:一个正方体的边长为3cm,求其体积。
解析:正方体的体积计算公式为 V = a^3,其中 a 表示正方体的边长。
根据题意,可以得到 a = 3cm,代入公式计算得 V = 3^3 = 27cm^3。
因此,该正方体的体积为27立方厘米。
例题二:一个圆柱体的底面半径为4cm,高度为6cm,求其体积。
解析:圆柱体的体积计算公式为V = πr^2h,其中 r 表示底面半径,h 表示高度。
根据题意,可以得到 r = 4cm,h = 6cm,代入公式计算得V = π * 4^2 * 6 = 96πcm^3。
因此,该圆柱体的体积为96π立方厘米。
例题三:一个球的半径为5cm,求其体积。
解析:球体的体积计算公式为V = (4/3)πr^3,其中r 表示球的半径。
根据题意,可以得到 r = 5cm,代入公式计算得V = (4/3)π * 5^3 = 500π/3 cm^3。
因此,该球的体积为500π/3立方厘米。
通过以上例题,我们可以看到,不同几何体的体积计算方法是不同的。
在解题过程中,我们需要根据题目给出的信息,选择合适的公式进行计算。
同时,需要注意单位的统一,确保最终的结果与题目要求的单位一致。
除了基本的体积计算,有时候我们还需要应用到一些几何体的组合和切割问题。
下面,我们通过一个例题来说明这个问题。
例题四:一个长方体的长、宽、高分别为6cm、4cm、3cm,如果将其沿着长方向切割成两个相等的部分,求切割面的面积。
解析:首先,我们需要确定切割面的形状。
根据题意,切割面是一个长方形,其中长为6cm,宽为4cm。
因此,切割面的面积为 6 * 4 = 24cm^2。
通过以上例题,我们可以看到,在解决几何体的体积计算问题时,需要根据题目的要求选择合适的计算公式,并注意单位的统一。
专题10:立体几何中的体积问题(解析版)⑴圆柱侧面积;l r S ⋅⋅=π2侧面 ⑵圆锥侧面积:l r S ⋅⋅=π侧面⑶圆台侧面积:l R l r S ⋅⋅+⋅⋅=ππ侧面h S V ⋅=柱体h S V ⋅=31锥体()13V h S S S S =+⋅+下下台体上上 球的表面积和体积 32344R V R S ππ==球球,. 正三棱锥是底面是等边三角形,三个侧面是全等的等腰三角形的三棱锥。
正四面体是每个面都是全等的等边三角形的三棱锥。
1.如图,在直三棱柱111ABC A B C -中,3AC =,4BC =,5AB =,点D 是AB 的中点.(1)求证:1AC BC ⊥;(2)若1CC BC =,求三棱锥1B BCD -的体积.【答案】(1)证明见解析;(2)4【分析】(1)利用勾股定理,可得AC BC ⊥,结合1AC CC ⊥,根据线面垂直的判定定理以及性质定理,可得结果.(2)计算∆BCD S ,1BB ,然后根据三棱锥的体积公式,可得结果.【详解】(1)∵三棱柱111ABC A B C -是直三棱柱,∴1CC ⊥平面ABC ,∵AC ⊂平面ABC ,∴1CC AC ⊥,∵在ABC ∆中,3AC =,4BC =,5AB =,∴222AC BC AB +=,∴90ACB ∠=︒,∴AC BC ⊥,∵1CC ⊂平面11CC B B ,CB ⊂平面11CC B B ,1CC CB C =,∴AC ⊥平面11CC B B ,∵1BC ⊂平面11CC B B ,∴1AC BC ⊥.(2)∵D 是AB 中点, ∴111343222BCD ABC S S ∆∆==⨯⨯⨯=, ∵1BB ⊥平面ABC ,114BB AA ==,∴111134433B BCD BCD V S BB -∆=⋅=⨯⨯=. 【点睛】本题考查线面垂直的判定定理以及性质定理,还考查了锥体的体积公式,难点在于根据线段长度关系利用勾股定理得出垂直,重点在于对定理的应用,属基础题.2.如图所示:在三棱锥V ABC -中,平面VAB ⊥平面ABC ,VAB ∆为等边三角形,AC BC ⊥且2AC BC ==,,O M 分别为,AB VA 的中点.(1)求证:平面MOC ⊥平面VAB ;(2)求三棱锥V ABC -的体积.【答案】(1)详见解答;(23. 【分析】(1)由已知可得OC AB ⊥,再由面面垂直定理可得OC ⊥平面VAB ,即可证明结论; (2)OC ⊥平面VAB ,用等体积法求三棱锥V ABC -的体积.【详解】(1),AC BC O =为AB 中点,OC AB ∴⊥,平面VAB ⊥平面ABC ,平面VAB 平面ABC AB =,OC ⊂平面ABC ,OC ∴⊥平面,VAB OC ∴⊂平面MOC ,平面MOC ⊥平面VAB ;(2)AC BC ⊥且2AC BC ==,O 分别为AB 的中点,11,2,2332VAB OC AB S ∆∴===⨯⨯=, OC ⊥平面VAB ,133V ABC C VAB VAB V V OC S --∆==⨯⨯=, 3V ABC V -∴=. 【点睛】本题考查面面垂直证明,注意空间垂直间的相互转化,考查椎体体积,意在考查直观想象、逻辑推理能力,属于基础题.3.如图所示,四棱锥的底面ABCD 是一个矩形,AC 与BD 交于点M ,VM 是四棱锥的高.若4VM cm =,4cm AB =,5VC cm =,求四棱锥的体积.【答案】35(cm )3. 【分析】在Rt VMC ∆中求出3(cm),MC =在Rt ABC ∆中求出25(cm)BC =,再根据棱锥的体积公式可得结果.【详解】 VM 是棱锥的高,VM MC ∴⊥.在Rt VMC ∆中,2222543(cm),MC VC VM =-=-=.26cm AC MC ∴==,在Rt ABC ∆中,22226425(cm)BC AC AB =-=-=.242585(cm )S AB BC ∴=⨯=⨯=底,3 11325854(cm )333V S VM ∴=⋅=⨯⨯=四棱锥底. 【点睛】本题考查了求三棱锥的体积,属于基础题.4.如图,四棱锥P ABCD -的底面是边长为2的菱形,PD ⊥底面ABCD .(1)求证:AC ⊥平面PBD ;(2)若2PD =,直线PB 与平面ABCD 所成的角为45,求四棱锥P ABCD -的体积.【答案】(1)证明见解析;(243 【分析】 (1)通过AC ⊥BD 与PD ⊥AC 可得AC ⊥平面PBD ;(2)由题先得出∠PBD 是直线PB 与平面ABCD 所成的角,即∠PBD =45°,则可先求出菱形ABCD 的面积,进而可得四棱锥P - ABCD 的体积.【详解】解:(1)因为四边形ABCD 是菱形,所以AC ⊥BD ,又因为PD ⊥平面ABCD ,AC ⊂平面ABCD ,所以PD ⊥AC ,又PD BD D ⋂=,故AC ⊥平面PBD ;(2)因为PD ⊥平面ABCD ,所以∠PBD 是直线PB 与平面ABCD 所成的角,于是∠PBD =45°,因此BD =PD =2.又AB = AD =2,所以菱形ABCD 的面积为sin 6023S AB AD ︒=⋅⋅=,故四棱锥P - ABCD 的体积1433V S PD =⋅=. 【点睛】本题主要考查空间线、面关系等基础知识,同时考查空间想象能力、推理论证能力以及运算求解能力,是基础题.5.如图,在边长为2的菱形ABCD 中,60ADC ∠=︒,现将ADC 沿AC 边折到APC △的位置.(1)求证:PB AC ⊥;(2)求三棱锥P ABC -体积的最大值.【答案】(1)见解析;(2)1【分析】(1)取AC 的中点为O ,连接PO OB 、,由线面垂直的判定定理即可证出.(2)由体积相等转化为P ABC ΔPOB 1V AC S 3-=⋅即可求出. 【详解】(1)如图所示,取AC 的中点为O ,连接PO OB 、,易得AC PO AC OB ⊥⊥,,PO OB O = AC POB ∴⊥平面,又PB ⊆ 面POB AC PB ∴⊥(2)由(1)知AC POB 260? AC 2PO OB ABCD ADC ⊥∠=︒===平面,且在边长为的菱形中,,所以,3 ,P ABC A POB C POB V V V ---=+体积转化为 ΔPOB 1AC S 3=⋅ =11233sin sin 32POB POB ⨯⨯⨯⨯∠=∠ ,当POB 90∠=︒时,P ABC V -的最大值为1. 【点睛】本题考查了线面垂直的判定定理和等体积转化思想,属于基础题.6.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,PA PD ⊥,1PA PD ==,E 为AD 的中点.(1)求证:PE ⊥平面ABCD ;(2)求四棱锥P ABCD -的体积.【答案】(1)证明见解析;(2)23【分析】(1)根据等腰三角形证明PE AD ⊥,得到答案. (2)计算得到2AD =,22PE =,再利用体积公式计算得到答案. 【详解】(1)1PA PD ==,E 为AD 的中点,故PE AD ⊥,平面PAD ⊥平面ABCD , 平面PAD 平面ABCD AD =,故PE ⊥平面ABCD .(2)PA PD ⊥,1PA PD ==,故2AD =,22PE =. 故122223P ABCD V -=⨯⨯⨯=. 【点睛】 本题考查了线面垂直,四棱锥的体积,意在考查学生的空间想象能力和计算能力. 7.如图所示,在长方体ABCD A B C D ''''-中,求棱锥D A CD ''-的体积与长方体的体积之比.【答案】1:6【解析】【分析】棱锥D A CD ''-可以看成棱锥C A DD ''-,然后结合棱锥与棱柱的体积公式求解即可.【详解】解:已知的长方体可以看成直四棱柱ADD A BCC B '''-,设它的底面ADD A ''面积为S ,高为h ,则长方体的体积为ADD A BCC B V Sh '''-=.因为棱锥D A CD ''-可以看成棱锥C A DD ''-,且A DD ''的面积为12S ,棱锥C A DD ''-的高是h ,所以111326D A CD C A DD V V Sh Sh ''''--==⨯=. 因此所求体积之比为1:6.【点睛】本题考查了棱锥及棱柱的体积公式,重点考查了转换顶点求棱锥的体积,属基础题 8.如图,过圆柱的两条母线1AA 和1BB 的截面11A ABB 的面积为S ,母线1AA 的长为l ,11190AO B ︒∠=,求此圆柱的体积.【答案】22S l π. 【分析】 根据已知易得AOB 是等腰直角三角形,根据截面11A ABB 的面积为S 求出AB 长,进而求得底面圆面积再求体积即可。
立体几何体积表面积题型总结全文共四篇示例,供读者参考第一篇示例:立体几何体积和表面积是几何学中非常重要的概念,它们广泛应用于日常生活和各种工程领域。
在考试中,经常会出现与立体几何体积和表面积相关的题型,考查学生的综合能力和解题技巧。
本文将对关于立体几何体积表面积题型进行总结,希望能帮助读者更好地掌握相关知识。
在解立体几何体积表面积题型时,首先需要了解各种常见几何体的体积和表面积公式。
下面是一些常见几何体的体积和表面积公式:1. 立方体:- 体积公式:V = a³ (a为边长)- 表面积公式:S = 6a²了解以上公式是解立体几何体积表面积题目的基础,接下来需要根据具体题目的要求灵活运用这些公式。
在解题过程中,可以遵循以下一般步骤:1. 画图:根据题目绘制准确的图形,有助于理清思路和分析问题。
2. 确定参数:明确各个参数的含义,包括边长、半径、高等。
3. 应用公式:根据具体题目要求,选择合适的体积和表面积公式进行计算。
4. 计算验证:将得到的具体数值代入公式进行计算,并进行验证。
5. 总结解法:总结解题过程,确保计算结果正确且符合题目要求。
在解题过程中,有一些常见的考点和技巧也是需要注意的,下面列举一些常见的题型及解题技巧:1. 混合体积问题:有时题目会涉及到多种几何体的组合,需要将各个部分的体积分别计算,然后相加得到总体积。
2. 变换题型:有些题目需要根据给定条件进行变换,例如将一个正方体切割成若干小正方体,需要注意每个小正方体的边长与体积的关系。
3. 边长、半径的关系:根据题目给定的条件,需灵活利用边长、半径之间的关系来求解问题。
4. 知己知彼:要根据具体题目的特点选择合适的解题方法,不要死记硬背,要有灵活应对的能力。
5. 多维度思考:对于复杂的题目,可以通过多种角度进行思考,可以更快地找到解题思路。
第二篇示例:立体几何体积和表面积是几何学中非常重要的概念,它们广泛应用于工程、建筑、物理学和计算机图形学等领域。
高中数学立体几何体积解题技巧立体几何是高中数学中的一个重要内容,其中涉及到的体积计算问题常常让学生感到困惑。
本文将介绍一些解题技巧,帮助高中学生更好地理解和解决立体几何体积问题。
一、直角三棱柱的体积计算直角三棱柱是指底面为直角三角形的三棱柱。
计算其体积时,可以利用底面积与高的乘积来求解。
例如,已知直角三棱柱的底面是一个直角边长为3cm和4cm 的直角三角形,高为5cm,求其体积。
解答:首先计算底面积,底面积=1/2 × 3cm × 4cm = 6cm²。
然后将底面积与高相乘,体积=6cm² × 5cm = 30cm³。
因此,该直角三棱柱的体积为30cm³。
通过这个例子可以看出,直角三棱柱的体积计算可以通过底面积与高的乘积来求解,这是一个常用的解题方法。
二、棱柱的体积计算棱柱是指底面为多边形的柱体。
计算其体积时,可以利用底面积与高的乘积来求解。
例如,已知一个棱柱的底面是一个边长为6cm的正六边形,高为8cm,求其体积。
解答:首先计算底面积,正六边形的面积可以通过将其分割为六个等边三角形来计算。
每个三角形的面积为1/2 × 6cm × 6cm × sin(60°) = 9√3 cm²。
因此,正六边形的面积为6 × 9√3 cm² = 54√3 cm²。
然后将底面积与高相乘,体积=54√3 cm² ×8cm = 432√3 cm³。
所以,该棱柱的体积为432√3 cm³。
通过这个例子可以看出,对于底面为多边形的棱柱,可以将其分割为若干个三角形来计算底面积,然后再与高相乘求解体积。
三、圆柱的体积计算圆柱是指底面为圆形的柱体。
计算其体积时,可以利用底面积与高的乘积来求解。
例如,已知一个圆柱的底面半径为5cm,高为10cm,求其体积。
数学题目立体几何的表面积与体积练习题数学题目:立体几何的表面积与体积练习题1. 题目一:计算一个半径为3厘米的球体的表面积和体积。
解答:首先计算球的表面积。
球的表面积公式为S=4πR²,其中R 为球的半径。
代入半径为3厘米,得到表面积S=4π×3²=36π cm²。
接下来计算球的体积。
球的体积公式为V=4/3πR³,代入半径为3厘米,得到体积V=4/3π×3³=36π cm³。
2. 题目二:一个长方体的长、宽和高分别为5厘米、4厘米和6厘米。
求该长方体的表面积和体积。
解答:长方体的表面积公式为S=2(长×宽+长×高+宽×高),代入长为5厘米、宽为4厘米和高为6厘米,得到表面积S=2(5×4+5×6+4×6)=2(20+30+24)=148 cm²。
长方体的体积公式为V=长×宽×高,代入长为5厘米、宽为4厘米和高为6厘米,得到体积V=5×4×6=120 cm³。
3. 题目三:一个圆锥的底面圆半径为2.5厘米,高为7厘米。
求该圆锥的表面积和体积(保留π)。
解答:首先计算圆锥的母线,母线公式为l=√(r²+h²),其中r为底面圆半径,h为圆锥的高。
代入半径为2.5厘米和高为7厘米,得到母线l=√(2.5²+7²)≈7.416 cm。
圆锥的表面积公式为S=πr(r+l),代入底面圆半径为2.5厘米和母线长为7.416厘米,得到表面积S=π×2.5(2.5+7.416)≈82.512 cm²。
圆锥的体积公式为V=1/3πr²h,代入底面圆半径为2.5厘米和高为7厘米,得到体积V=1/3π×2.5²×7≈36.750 cm³。
立体几何体积问题未命名一、解答题1.如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上,且,求点到平面的距离.2.如图,多面体中,为正方形,,,且.(1)证明:平面平面;(2)求三棱锥的体积.3.在如图所示的几何体中,平面,四边形为等腰梯形,,,,,,.(1)证明:;(2)若多面体的体积为,求线段的长.4.如图,在四棱锥中,,,,点在线段上,且,,平面.(1)证明:平面平面;(2)当时,求四棱锥的表面积.5.如图,在四棱锥中,是等边三角形,,,.(Ⅰ)求证:(Ⅱ)若平面平面,,求三棱锥的体积6.如图,三棱柱中,平面平面,平面平面,,点、分别为棱、的中点,过点、的平面交棱于点,使得∥平面.(1)求证:平面;(2)若四棱锥的体积为,求的正弦值.7.如图,在几何体中,平面底面,四边形是正方形,,是的中点,且,.(1)证明:;(2)若,求几何体的体积.8.在多面体中,底面是梯形,四边形是正方形,,,面面,..(1)求证:平面平面;(2)设为线段上一点,,试问在线段上是否存在一点,使得平面,若存在,试指出点的位置;若不存在,说明理由?(3)在(2)的条件下,求点到平面的距离.9.已知直三棱柱,底面是边长为2的等边三角形,,为棱的中点,在棱上,且.(1)证明:平面;(2)求三棱锥的体积.10.如图,在三棱锥中,,,,,为线段的中点,将折叠至,使得且交平面于F.(1)求证:平面⊥平面PAC.(2)求三棱锥的体积.11.在矩形所在平面的同一侧取两点、,使且,若,,.(1)求证:(2)取的中点,求证(3)求多面体的体积.12.如图,在菱形中,,平面,,是线段的中点,.(1)证明:平面;(2)求多面体的表面积.13.如图,在三棱柱中,,,为的中点,.(1)求证:平面平面;(2)求到平面的距离.14.如图,四棱锥中,底面是直角梯形,,,,侧面是等腰直角三角形,,平面平面,点分别是棱上的点,平面平面(Ⅰ)确定点的位置,并说明理由;(Ⅱ)求三棱锥的体积.15.如图,三棱柱中,侧面侧面,,,,为棱的中点,为的中点.(1) 求证:平面;(2) 若,求三棱柱的体积.参考答案1.解:(1)因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP=.连结OB.因为AB=BC=,所以△ABC为等腰直角三角形,且OB⊥AC,OB==2.由知,OP⊥OB.由OP⊥OB,OP⊥AC知PO⊥平面ABC.(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.由题设可知OC==2,CM==,∠ACB=45°.所以OM=,CH==.所以点C到平面POM的距离为.【解析】分析:(1)连接,欲证平面,只需证明即可;(2)过点作,垂足为,只需论证的长即为所求,再利用平面几何知识求解即可.详解:(1)因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP=.连结OB.因为AB=BC=,所以△ABC为等腰直角三角形,且OB⊥AC,OB==2.由知,OP⊥OB.由OP⊥OB,OP⊥AC知PO⊥平面ABC.(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.由题设可知OC==2,CM==,∠ACB=45°.所以OM=,CH==.所以点C到平面POM的距离为.点睛:立体几何解答题在高考中难度低于解析几何,属于易得分题,第一问多以线面的证明为主,解题的核心是能将问题转化为线线关系的证明;本题第二问可以通过作出点到平面的距离线段求解,也可利用等体积法解决.2.(1)见解析;(2)【解析】分析:(1)证明面面垂直可通过证明线面垂直得到,证A平面即可,(2)由已知,连接交于,作于,由等体积法:,进而可得出结论.(1)证明:∵,由勾股定理得:又正方形中,且∴平面,又∵面,∴平面平面(2)由已知,连接交于作于,则又由(1)知平面平面,平面平面,面,得面由,知四边形为平行四边形,即,而,进而又由,所以,三棱锥的体积.点睛:考查面面垂直、几何体体积,能正确分析线条关系,利用等体积法转化求体积是解题关键.3.(1)证明见解析;(2).【解析】分析:(1)通过证明AB平面ACFE得到;(2)作于点G,设,分别计算出四棱锥的体积,再根据已知条件,求出的值,在直角三角形CFG 中求出CF的值。
立体几何形的体积计算知识点总结体积是立体几何形的一个重要属性,它用来描述一个物体所占的空间大小。
在几何学中,我们经常需要计算不同形状的物体的体积。
为了更好地理解和掌握立体几何形的体积计算,我们需要掌握一些基本的知识点。
本文将根据不同的几何形状,总结一些常用的体积计算公式和方法。
一、正方体的体积计算正方体是最简单的立体几何形之一,它的六个面都是正方形。
计算正方体的体积非常简单,只需要将正方体的边长乘以自身再乘以自身即可。
即体积=边长×边长×边长。
例如,一个边长为5厘米的正方体的体积为5×5×5=125立方厘米。
二、长方体的体积计算长方体是更常见的一种立体几何形,它的六个面中,相对的两个面是相等的长方形。
计算长方体的体积也非常简单,只需要将长方体的长、宽和高相乘即可。
即体积=长×宽×高。
例如,一个长10厘米,宽6厘米,高8厘米的长方体的体积为10×6×8=480立方厘米。
三、圆柱体的体积计算圆柱体是一个底面为圆形的立体几何形。
要计算圆柱体的体积,需要知道底面的半径和高。
计算公式为体积=底面积×高=π×半径的平方×高。
例如,一个底面半径为3厘米,高为6厘米的圆柱体的体积为3.14×3×3×6=169.56立方厘米。
四、球体的体积计算球体是一个所有点到球心的距离都相等的立体几何形。
计算球体的体积需要知道球的半径。
计算公式为体积=4/3×π×半径的立方。
例如,一个半径为4厘米的球体的体积为4/3×3.14×4×4×4=268.08立方厘米。
五、锥体的体积计算锥体是一个底面为圆形,顶点与底面圆心相连的立体几何形。
计算锥体的体积需要知道底面的半径和高。
计算公式为体积=1/3×底面积×高=1/3×π×半径的平方×高。
立体几何中的体积计算立体几何是研究空间中的图形和其属性的一门学科。
而在立体几何中,计算图形的体积是一个重要的问题。
体积是指立体图形所占据的三维空间的量度,计算体积可以帮助我们更好地理解和应用于实际问题中。
本文将介绍几种常见的立体几何形体的体积计算公式,并附上相关例子。
1. 立方体的体积计算立方体是一种边长相等的六个面都是正方形的立体图形。
它的体积计算非常简单,只需将边长的立方即可得到体积。
其计算公式为:V = a^3,其中V表示体积,a表示边长。
例如,一个边长为5厘米的立方体的体积计算如下:V = 5^3 = 125立方厘米2. 正方体的体积计算正方体是一种所有面都是正方形且边长相等的立体图形。
与立方体类似,正方体的体积计算也是将边长的立方作为计算公式。
其计算公式为:V = a^3,其中V表示体积,a表示边长。
例如,一个边长为4米的正方体的体积计算如下:V = 4^3 = 64立方米3. 长方体的体积计算长方体是一种具有长宽高三个不同边长的立体图形。
它的体积计算公式为:V = lwh,其中V表示体积,l表示长,w表示宽,h表示高。
例如,一个长为6厘米、宽为3厘米、高为2厘米的长方体的体积计算如下:V = 6 * 3 * 2 = 36立方厘米4. 圆柱体的体积计算圆柱体是由一个圆形底面和与该底面平行且高度相等的侧面组成的立体图形。
它的体积计算公式为:V = πr^2h,其中V表示体积,π表示圆周率,r表示底面半径,h表示高度。
例如,一个底面半径为2米,高度为8米的圆柱体的体积计算如下:V = 3.14 * 2^2 * 8 = 100.48立方米5. 圆锥体的体积计算圆锥体是由一个圆形底面和以该底面圆心为顶点的曲面相交而成的立体图形。
它的体积计算公式为:V = (1/3)πr^2h,其中V表示体积,π表示圆周率,r表示底面半径,h表示高度。
例如,一个底面半径为3厘米,高度为6厘米的圆锥体的体积计算如下:V = (1/3) * 3.14 * 3^2 * 6 = 56.52立方厘米总结:立体几何中的体积计算是研究图形三维空间量度的重要问题。
六年级立体几何组合图形求体积应用题
1、一个圆柱的高是4.2厘米,底面直径是4厘米,它的体积是多少?
2、一个圆柱形水池底面直径8米,池深2米,如果在水池的底面和四周涂上水泥,涂水泥的面积有多少平方米?水池最多能盛水多少立方米?
3、用铁皮制10节同样大小的通风管,每节长5分米,底面直径1.2分米,至少需要多少平方分米铁皮?体积是多少?
4、一种压路机的滚筒是圆柱形的筒宽1.5米,直径是0.8米。
这种压路机每分钟向前滚动5周。
这种压路机1分钟压路多少平方米?
5、一个圆柱形蓄水池,从里面量底面直径是20米,深为5米,
(1)要在这个蓄水池的四周和底面抹上水泥,抹水泥部分的面积是多少平方米?
(2)这个蓄水池最多可以蓄水多少吨?(每立方米水重1吨)。
高中数学立体几何体积复习题集附答案高中数学立体几何体积复习题集附答案一、填空题1. 已知四棱锥的底面是一个边长为6cm的正方形,且侧棱长为8cm,求四棱锥的体积。
解答:四棱锥的体积公式为V = (1/3)×底面积×高。
底面积为6^2 = 36cm^2,高为8cm。
所以四棱锥的体积为V = (1/3)×36cm^2×8cm = 96cm^3。
2. 圆柱的底面半径为5cm,高为12cm,求圆柱的体积。
解答:圆柱的体积公式为V = 底面积×高。
底面积为π×5^2 = 25πcm^2,高为12cm。
所以圆柱的体积为V = 25πcm^2×12cm = 300πcm^3。
3. 正方体的体积为64cm^3,求正方体的边长。
解答:正方体的体积公式为V = 边长^3。
已知V = 64cm^3,代入公式可得:64 = 边长^3。
求解得边长 = 4cm。
4. 球的半径为10cm,求球的体积。
解答:球的体积公式为V = (4/3)π×半径^3。
已知半径为10cm,代入公式可得:V = (4/3)π×10^3。
所以球的体积为V = (4/3)π×1000 = 4000πcm^3。
二、选择题1. 下列几何体中,体积最大的是:A. 正方体的棱长为10cmB. 长方体的长、宽、高分别为6cm、8cm、10cmC. 圆柱的底面半径为5cm,高为14cmD. 球的半径为7cm解答:选项C。
计算各几何体的体积,可得:A. 正方体的体积为V = 10^3 = 1000cm^3B. 长方体的体积为V = 6cm×8cm×10cm = 480cm^3C. 圆柱的体积为V = π×5^2×14cm = 350πcm^3D. 球的体积为V = (4/3)π×7^3 = 1434πcm^3可见,C选项的体积最大。
立体几何体积问题未命名一、解答题1.如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上,且,求点到平面的距离.2.如图,多面体中,为正方形,,,且.(1)证明:平面平面;(2)求三棱锥的体积.3.在如图所示的几何体中,平面,四边形为等腰梯形,,,,,,.(1)证明:;(2)若多面体的体积为,求线段的长.4.如图,在四棱锥中,,,,点在线段上,且,,平面.(1)证明:平面平面;(2)当时,求四棱锥的表面积.5.如图,在四棱锥中,是等边三角形,,,.(Ⅰ)求证:(Ⅱ)若平面平面,,求三棱锥的体积6.如图,三棱柱中,平面平面,平面平面,,点、分别为棱、的中点,过点、的平面交棱于点,使得∥平面.(1)求证:平面;(2)若四棱锥的体积为,求的正弦值.7.如图,在几何体中,平面底面,四边形是正方形,,是的中点,且,.(1)证明:;(2)若,求几何体的体积.8.在多面体中,底面是梯形,四边形是正方形,,,面面,..(1)求证:平面平面;(2)设为线段上一点,,试问在线段上是否存在一点,使得平面,若存在,试指出点的位置;若不存在,说明理由?(3)在(2)的条件下,求点到平面的距离.9.已知直三棱柱,底面是边长为2的等边三角形,,为棱的中点,在棱上,且.(1)证明:平面;(2)求三棱锥的体积.10.如图,在三棱锥中,,,,,为线段的中点,将折叠至,使得且交平面于F.(1)求证:平面⊥平面PAC.(2)求三棱锥的体积.11.在矩形所在平面的同一侧取两点、,使且,若.,,.(1)求证:(2)取的中点,求证(3)求多面体的体积.12.如图,在菱形中,,平面,,是线段的中点,.(1)证明:平面;(2)求多面体的表面积.13.如图,在三棱柱中,,,为的中点,.(1)求证:平面平面;(2)求到平面的距离..14.如图,四棱锥中,底面是直角梯形,,,,侧面是等腰直角三角形,,平面平面,点分别是棱上的点,平面平面(Ⅰ)确定点的位置,并说明理由;.(Ⅱ)求三棱锥的体积.15.如图,三棱柱中,侧面侧面,,,,为棱的中点,为的中点.(1) 求证:平面;(2) 若,求三棱柱的体积.参考答案1.解:(1)因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP=.连结OB.因为AB=BC=,所以△ABC为等腰直角三角形,且OB⊥AC,OB==2.由知,OP⊥OB.由OP⊥OB,OP⊥AC知PO⊥平面ABC.(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.由题设可知OC==2,CM==,∠ACB=45°.所以OM=,CH==.所以点C到平面POM的距离为.【解析】分析:(1)连接,欲证平面,只需证明即可;(2)过点作,垂足为,只需论证的长即为所求,再利用平面几何知识求解即可.详解:(1)因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP=.连结OB.因为AB=BC=,所以△ABC为等腰直角三角形,且OB⊥AC,OB==2.由知,OP⊥OB.由OP⊥OB,OP⊥AC知PO⊥平面ABC.(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.由题设可知OC==2,CM==,∠ACB=45°.所以OM=,CH==.所以点C到平面POM的距离为.点睛:立体几何解答题在高考中难度低于解析几何,属于易得分题,第一问多以线面的证明为主,解题的核心是能将问题转化为线线关系的证明;本题第二问可以通过作出点到平面的距离线段求解,也可利用等体积法解决.2.(1)见解析;(2)【解析】分析:(1)证明面面垂直可通过证明线面垂直得到,证A平面即可,(2)由已知,连接交于,作于,由等体积法:,进而可得出结论.(1)证明:∵,由勾股定理得:又正方形中,且∴平面,又∵面,∴平面平面(2)由已知,连接交于作于,则又由(1)知平面平面,平面平面,.面,得面由,知四边形为平行四边形,即,而,进而又由,所以,三棱锥的体积.点睛:考查面面垂直、几何体体积,能正确分析线条关系,利用等体积法转化求体积是解题关键.3.(1)证明见解析;(2).【解析】分析:(1)通过证明AB平面ACFE得到;(2)作于点G,设,分别计算出四棱锥的体积,再根据已知条件,求出的值,在直角三角形CFG 中求出CF的值。
详解:(1)∵平面,∴作于点,在中,,,得,在中,∴∴且,∴平面又∵平面∴.(2)设,作于点,则平面,且,又,,∴,得连接,则,∴.点睛:本题主要考查了线面垂直的判定定理和性质定理、余弦定理、勾股定理、体积计算公式等,属于中档题。
4.(1)见解析;(2).【解析】分析:(1)根据,及,推出四边形是平行四边形,再根据推出,由平面,可推出,根据线面垂直判定定理即可推出平面,从而可证平面平面;(2)根据平面,可推出,由,可得,根据勾股定理可得,然后分别求得四棱锥的各面面积相加即可求得表面积.详解:(1)证明:由,可得,则,又,则四边形是平行四边形,则.∵∴.又∵平面,平面∴∵,平面∴平面又平面∴平面平面.(2)解:∵平面∴∵∴.∵∴.∴四棱锥的表面积为.点睛:本题主要考查面面垂直的证明方法,考查椎体的表面积求法,属基础题. 熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间的垂直关系进行转化,证明线面垂直,需转化为证明线线垂直;证明线线垂直,需转化为证明线面垂直.5.(1)见解析;(2).【解析】分析:(Ⅰ)取的中点,连接,在等边,得,又由四边形为矩形,得,利用线面垂直的判定定理,证得平面,进而得证.(Ⅱ)由(Ⅰ)知,得到平面,即为三棱柱的高,再利用棱锥的体积公式,即可求得三棱锥的体积.详解:证明:(Ⅰ)取的中点,连接为等边三角形,,四边形为矩形,平面又平面,(Ⅱ)由(Ⅰ)知又平面平面,平面平面,平面平面,为三棱柱的高为等边三角形,,得,,点睛:本题考查线面位置关系的判定与证明,以及三棱锥的体积的计算,其中熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.6.(1)见解析;(2).【解析】(1)在平面中,过点作棱的垂线,垂足为,平面平面,平面.在平面中,过点作棱的垂线,垂足为,平面平面,∴平面.过点与平面垂直的直线有且只有一条,∴与重合,又∵平面平面,∴与重合于AB,所以平面.(2)设的中点为,连接,,点为棱的中点,∴∥且=,∥,∴∥,∴、、、四点共面,∵∥平面,∴∥,∴四边形是平行四边形,∴=,∵为的中点且,∴,∴==,设梯形的高为,,∴,∴,∴,∴的正弦值为.7.(1)见解析;(2)【解析】分析:(1)连接交于点,连接,欲证,只需证明即可;(2)原几何体是由四棱锥和三棱锥两部分构成,只需分别计算出体积相加可得.详解:(Ⅰ)如上图所示,连接交于点,连接.∵四边形是正方形,∴是的中点又已知是的中点,∴又∵且,∴,即四边形是平行四边形∴,∵,∴;(Ⅱ) 如上图,引于点,∵,∴,∵平面∴,同理.点睛:(1)证明线线垂直时可利用勾股定理逆定理,等腰三角形中三线合一,线面垂直等方法进行,本题中通过构造,将问题进行了转化;(2)在计算组合体体积时,要注意分析组合体由哪些简单几何体构成,分别计算体积即可求解,而在计算简单几何体体积时要注意“换底”的策略.8.(1)见解析.(2)见解析.(3).【解析】分析:(1)在梯形中,过点作作于,可得,所以,由面面,可得出,利用线面垂直的判定定理得平面,进而可得平面平面;(2)在线段上取点,使得,连接,先证明与相似,于是得,由线面平行的判定定理可得结果;(3)点到平面的距离就是点到平面的距离,设到平面的距离为,利用体积相等可得,,解得.详解:(1)因为面面,面面,,所以面,.故四边形是正方形,所以.在中,,∴.,∴,∴∴.因为,平面,平面.∴平面,平面,∴平面平面.(2)在线段上存在点,使得平面在线段上取点,使得,连接.在中,因为,所以与相似,所以又平面,平面,所以平面.(3)点到平面的距离就是点到平面的距离,设到平面的距离为,利用同角相等可得,,可得.点睛:证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.9.(1)见解析;(2).【解析】分析:(1)利用直棱柱的性质可证明平面平面,所以.又,所以,利用勾股定理可得,由线面垂直的判定定理可得结论;(2)利用“等积变换”可得,先证明的高为,可得,从而可得三棱锥的体积.详解:(1)连接BD,因为为直三棱柱,所以,正三角形,所以,所以平面平面,所以.又,所以因为,,,所以,所以,,所以.(2)易知,,,所以,所以..所以三棱锥的体积为.点睛:本题主要考查正三棱柱的性质、空间垂直关系以及利用“等积变换”求棱锥的体积;,属于中档题.解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理.10.(1)证明见解析;(2).【解析】分析:(1)由PA⊥AC可计算出PC,从而由勾股定理逆定理得PB⊥BC,再结合BC⊥AB,得BC⊥平面PAB,从而有PA⊥BC,于是有PA⊥平面ABC,因此PA⊥BD,再计算出AB=BC,从而BD⊥AC,因此得BD⊥平面PAC,从而得证面面垂直;(2)这个体积直接用底面积乘以高再除以3,不太容易,但可间接计算:,这一个三棱锥和一个四棱锥的体积易计算.详解:(1)证明:在三棱锥中,, ,又又.(2)由已知,∥点睛:常用求体积的几种方法:(1)分割法一般的考试题目不会给你一个简单的长方体,正方体,圆等等一些能套公式就能求出体积,而是弄一些多面体,让你求它的体积。
分割法,就是把多面体分割成几个我们常见的立体,然后求各个分割体的体积,最后相加就能得出所要求的体积了。
(2)补形法多面体加以拼补,把它拼成我们常见的立体,求出该立体的体积后,把补上去的各个立体的体积算出来,相减就能得出所要求的体积了。
(3)等体积法这个方法举例比较好说明,比如,求四面体P-ABC的体积,但是顶点P到面ABC的距离不好求(即高h),然而我们把顶点和底面换一下,换成四面体A-PBC,此时,顶点A到面PBC 的距离可以很容易就得到(AP⊥面PBC,即AP就是高),这样四面体A-PBC的体积就很容易就求出来了。