高一数学数列试题答案及解析
- 格式:docx
- 大小:1.61 MB
- 文档页数:32
高一数学数列的概念试题答案及解析1.已知数列{an }满足an= nk n(n∈N*,0 < k < 1),下面说法正确的是( )①当时,数列{an}为递减数列;②当时,数列{an}不一定有最大项;③当时,数列{an}为递减数列;④当为正整数时,数列{an}必有两项相等的最大项.A.①②B.②④C.③④D.②③【答案】C【解析】选项①:当时,,有,,则,即数列不是递减数列,故①错误;选项②:当时,,因为,所以数列可有最大项,故②错误;选项③:当时,,所以,即数列是递减数列,故③正确;选项④:,当为正整数时,;当时,;当时,令,解得,,数列必有两项相等的最大项,故④正确.所以正确的选项为③④.【考点】数列的函数特征.2.在数列中,,,则=()A.B.C.D.【答案】D【解析】由已知可得:由此可猜想数列是以3为周期的周期数列,所以,故选D.另此题也可:设,则有从而可知数列是以0为首项,为公差的等差数列,从而可求得进而求得的值.【考点】数列的概念.3.数列{}中,,则为___________.【答案】19【解析】由已知可得,所以,,。
【考点】数列的递推关系式。
4.数列的一个通项公式是()A.B.C.D.【答案】B【解析】.【考点】数列的通项公式.5.数列1,1,2,3,5,8,x,21,34,55中,x等于()A.11B.12C.13D.14【答案】C【解析】观察数列特点,从第三项起每一项等于它的前两项的和,因此【考点】数列点评:由数列前几项的特点归纳出通项,进而求得任意一项6.在数列{}中,若,则()A.1B.C.2D.1.5【答案】D【解析】根据题意,由于体现了数列的递推式的运用,故选D.【考点】数列的递推式点评:解决的关键是根据首项,结合递推式得到数列的其余的各项,同时能结合周期性得到结论,属于基础题。
7.已知数列的前项和,则 .【答案】=1,当n时,则=,综合上述可知【解析】解:因为,那么当n=1,得到a1结论为8.已知数列中,,若,则()A.B.C.D.【答案】C【解析】解:因为,说明是公差为4的等差数列,,选C9.数列的一个通项公式是A.B.C.D.【答案】D【解析】解:因为数列的前几项为摆动数列,因此一个通项公式是,也可以特殊值验证法得到,选D10.在2与32中间插入7个实数,使这9个实数成等比数列,该数列的第7项是 .【答案】16【解析】记此数列为{an},则设公比为q,则11.若数列的通项公式为,则()A.为递增数列B.为递减数列C.从某项后为递减数列D.从某项后为递增数列【答案】D【解析】解:∵an ="n!" /10n ,∴当n!<10n时,数列{an}为递减数列,当n!>10n时,数列{an}为递递数列,故选D12.已知数列、都是公差为1的等差数列,其首项分别为,且设,则数列的前10项和等于()A.55B.70C.85D.100【答案】C【解析】解:∵a1+b1=5,a1,b1∈N*,a1>b1,a1,b1∈N*(n∈N*),∴a1,b1有3和2,4和1两种可能,当a1,b1为4和1的时,ab1=4,前10项和为4+5+…+12+13=85;当a1,b1为3和2的时,ab1=4,前10项和为4+5+…+12+13=85;故数列{abn}的前10项和等于85,故选C.13.已知数列是首项为1,公比为的等比数列,则.【答案】【解析】解:因为数列是首项为1,公比为的等比数列14.定义一种新的运算“”对任意正整数n满足下列两个条件:(1)则____________【答案】 4023【解析】令是以1为首项,2为公差的等差数列,=402315.,则此数列的通项公式_____;【答案】【解析】解:因为,根据分母的与分子与项数的关系可知16.数列的通项公式为,则此数列的前项的和等于 ( ) A.B.C.D.【答案】B【解析】验证法:17.数列的前n项的和,则= ___ .【答案】【解析】解:因为,当n=1时,则当n2时,则验证当n=1不适合上式,因此得到=18.已知数列1,,,,…的一个通项公式是an=_________.【答案】【解析】分子为2n-1,分母为n2,所以通项公式为19.已知数列{an }的通项公式为an=23-4n,Sn是其前n项之和,则使数列的前n项和最大的正整数n的值为 .【答案】10.【解析】,所以,由得,所以数列的前n项和最大的正整数n的值为1020.在数列中,等于()A.B.C.D.【答案】C【解析】21.在数列中,,,则( )A.B.C.D.【答案】A【解析】解:因为数列中,,22.已知数列的前几项和为.那么这个数列的通项公式= .【答案】.【解析】,当时,,.23.在数列中,,求:⑴数列的最大项⑵数列的前n项和【答案】(1)当;(2)【解析】数列的单调性的运用,求解数列的最大项;运用错位相减法。
4.1 数列的概念1.(2020·宜宾市南溪区第二中学校高一月考)已知数列28n na n =+,则数列{}n a 的第4项为( ) A .110B .16C .14 D .13【答案】B【解析】依题意4244148246a ===+.故选:B. 2.(2020·浙江鄞州·宁波诺丁汉附中高一期中)已知数列的通项公式是()()31{22n n n a n n +=-是奇数是偶数,则23⋅a a 等于( ) A .70 B .28C .20D .8【答案】C【解析】因为()()31{22n n n a n n +=-是奇数是偶数,所以,所以23⋅a a =20.故选C.3.(2020·广西田阳高中高一月考)已知数列的一个通项公式为()11312n n n n a +-+=-,则5a = ( ) A .12B .12-C .932D .932-【答案】A 【解析】()11312n n n n a +-+=-,则()51551531122a +-+=-=.故选:A. 4.(2020·广西田阳高中高一月考)已知数列2,5,22,11…,则25是这个数列的( ) A .第六项 B .第七项C .第八项D .第九项【答案】B题组一 根据通项求项【解析】由数列前几项归纳可知通项公式为n a =,=时,7n =,为数列第七项,故选B.5.(2020·浙江鄞州·宁波咸祥中学高一期中)已知数列{}n a 的通项公式为22n a n n =+,则10(a = )A .100B .110C .120D .130【答案】C【解析】数列{}n a 的通项公式为22n a n n =+,则21010210120a =+⨯=.故选:C.6.(2020·四川高一期中)已知数列{}n a 的通项公式是1(2)2n a n n =+,则220是这个数列的( ) A .第19项 B .第20项 C .第21项D .第22项【答案】B【解析】由题意,令1(2)2202n n +=,则(2)440n n +=,解得20n =或22n =-; 因为*n N ∈,所以20n =,即220是这个数列的第20项.故选:B.7.(2020·四川省苍溪实验中学校高一期中)已知数列2,4,……,则8是该数列的第________项 【答案】118=,解得11n =,所以8是该数列的第11项,故答案为:11.8.(2020·上海高二课时练习)在数列{}n a 中,已知()*cos2n n a n N π=∈,则{}n a 的前6项分别为______. 【答案】0,1,0,1,0,1--【解析】易得1cos02a π==,2cos 1a π==-,33cos02a π==,4cos 21a π==,55cos 02a π==,66cos12a π==-.故答案为:0,1,0,1,0,1-- 9.(2020·上海高二课时练习)已知数列{}n a 的通项公式为1(2)n a n n =+,那么199是这数列的第_____项.【答案】9【解析】令11(2)99n n =+,即22990n n +-=,解得9n =或11-(舍去),则199是这数列的第9项,故答案为: 9. 10.(2020·上海高二课时练习)数列{}n a 中,1003n a n =-(*n N ∈),该数列从第_____项开始每项均为负值. 【答案】34【解析】令10030n a n =-<,解不等式得:1003n >,由于*n N ∈,故34n =.故答案为:34.1.(2020·江西高一月考)数列3579,,,24816--,…的一个通项公式为( ) A .()n n n n21a 12+=-⋅ B .()nn n 2n 1a 12+=-⋅C .()n n 1n n 21a 12++=-⋅ D .()n 1n n2n 1a 12++=-⋅【答案】D【解析】根据分子、分母还有正负号的变化,可知,()12112n n nn a ++=-⋅.故选D. 题组二 根据项写通项2.(2020·四川双流·艺体中学)数列2,43,85,167,329…的一个通项公式a n 等于( ) A .221nn -B .2n nC .221nn -D .221nn +【答案】C【解析】数列2,43,85,167,329… 可写成:12211⨯-,22221⨯-,32231⨯-,42241⨯-,52251⨯-… 所以通项公式a n 2=21nn -.故选C. 3.(2020·上海市杨浦高级中学)已知数列1、0、1、0、,可猜想此数列的通项公式是( ).A .()()1*11n n a n N -⎡⎤=+-∈⎣⎦B .()()*1112nn a n N ⎡⎤=+-∈⎣⎦C .()()()()1*111122n n a n n n N +⎡⎤=+-+--∈⎣⎦ D .()()*11cos 2n a n n N π=-∈【答案】D【解析】对于A 选项,()011121a =+-=≠,不合乎题意; 对于B 选项,()1111012a =⨯-=≠,不合乎题意; 对于C 选项,()4311121312a ⎡⎤=⨯+-+⨯=≠⎣⎦,不合乎题意;对于D 选项,当n 为奇数时,cos 1n π=-,此时()11112n a =⨯+=, 当n 为偶数时,cos 1n π=,此时()11102n a =⨯-=,合乎题意. 故选:D.4.(2018·吉林宽城·长春市养正高中高一期中)根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式n a =__________.【答案】54n -【解析】第一图点数是1;第二图点数6=1+5 ;第三图是11=1+25 ;第四图是16=1+35 则第n 个图点数=1+(n-1)554n a n 故答案为:54n -5.(2019·山东东营·)已知数列{}n a 的前4项依次为23,45-,67,89-,试写出数列{}n a 的一个通项公式n a =______.【答案】12(1)21n nn +-+ 【解析】2,4,6,8,的通项公式为2n ,3,5,7,9,的通项公式为21n , 正负交替的通项公式为1(1)n +-,所以数列{}n a 的通项公式12(1)21n n n a n +=-+.故答案为:12(1)21n n n +-+ 6.(2020·全国高一课时练习)写出下列各数列的一个通项公式,使它的前几项分别是下列各数: (1)5784,,2,,,245--⋯(2)246810,,,,,315356399(3)5,55,555,5555,(4)2,0,2,0,2,0,【答案】(1)()131n n n a n ++=-;(2)()2221n n a n =-;(3)()51019n na =-;(4)()111n n a -=+- 【解析】解(1)考虑到第2,4项的分母恰好是所在项的序号, 于是这个数列的前4项可以改写成4567,,,1234--, 这4项的分母都与项的序号相同,分子都恰好是序号加3,且奇数项为正,偶数项为负, 所以它的一个通项公式为()131n n n a n++=-. (2)考虑到分子2,4,6,8,10恰好是序号的2倍,所以分子应为2n .分母22222321,1541,3561,6381,99101=-=-=-=-=-都为分子的平方数减去1,因此它的一个通项公式为()2221n na n =-.(3)这个数列的第n 项可以是n 个5组成的n 位数555n n a ↑=,用代数式替代省略号,可考虑前4项改写成55559,99,999,99999999⨯⨯⨯⨯,其中9999999999,,,又可表示成1234101,101,101,101----, 这里的10的正整数次幂的指数恰好与数列中项的序号相等, 所以它的一个通项公式为()51019n n a =-. (4)211,011=+=-,考虑到其每一项与序号的关系将前几项分别写成:()()()()012311,11,11,11+-+-+-+-, 因此它的一个通项公式为()111n n a -=+-.1.(2020·眉山市东坡区多悦高级中学校高一期中)在数列{}n a 中,已知11a =,25a =,()*21n n n a a a n N ++=-∈,则5a 等于( )A .4-B .5-C .4D .5【答案】B【解析】由()*21n n n a a a n N++=-∈知:3214a a a 4321a a a 5435a a a故选:B2.(2020·自贡市第十四中学校高一期中)数列3,7,11,15,的一个通项公式是( )A .41n a n =+B .21n a n =+C .41n a n =-D .21n a n =-【答案】C【解析】因为数列3,7,11,15⋯的一个通项公式为41n -,故数列3,7,11,15,⋯的一个通项公式是41n a n =-,故选:C . 3.(2019·河北廊坊·高一期末)数列{}n a 的前几项为11121,3,,8,222,则此数列的通项可能是( )A .542n n a -=B .322n n a -=C .652n n a -=D .1092n n a -=【答案】A题组三 根据递推公式求项【解析】数列为16111621,,,,22222其分母为2,分子是首项为1,公差为5的等比数列,故通项公式为542n n a -=. 4.(2020·安徽黄山·高一期末)数列1111,,,,...24816--的一个通项公式是( ) A .1(1)2+-n nB .(1)2-n nC .sin 2nn πD .cos(1)2nn π+【答案】B 【解析】()111122-=-⨯,()2211142=-⨯,()3311182-=-⨯,()44111162=-⨯ 所以其通项公式是:(1)2-nn 故选:B5.(2020·武汉外国语学校高一月考)数列4,6,10,18,34,……的通项公式n a 等于( ) A .12n + B .21n + C .22n + D .22n +【答案】C【解析】234521134522,22,22,22,22a a a a a =+=+=+=+=+22n n a ∴=+故选:C6.(2020·浙江越城·绍兴一中期中)在数列{}n a 中,()1111,1(2)nnn a a n a --==+≥,则5a 等于A .32B .53C .85D .23【答案】D【解析】已知1a 逐一求解2345122323a a a a ====,,,.故选D7.(2020·吉林前郭尔罗斯县第五中学高一期中)数列12-,2,92-,8,252-,…它的一个通项公式可以是( )A .()212nn n a =-B .()2112n n n a +=- C .22n n a =D .1n n a n =-+ 【答案】A【解析】将1n =代入四个选项可得A 为12-,B 为12,C 为12,D 为12-.所以排除B 、C 选项. 将2n =代入A 、D,得A 为2,D 为23-,所以排除D 综上可知,A 可以是一个通项公式故选:A 8.(2019·息县第一高级中学高二月考(文))数列1-,3,7-,15,…的一个通项公式可以是( ) A .()(1)21nnn a =-⋅- B .(1)(21)nn a n =-⋅- C .()1(1)21n n n a +=-⋅-D .1(1)(21)n n a n +=-⋅-【答案】A【解析】将1n =代入四个选项,可知C 中11,a =D 中11,a =所以排除C 、D.当3n =,代入B 可得35,a =-所以排除B ,即A 正确,故选:A.9.(2018·安徽六安一中高一期末(文))已知*n N ∈,给出4个表达式:①0,1,n n a n ⎧=⎨⎩为奇数为偶数,②1(1)2n n a +-=,③1cos 2n n a π+=,④sin 2n n a π=.其中能作为数列:0,1,0,1,0,1,0,1,…的通项公式的是( ) A .①②③ B .①②④C .②③④D .①③④【答案】A【解析】①②③逐一写出为010101,,,,,可以,④逐一写出为1010101,,,,,,不满足,故选A .10.(2020·湖北十堰·高一期末)数列1111,,,57911--,…的通项公式可能是n a =( ) A .1(1)23n n --+B .(1)32nn -+C .1(1)32n n --+D .(1)23nn -+【答案】D【解析】由115a =-,排除A ,C ,由217a =,排除B.故选:D.11.(2020·金华市曙光学校高一开学考试)数列1-,3,5-,7,9-,,的一个通项公式为( )A .21n a n =-B .(1)(12)nn a n =-- C .(1)(21)nn a n =--D .1(1)(21)n n a n +=--【答案】C【解析】∵数列{a n }各项值为1-,3,5-,7,9-,,∴各项绝对值构成一个以1为首项,以2为公差的等差数列,∴|a n |=2n ﹣1 又∵数列的奇数项为负,偶数项为正,∴a n =(﹣1)n (2n ﹣1).故选C .1.(2019·云南东川明月中学高一期中)数列{}n a 的前n 项和21n S n n =++,则{}n a 的通项公式n a = _____.【答案】()()3122n nn ⎧=⎪⎨≥⎪⎩ 【解析】当1n =时,113a S ==;题组四 公式法求通项当2n ≥时,()()()22111112n n n a S S n n n n n -⎡⎤=-=++--+-+=⎣⎦; ∴()()3122n n a n n ⎧=⎪=⎨≥⎪⎩故答案为()()3122n n n ⎧=⎪⎨≥⎪⎩2.(2019·湖南岳阳)已知数列{}n a ,若1222n a a na n +++=,则数列{}1n n a a +的前n 项和为__________. 【答案】41n n + 【解析】因为122++2n a a na n +⋯=所以1212++12n 1n a a n a ()()-+⋯-=- 两式相减得2n na =所以2n a n=设数列{}1n n a a +的前n 项和为S n 则1223342111n n n n n n n S a a a a a a a a a a a a ---+=+++⋅⋅⋅++2222222222221223342111n n n n n n =⨯+⨯+⨯+⋅⋅⋅⨯+⨯+⨯---+ 1111111111141223342111n n n n n n ⎛⎫=-+-+-+⋅⋅⋅-+-+- ⎪---+⎝⎭ 144111n n n ⎛⎫=-= ⎪++⎝⎭3.(2020·上海市金山中学期中)已知数列{}n a 的前n 项和2231n S n n =-+,则n a =__________.【答案】0,145,2n n a n n =⎧=⎨-≥⎩【解析】当1n =时,110a S ==当2n ≥时,由2231n S n n =-+,得212(1)3(1)1n S n n -=---+,两式相减,145n n n a S S n -=-=-,将1n =代入上式,110a =-≠,∴通项公式为0,145,2n n a n n =⎧=⎨-≥⎩故答案为0,145,2n n a n n =⎧=⎨-≥⎩. 4.(2019·黑龙江哈尔滨市第六中学校期中)已知数列{}n a 前n 项和为n S ,且2n S n =,则n a =_______【答案】21n -.【解析】当1n =时,111a S ==当2n ≥且*n N ∈时,()221121n n n a S S n n n -=-=--=-综上所述:21n a n =-,*n N ∈本题正确结果:21n -5.(2020·河北石家庄·辛集中学)在数列{}n a 中,已知其前n 项和为23n n S =+,则n a =__________. 【答案】15,12,2n n n a n -=⎧=⎨≥⎩【解析】当2n ≥时,111(23)(23)2n n n n n n a S S ---=-=+-+=;当1n =时,11235a S ==+=,不满足上式。
考点1等比数列的通项与前n 项和 题型1已知等比数列的某些项,求某项【例1】已知{}n a 为等比数列,162,262==a a ,则=10a【解题思路】可以考虑基本量法,或利用等比数列的性质【解析】方法1: 811622451612=⇒⎩⎨⎧====q q a a q a a ∴1312281162469110=⨯===q a q a a方法2: 812162264===a a q,∴13122811624610=⨯==q a a 方法3:{}n a 为等比数列∴13122216222261026102===⇒=⋅a a a a a a【名师指引】给项求项问题,先考虑利用等比数列的性质,再考虑基本量法.题型2 已知前n 项和n S 及其某项,求项数.【例2】⑴已知n S 为等比数列{}n a 前n 项和,93=nS ,48=n a ,公比2=q ,则项数=n .⑵已知四个实数,前三个数成等差数列,后三个数成等比数列,首末两数之和为37,中间两数之和为36,求这四个数. 【解题思路】⑴利用等比数列的通项公式11-=n nqa a 及qq a S n n --=1)1(1求出1a 及q ,代入n S 可求项数n ;⑵利用等差数列、等比数列设出四个实数代入已知,可求这四个数.【解析】⑴由93=n S ,48=n a ,公比2=q ,得532248293)12(111=⇒=⇒⎩⎨⎧=⋅=--n a a nn n . ⑵方法1:设这四个数分别为d c b a ,,,,则⎪⎪⎩⎪⎪⎨⎧=+=+=+=363722c b b a bd c c a b ;方法2:设前2个数分别为b a ,,则第43、个数分别为a b --3736,,则 ⎩⎨⎧-=-+-=)37()36()36(22a b b a b b ,解得⎩⎨⎧==1612b a 或⎪⎩⎪⎨⎧==481499b a ; 方法3:设第32、个数分别为c b ,,则第1个数为c b -2,第1个数为bc 2,则⎩⎨⎧==⇒⎪⎩⎪⎨⎧=++-20163622c b c b b c c b 或⎪⎩⎪⎨⎧==463481c b ; 方法4:设第32、个数分别为c b ,,设第4,1个数分别为ca c c a ++22,2;方法5:设第43、个数分别为d c ,,则设第2,1个数分别为c d --36,37,则⎩⎨⎧===⇒⎩⎨⎧-=+-=-251620)36()37()36(22d c c d c c d c 或.449,463==d c 【名师指引】平时解题时,应注意多方位、多角度思考问题,加强一题多解的练习,这对提高我们的解题能力大有裨益.题型3 求等比数列前n 项和【例3】等比数列 ,8,4,2,1中从第5项到第10项的和. 【解题思路】可以先求出10S ,再求出4S ,利用410S S -求解;也可以先求出5a 及10a ,由10765,,,,a a a a 成等比数列求解.【解析】由2,121==a a ,得2=q ,∴102321)21(11010=--=S ,1521)21(144=--=S ,∴.1008410=-S S 【例4】已知n S 为等比数列{}n a 前n 项和,13233331-+++++=n na ,求n S【解题思路】可以先求出n a ,再根据n a 的形式特点求解.【解析】 212331)31(133331132-=--=+++++=-n n n na ,∴n n S n nn 2131)31(32121)3333(2132---⨯=-++++= 即.432143--=n S n n 【例5】已知n S 为等比数列{}n a 前n 项和,n n n a 3)12(⋅-=,求n S .【解题思路】分析数列通项形式特点,结合等比数列前n 项和公式的推导,采用错位相减法求和. 【解析】 n nn a 3)12(⋅-=∴n n n S 3)12(35333132⋅-++⋅+⋅+⋅= ,----------------①14323)12(3)32(3533313+⋅-+⋅-++⋅+⋅+⋅=n n nn n S -------------②①—②,得14323)12()3333(232+⋅--+++++=-n n n n S63)22(3)12(31)31(923111-⋅-=⋅----⨯+=++-n n n n n∴.33)1(1+⋅-=+n n n S【名师指引】根据数列通项的形式特点,等比数列求和的常用方法有:公式法、性质法、分解重组法、错位相减法,即数列求和从“通项”入手.【新题导练】 1.已知{}n a 为等比数列,6,3876321=++=++a a a a a a ,求131211a a a ++的值.【解析】设等比数列{}n a 的公比为q ,6,3876321=++=++a a a a a a ,∴23216545=++++=a a a a a a q ,∴131211a a a ++;2.如果将100,50,20依次加上同一个常数后组成一个等比数列,则这个等比数列的公比为 .【解析】设这个常数为x ,则x x x +++100,50,20成等比数列,∴)100)(20()50(2x x x ++=+,解得45=x ,∴17418520545204550==++=q . 3.已知n S 为等比数列{}n a 的前n 项和,364,243,362===n S a a ,则=n ;【解析】3,12433151612==⎩⎨⎧⇒====q a q a a q a a 或3,11-=-=q a , 当3,11==q a 时,636431)31(1=⇒=--=n S n n ; 当3,11-=-=q a 时,[]n S nn ⇒=+---=36431)3(11无整数解. 4.已知等比数列{}n a 中,21a =,则其前3项的和3S 的取值范围是 .【解析】∵等比数列()n a 中21a = ∴312321111S a a a a q q q q⎛⎫=++=++=++ ⎪⎝⎭ ∴当公比0q>时,31113S q q =++≥+=; 当公比0q<时,31111S q q ⎛⎫=---≤-=- ⎪⎝⎭, ∴(][)3,13,S ∈-∞-+∞5.已知n S 为等比数列{}n a 前n 项和,0>n a ,80=nS ,65602=n S ,前n 项中的数值最大的项为54,求100S .【解析】由0>na ,80=n S ,65602=n S ,知1≠q ,∴.65601)1(,801)1(2121=--==--=qq a S q q a S n n n n∴81821122=⇒=--=n n nn n q q q S S ,∴1>q ,又 前n 项中的数值最大的项为: 5411==-n n q a a ,∴321=q a ,∴.133,21001001-=⇒==S q a 考点2 证明数列是等比数列【例6】已知数列{}n a 和{}n b 满足:λ=1a ,4321-+=+n a a n n ,)213()1(+--=n a b n n n ,其中λ为实数,+∈N n . ⑴ 对任意实数λ,证明数列{}n a 不是等比数列;⑵ 试判断数列{}n b 是否为等比数列,并证明你的结论.【解题思路】⑴证明数列{}n a 不是等比数列,只需举一个反例;⑵证明数列{}n b 是等比数列,常用:①定义法;②中项法.【解析】⑴ 证明:假设存在一个实数λ,使{}n a 是等比数列,则有3122a a a ⋅=,即,094949494)494()332(222=⇔-=+-⇔-=-λλλλλλλ矛盾. 所以{}n a 不是等比数列.⑵ 解:因为[]21)1(3)1()213()1(11++--=+--=++n a n a b n n n n n[])14232()1(183)1(111+--=+--=+++n a n a n n n nn n n b n a 32)213()1(321-=+--=+又)18(11+-=λb ,所以当)(0,18+∈=-=N n b n λ,此时{}n b 不是等比数列; 当)8(,181+-=-≠λλb 时,由上可知)(32,01++∈-=∴≠N n b b b n n n ,此时{}n b 是等比数列.【名师指引】等比数列的判定方法: ⑴定义法:q a a nn =+1(+∈N n ,0≠q 是常数)⇔{}n a 是等比数列; ⑵中项法:221++⋅=n n n a a a (+∈N n )且0≠n a ⇔{}n a 是等比数列.【新题导练】6.已知数列{}n a 的首项123a =,121n n n a a a +=+,1,2,3,n =….证明:数列1{1}n a -是等比数列;【解析】 121n n n a a a +=+,∴ 111111222n n n na a a a ++==+⋅,∴11111(1)2n n a a +-=-,又123a =,∴11112a -=, ∴数列1{1}n a -是以12为首项,12为公比的等比数列.考点3 等比数列的性质【例7】已知n S 为等比数列{}n a 前n 项和,54=nS ,602=n S ,则=n S 3 .【解题思路】结合题意考虑利用等比数列前n 项和的性质求解. 【解析】{}n a 是等比数列,∴n n n n n S S S S S 232,,--为等比数列,∴318236)60(5433=⇒=-n n S S .【名师指引】给项求项问题,先考虑利用等比数列的性质,再考虑基本量法.【新题导练】 7.已知等比数列{}n a 中,36)2(,04624=++>a a a a a n ,则=+53a a .【解析】{}n a 是等比数列,0>n a∴⇒=+⇒=++36)(36)2(2534624a a a a a a 653=+a a .考点4 等比数列与其它知识的综合【例8】设n S 为数列{}n a 的前n 项和,已知()21n n n ba b S -=-⑴证明:当2b =时,{}12n na n --⋅是等比数列;⑵求{}n a 的通项公式【解题思路】由递推公式{}0,,=n a S n n 求数列的通项公式)(n f a n=,主要利用:⎩⎨⎧≥-==-)2()1(11n S S n S a n nn ,同时注意分类讨论思想.【解析】由题意知12a =,且 ()21n n n ba b S -=-,()11121n n n ba b S +++-=-两式相减,得()()1121n n n n ba ab a ++--=-,即 12n n n a ba +=+ ①⑴当2b =时,由①知 122n n n a a +=+于是 ()()1122212n n n n n a n a n +-+⋅=+-+⋅()122n n a n -=-⋅又111210n a --⋅=≠,所以{}12n n a n --⋅是首项为1,公比为2=q 的等比数列。
高一数学试题答案及解析1.设数列{an }的前n项之和为Sn,令,称Tn为数列a1,a2,…an的理想数,如果a1,a 2,…a500的理想数为2004,那么数列7,a1,a2,…a500的理想数为.【答案】2007【解析】略2.设Sn=+++ +,且,则n的值为()A.9B.8C.7D.6【答案】D【解析】则由得.则.【考点】数列裂项相消.3.若为第三象限,则的值为()A.B.C.D.【答案】B【解析】因为为第三象限,所以.因此,故选择B.【考点】同角三角函数基本关系及三角函数符号.4.函数,的图象与轴交于点,过点的直线与函数的图象交于两点,则 ( )A.4B.8C.16D.32【答案】D.【解析】当时,,∴,又∵的图象关于点中心对称,∴,,∴.【考点】三角函数的图象与性质.5.一个样本数据按从小到大的顺序排列为:,其中,中位数是,则等于( )A.B.C.D.【答案】A【解析】由中位数的概念可知:中位数是将数据从小到大排列,处于正中间的一个数(或是正中间两个数的平均数),由已知应有,故选A.【考点】样本数据的特征量.6.等比数列中,,公比,用表示它的前n项之积,则中最大的是A.B.C.D.【答案】C【解析】注意到,,,,所以排除B.因为,所以要使最大,只可能为9,12或13中的一个.因为,所以;又,所以.故选C.【考点】等比数列的性质.7.已知是等比数列,有,是等差数列,且,则 ( )A.4B.8C.0或8D.16【答案】B【解析】等比数列中,由,可知,因为数列是等差数列,∴,故选B【考点】等差数列的性质;等比数列的性质.8.若向量两两所成的角相等,且,则等于()A.B.C.或D.或【答案】C【解析】因为向量两两所成的角相等,所以它们的夹角为0或,当夹角为0时,,当夹角为时,=1+1+9+=4,得,所以选C.【考点】向量的模.9.在△ABC中,已知++ab=,则∠C=()A.30°B.60°C.120°D.150°【答案】C【解析】因为,△ABC中,已知++ab=,所以,,∠C=120°,选C。
高一数学试题答案及解析一、选择题(本题共8小题,每小题5分,共40分)1. 若函数f(x)=x^2-4x+m,且f(1)=-3,则m的值为()A. 0B. 1C. 2D. 3答案:B解析:将x=1代入函数f(x)=x^2-4x+m中,得到f(1)=1^2-4*1+m=-3,解得m=1。
2. 已知等差数列{an}的前n项和为Sn,若a1=1,公差d=2,则S5的值为()A. 15B. 25C. 35D. 45答案:A解析:根据等差数列前n项和公式Sn=n/2*(2a1+(n-1)d),代入n=5,a1=1,d=2,得到S5=5/2*(2*1+(5-1)*2)=15。
3. 若cosα=-1/2,则α的值为()A. π/3B. 2π/3C. π/6D. 5π/6答案:B解析:根据特殊角的三角函数值,cos(2π/3)=-1/2,所以α=2π/3。
4. 已知函数f(x)=x^3-3x,求f'(x)的值为()A. 3x^2-3B. 3x^2+3C. x^2-3D. x^2+3答案:A解析:对函数f(x)=x^3-3x求导,得到f'(x)=3x^2-3。
5. 若直线l的方程为y=2x+1,则直线l的斜率为()A. 1B. 2C. -1D. -2答案:B解析:直线方程y=2x+1中,斜率k=2。
6. 已知集合A={x|x^2-5x+6=0},B={x|x^2-3x+2=0},则A∩B 的值为()A. {1, 2}B. {2}C. {1}D. {1, 3}答案:B解析:解方程x^2-5x+6=0得到A={2, 3},解方程x^2-3x+2=0得到B={1, 2},所以A∩B={2}。
7. 若复数z=1+i,则|z|的值为()A. √2B. 2C. 1D. 0答案:A解析:根据复数模的计算公式,|z|=√(1^2+1^2)=√2。
8. 已知函数f(x)=x^2-4x+3,求f(-1)的值为()A. 8B. 6C. 4D. 2答案:A解析:将x=-1代入函数f(x)=x^2-4x+3中,得到f(-1)=(-1)^2-4*(-1)+3=8。
高一数学等比数列试题答案及解析1.已知是等比数列,且,,那么的值等于()A.5B.10C.15D.20【答案】A【解析】由于是等比数列,,,又.故选A.【考点】等比中项.2.在各项都为正数的等比数列{an}中,公比q=2,前三项和为21,则( ).A.33B.72C.84D.189【答案】C【解析】由,故选C.【考点】等比数列性质.3.在等比数列中,已知前n项和=,则的值为()A.-1B.1C.5D.-5【答案】D【解析】当=1时,===,当≥2时,==-=,∵是等比数列,∴公比为5,∴==5,解得=-5.【考点】等比数列定义;数列前n项和与第n项关系4.已知等比数列公比,若,,则 .【答案】42【解析】因为所以【考点】等比数列的有关运算5.已知数列{an }的前n项和为Sn,满足an¹ 0,,.(1)求证:;(2)设,求数列{bn }的前n项和Tn.【答案】(1)见解析(2)Tn=【解析】(1)由,变形为,然后利用累加法可证得结果. (2)由,.两式相减得,即,然后利用等差等比数列的前n项和公式即可求得结果.试题解析:(1)证明:∵,an¹ 0,∴.则,,…,(n≥2,).以上各式相加,得.∵,∴.∴(n≥2,).∵n = 1时上式也成立,∴().(2)∵,∴.两式相减,得.即.则.= =.【考点】递推关系式;累加法求和;等差等比数列的前n项和公式.6.已知实数列成等比数列,则()A.B.C.D.【答案】C【解析】记该数列为,并设该等比数列的公比为,则有,所以所以,故选C.【考点】等比数列的通项公式.7.等比数列满足,则公比__________.【答案】【解析】设公比为,根据等比数列的通项公式可得,,两式相除可得.【考点】等比数列的通项公式.8.已知等比数列的公比为2,前4项的和是1,则前8项的和为()A.23B.21C.19D.17【答案】D【解析】法一:设公比为,则依题意有,所以,所以,选D;法二:依题意可知,所以,所以,选D.【考点】等比数列的通项及其前项和公式.9.在等比数列中,如果,那么等于()A.2B.C.D.4【答案】D【解析】∵,∴,故选D.【考点】等比数列的性质.10.设成等比数列,其公比为2,则的值为( ) A.B.C.D.1【答案】A【解析】因为成等比数列,其公比为2,所以.因此.【考点】等比数列11.设,则等于 ( )【答案】C【解析】因为为一个以为首项,为公比等比数列前项的和,所以选C.【考点】等比数列求和12.已知等比数列中,则 ( )A.6B.﹣6C.±6D.18【答案】C【解析】因为,在等比数列中,如果,,那么,。
高一数学必修一数列练习题含答案这里提供高一数学必修一数列的练题,供同学们练和复使用,每个题目均附有答案。
填空题1. 已知数列 $\{a_n\}$ 的前 $n$ 项和 $S_n=2n^2-n$,则$a_3+a_5=$ _________。
<br>解:由已知可得 $S_3=a_1+a_2+a_3=2\cdot 3^2-3=15$,$S_5=a_1+a_2+\cdots+a_5=2\cdot 5^2-5=45$,故 $a_3+a_5=(S_3-S2)+(S_5-S_4)=15+15=30$。
2. 已知数列 $\{a_n\}$ 的通项公式 $a_n=2^n-3\times 2^{n-1}$,则 $a_{25}-a_{24}=$ _________。
<br>解:$a_{25}-a_{24}=2^{25}-3\times 2^{24}-[2^{24}-3\times2^{23}]=2^{25}-2\times 2^{24}+3\times2^{23}=2^{23}+3\times 2^{23}=8\times 2^{23}$。
计算题1. 已知等差数列 $\{a_n\}$ 的第 $1$ 项为 $2$,公差为 $3$,求第 $10$ 项。
<br>解:$a_{10}=a_1+9d=2+9\times 3=29$。
2. 已知等比数列 $\{a_n\}$ 的第 $1$ 项为 $2$,公比为 $3$,求前 $5$ 项的和。
<br>解:$\sum_{i=1}^5 a_i=\frac{a_1(1-q^5)}{1-q}=\frac{2(1-3^5)}{1-3}=\frac{242}{3}$。
应用题1. 已知数列 $\{a_n\}$ 满足 $a_1=1$,$a_n=a_{n-1}+\frac{2}{a_{n-1}}$,求 $a_4$ 的值。
<br>解:$a_2=1+\frac{2}{1}=3$,$a_3=3+\frac{2}{3}=\frac{11}{3}$,$a_4=\frac{11}{3}+\frac{2}{\frac{11}{3}}=\frac{61}{18}$。
高一数学等差数列试题1.数列满足(1)证明:数列是等差数列;(2)求数列的通项公式;(3)设,求数列的前项和.【答案】(1)证明见解析;(2)【解析】(1)根据等差数列的首项和公差求通项公式;根据等比数列的首项和公比求通项公式;注意题中限制条件;(2)证明一个数列是否为等差数列的基本方法有两种:一是定义法:证明;二是等差中项法,证明,若证明一个数列不是等差数列,则只需举出反例即可;(3)一般地,如果数列是等差数列,是等比数列,求数列的前项的和时,可采用错位相减法求和,一般是和式两边同乘以等比数列的公比,然后做差求解.试题解析:解: (1)取倒数得: ,两边同乘以得: 所以数列是以为首项,以1为公差的等差数列. 4分(2)即 7分(3)由题意知: 则前n项和为:由错位相减得: ,13分【考点】(1)证明数列是等差数列;(2)求通项公式;(3)错位相减求和.2.已知正项数列的前n项和为,且(1)求、;(2)求证:数列是等差数列;(3)令,问数列的前多少项的和最小?最小值是多少?【答案】(1);(2)证明略;(3)当时,前项和最小,最小值-90.【解析】(1)根据等差数列的首项和公差求通项公式,求首项和公差是常用方法,注意题中限制条件;(2)证明一个数列是否为等差数列的基本方法有两种:一是定义法:证明;二是等差中项法,证明,若证明一个数列不是等差数列,则只需举出反例即可;(3)求前项和的最大值或最小值的常用方法,看这个数列是递增数列还是递减数列,看从第几项开始出现变号,所有的正项加起来值最大,所有的负项加起来最小,注意看是否某一项为0.试题解析:解:(1)由已知条件得:又有,解得(2)由得即,,。
所以数列是公差为2的等差数列.(3)由(2)知..易知数列是公差为2,首项为的等差数列。
所以数列的前n项的和当时有最小值.即数列的前9项的和以及前10项的和最小值是-90.另解:注意到数列是公差为2的递增等差数列,且,故数列的前9项的和以及前10项的和最小值是-90.【考点】(1)求项的值;(2)判定某个数列是否为等差数列;(3)前项和的最小值.3.已知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是()A.5B.4C.3D.2【答案】C【解析】写出数列的第一、三、五、七、九项的和,写出数列的第二、四、六、八、十项的和,都用首项和公差表示,两式相减,得到结果.由此得:,故选C.【考点】等差数列.4.已知等差数列的前n项和为,,,则数列的前100项和为()A.B.C.D.【答案】A【解析】由.所以,则前100项的和为:,故选A.【考点】(1)等差数列性质;(2)列项求和.5.已知等差数列满足:=2,且成等比数列.(1)求数列的通项公式.(2)记为数列的前n项和,是否存在正整数n,使得若存在,求n的最小值;若不存在,说明理由.【答案】(1)或;(2)当时,不存在满足题意的n;当时,存在满足题意的n,其最小值为41.【解析】(1)本小题利用基本量法,设公差为,则成等比可转化为关于的方程,解出即可写其通项公式;(2)在上小题已得的等差数列的前提下,求出其前n项和,利用转化为不等解集问题的分析即可,同时要注意n为正整数.试题解析:(1)设数列的公差为,依题意,,,成等比数列,故有,化简得,解得或.当时,;当时,,从而得数列的通项公式为或.(2)当时,.显然,此时不存在正整数n,使得成立.当时,.令,即,解得或(舍去),此时存在正整数n,使得成立,n的最小值为41.综上,当时,不存在满足题意的n;当时,存在满足题意的n,其最小值为41.【考点】等差与等比数列的定义,通项公式,等差数列的前n项和公式,解一元二次不等式,分类讨论与化归思想.6.已知等差数列的首项,公差,则的第一个正数项是()A.B.C.D.【答案】D.【解析】∵等差数列,,,∴,令,即,满足不等式的第一个整数为,即数列的第一个正数项为.【考点】等差数列的通项公式.7.已知等差数列满足:,的前项和为.(1)求及;(2)令(其中为常数,且),求证数列为等比数列.【答案】(1);(2)详见解析.【解析】(1)设出等差数列的公差为,则由等差数列的通项公式易将已知条件转化为和d的二元一次方程组,解此方程组可得到和d的值,从而就可写出及;(2)要证数列为等比数列,只需证是常数对一切都成立即可,将已知与(1)的结论代入易知为常数,从而问题得证.试题解析:(1)设等差数列的公差为,因为,所以有,解得所以(2)由(1)知,所以.(C是常数,也是常数,且)所以数列是以为首项,为公比的等比数列.【考点】1.等差数列;2.等比数列.8.已知数列中,,,则的值为A.50B.51C.52D.53【答案】C【解析】是等差数列,公差为,.【考点】等差数列9.数列是等差数列,,前四项和。
高一数学数列综合应用试题答案及解析1.数列1,-3,5,-7,9,的一个通项公式为()A.B.C.D.【答案】B【解析】由数列中1,-3,5,-7,9,可以看出:符号正负相间,通项的绝对值为1,3,5,7,9 为等差数列,其通项公式.【考点】本题考查了等差数列的通项公式,属于基础题2.数列满足,则 .【答案】.【解析】当时,,;当时,由于,,两式相减得,不满足.【考点】由得.3.数列中,=2,,则=().A.2+ln n B.2+ (n-1) ln n C.2+ n ln n D.1+n+ln n【答案】A【解析】所以得.故选A.【考点】迭加消元求和.4.已知数列{an }的通项公式an=,若前n项和为6,则n=_________.【答案】48【解析】试题分析:,;令,解得.【考点】数列的前项和.5.数列的前n项和记为,点(n,)在曲线()上(1)求数列的通项公式;(2)设,求数列的前n项和的值.【答案】(1);(2).【解析】(1)由与满足的关系式,由可求得的通项公式;(2)由一个等差数列和一个等比数列的乘积采用错位相减法求和的方法求数列的和.试题解析:(1)由条件得()当当也适合所以通项公式为:.(2)、2两式相减得,解得【考点】(1)由的表达式求数列的通项公式;(2)错位相减求和.6.若数列中,则其前项和取最大值时,__________.【答案】或【解析】令,则,又∵,∴当时,,,当时,,∴当取最大值时,或.【考点】数列的性质.7.已知数列的前n项和满足(1)写出数列的前3项、、;(2)求数列的通项公式;(3)证明对于任意的整数有【答案】(1)、、;(2);(3)见解析.【解析】(1)是考查已知递推公式求前几项,属于基础题,需注意的是S1=a1,需要先求出a1才能求出a2,这是递推公式的特点;(2)解答需要利用公式进行代换,要注意n=1和n≥2的讨论,在得到,可以利用叠加法求解;(3)解答需要在代换后,适当的变形,利用不等式放缩法进行放缩.试题解析:(1)由,得,由,得,由,得;(2)当时,,,……,经验证:也满足上式,所以,;(3)证明:由通项知当,且n 为奇数时当且m为偶数时,当且m为奇数时∴对任意有【考点】1、递推数列;2、放缩法.8.给定函数的图像如下列图中,经过原点和(1,1),且对任意,由关系式得到数列{},满足,则该函数的图像为()【答案】A【解析】由题意,知:,即在图中应该是满足的所有点,只有A选项正确.【考点】数列的基本概念.9.已知数列的前n项和为,,且(),数列满足,,对任意,都有。
高一数学数列试题及答案一、选择题1. 已知数列{a_n}是等差数列,且a_1=1,a_4=7,那么a_7的值为()。
A. 13B. 14C. 15D. 162. 等比数列{b_n}中,b_1=2,b_3=8,则b_5的值为()。
A. 16B. 32C. 64D. 1283. 数列{c_n}的前n项和为S_n,若S_5=15,S_10=35,则S_15的值为()。
A. 55B. 50C. 60D. 654. 数列{d_n}满足d_1=1,d_{n+1}=2d_n+1,求d_3的值为()。
A. 5B. 7C. 9D. 11二、填空题5. 已知等差数列{a_n}的前n项和为S_n,若S_3=9,S_6=21,则a_4+a_5+a_6的值为______。
6. 等比数列{b_n}中,b_1b_2b_3=8,b_2=2,则b_4的值为______。
7. 数列{c_n}满足c_1=2,c_{n+1}=c_n+n,求c_5的值为______。
三、解答题8. 已知数列{a_n}是等差数列,且a_1=2,a_3+a_5=22,求a_7的值。
9. 等比数列{b_n}中,b_1=3,b_2b_3=45,求b_5的值。
10. 数列{c_n}满足c_1=1,c_{n+1}=2c_n+1,求c_4的值。
答案:一、选择题1. C解析:已知等差数列{a_n},a_1=1,a_4=7,设公差为d,则有a_4=a_1+3d,即7=1+3d,解得d=2。
因此,a_7=a_1+6d=1+6×2=13。
2. C解析:已知等比数列{b_n},b_1=2,b_3=8,设公比为q,则有b_3=b_1q^2,即8=2q^2,解得q=2或q=-2。
由于等比数列的公比不能为负数,所以q=2。
因此,b_5=b_1q^4=2×2^4=64。
3. C解析:已知数列{c_n}的前n项和为S_n,S_5=15,S_10=35。
由于S_5,S_10-S_5,S_15-S_10构成等差数列,所以有2(S_10-S_5)=S_5+(S_15-S_10),即2×(35-15)=15+(S_15-35),解得S_15=60。
高一数学数列试题答案及解析1.已知数列中,其前项和满足:(1)试求数列的通项公式;(2)求数列的前项和.【答案】(1),(2)【解析】(1)先利用化简关系式得:再利用叠加得,又,所以.经验证和也满足该式,故(2)因为数列通项是一个等比加一个等差,所以用“分组求和法”求和,即.试题解析:(1)即这个式子相加得,又所以. 经验证和也满足该式,故(2)用分组求和的方法可得【考点】由求,叠加法求,分组求数列和.2.数列{ an }为等差数列,a2与a6的等差中项为5,a3与a7的等差中项为7,则数列的通项an等于__ _.【答案】2n-3【解析】略3.已知数列{an }满足:an=,且Sn=,则n的值为()A.7B.8C.9D.10【答案】C【解析】,前项和采用裂项向消法求和,,解得:.【考点】裂项向消法求和4.已知是定义在上的不恒为零的函数,且对于任意实数满足考察下列结论:①;②为偶函数;③数列为等比数列;④数列为等差数列.其中正确的结论是()A.①②③B.②③④C.①②④D.①③④【答案】D【解析】当时,,当时,所以相等,①正确;令时,,又当时,得到,所以得到上式是,所以原函数是奇函数,所以②不正确;因为,两边同时除以,整理得到,所以数列是公差为1的等差数列,所以④正确,,所以数列,所以,那么,可以判断是等比数列,所以③正确.故选D.【考点】1.函数与数列的综合问题;2.等差数列的判定;3.等比数列的判定.5.等差数列满足,公差,若,则()A.B.C.D.【答案】B【解析】.故B正确.【考点】等差数列的通项公式.}中,已知,则.6.在等差数列{an【答案】10【解析】由等差数列的性质得,则,所以,解得10.【考点】1.等差数列的性质;7.已知数列满足(,且是递减数列,是递增数列,则A.B.C.D.【答案】D【解析】由可得:,又是递减数列,是递增数列,所以,即,由不等式的性质可得:,又因为,即,所以,即,同理可得:;当数列的项数为偶数时,令,可得:,将这个式子相加得:,所以,则,所以选D.【考点】1.裂项相消法求和;2.等比数列求和;8.在数列{}中,,则()A.B.C.D.【答案】A【解析】【考点】迭加法求数列通向公式9.等比数列的各项均为正数,且,则()A.B.8C.10D.12【答案】C【解析】因为等比数列,且,可得,【考点】(1)等比中项(2)对数函数的计算10.在等差数列中,若,则的值为()A.B.C.D.【答案】A【解析】因为是等差数列,所以成等差数列,又,所以,故选A。
【考点】等差数列的性质11.已知函数,若数列满足,且对任意的正整数都有成立,那么实数的取值范围是()A.B.C.D.【答案】D【解析】因为且对任意的正整数都有成立,所以数列为递增数列,即函数为增函数,需满足:,故选择D 【考点】1.分段函数;2.函数的单调性12.(10分)设数列的前n项和为,对任意的正整数n,都有成立.(1)求数列的通项公式;.(2)设求数列前n项和Tn【答案】(1);(2)【解析】(1)当时,求得,利用求得,可得;(2)因为,所以,由列相求和可得试题解析:(Ⅰ)当n=1时,a1=5S1+1,∴,又,即∴数列{an}是首项为a1=﹣,公比为q=﹣的等比数列,∴;(Ⅱ)所以所以Tn=[(1﹣)+()+…+(﹣)]=【考点】1.求数列通项公式;2.数列求和13.已知,把数列的各项排列成如下的三角形状,记表示第行的第个数,则A(10,13)=()A.B.C.D.【答案】C【解析】每一行的个数是奇数个,所以前9行的个数共,,所以第10行第13个数是整个数列的第94项,所以【考点】1.等比数列的通项;2.三角形数列.14.已知数列中,,则_____________.【答案】【解析】是等差数列,公差为3,【考点】等差数列15.已知函数f(x)是定义在R上不恒为零的函数,且对于任意实数a,b∈R,满足:(ab)=a(b)+b(a),(2)=2,an =(n∈N*),bn=(n∈N*).考察下列结论:①(0)=(1);②(x)为偶函数;③数列{an }为等比数列;④数列{bn}为等差数列.其中正确的结论共有.【答案】①③④【解析】当时,,当时,所以相等,①正确;令时,,又当时,得到,所以得到上式是,所以原函数是奇函数,所以②不正确;因为,两边同时除以,整理得到,所以数列是公差为1的等差数列,所以④正确,,所以数列,所以,那么,可以判断是等比数列,所以③正确.故选D.【考点】1.函数与数列的综合问题;2.等差数列的判定;3.等比数列的判定.16.(本小题满分14分)已知数列的前n项和为且,数列满足且.(1)求的通项公式;(2)求证:数列为等比数列;(3)求前n项和的最小值.【答案】(1);(2)略;(3)【解析】(1)运用当时,根据,将已知变形可得,数列是公差为的等差数列,可求得通项;(2)因为当时,,所以,整理求得,而,可证得,所以数列为等比数列;(3)根据(2)求得,进而求得通过判断的正负,确定是递增数列,检验当时,,当时,,所以前3项之和最小.试题解析:(1)时,由得, 即……2分数列是公差为的等差数列∴(2)∵当时,,∴,∴;∴由上面两式得,又∴数列是以-30为首项,为公比的等比数列.(3)由(2)得,当时,,∴=,∴是递增数列当n=1时, <0;当n=2时, <0;当n=3时, <0;当n=4时,>0,所以,从第4项起的各项均大于0,故前3项之和最小.且【考点】1.求数列通项公式;2.证明等比数列;3.判断数列的单调性17.由正数组成的等比数列中,若,则的值为()A.B.C.1D.【答案】B【解析】由题设及等比数列的性质得,则故选B【考点】•等比数列的性质 对数运算 特殊角的三角函数值计算18.若等比数列的各项均为正数,前项的和为,前项的积为,前项倒数的和为,则有()A.B.C.D.【答案】C【解析】从而得,,又得,故。
所以选C。
【考点】数列求和及其大小关系。
19.在一个数列中,如果对任意,都有为常数,那么这个数列叫做等积数列,叫做这个数列的公积.已知数列是等积数列,且,公积为,记的前项和为,则:(1).(2).【答案】(1)2,(2)4700【解析】依据等积数列的定义可得出数列是周期为3的周期数列:1,2,4,1,2,4,……,所以,【考点】创新题型,新定义问题。
抓住问题的本质,转化为熟知的问题。
20.一个等差数列前项和为,后项和为,所有项和为,则这个数列的项数为()A.B.C.D.【答案】A【解析】,,.【考点】等差数列通项公式.21.数列满足:,对任意有成立.(1)求数列的通项公式;(2)求数列的前项和;(3)设数列的前项和为,通项公式为,若对任意的存在,使得成立,则称数列为“”型数列. 已知为偶数,试探求的一切可能值,使得数列是“”型数列.【答案】(1);(2);(3)时,数列为“”型数列.【解析】(1)直接对正整数分奇数和偶数进行分类求解其通项即可;(2)对正整数先分偶数和奇数进行求解,再进行整合即可;(3)依据对正整数的奇数和偶数的情形进行分类求解,再整合书写答案即可.试题解析:(1)因为①,所以②②-①得:所以因为,∴,所以所以(2)当为奇数时,当为偶数时,所以(3)因为偶数,所以对于,当为奇数时,为偶数;为偶数时,为奇数i)当时,为奇数,取为偶数,为奇数,则由得,所以且由,所以,所以ii)当时,为偶数,取为奇数,则为偶数,由得ⅲ)时,为偶数,取为奇数,由得,∵,∴ⅳ)当时,为奇数,取为偶数,则由得,∵,∴所以时,数列为“”型数列,否则数列不是“”型数列.【考点】1、叠加法在求数列的通项及前项和的应用;2、分类整合的数学思想和方法;3、灵活运用数列知识分析问题解决问题的能力;4、运算求解、推理论证的能力和创新意识.【易错点晴】本题是以数列为载体,考查是数列的有关知识和推理论证能力的运用,属于难题.解题时一定要借助题设条件,运用分类整合的数学思想和方法,否则很容易出现错误.在分类整合时,需要强调的是:一定要注意按逻辑进行划分,做到分类时不重不漏,防止出现错误.本题中的第三问定义了新的概念“”型数列,解答时要充分借助这一信息进行分析求解.22.已知等比数列的首项为,公比为,其前项和为,若对恒成立,则的最小值为.【答案】【解析】,,所以,在上单调递增,在上也单调递增,所以,因此的最小值为.【考点】1、函数值域;2、不等式恒成立;3、等比数列前项和.【方法点睛】首先利用等比数列前项和公式,求出的范围,然后利用的单调性求出的取值范围,本题难点在于将不等式对恒成立转化为函数的值域为的一个子集, 从而可以求出的最小值为.23.一个公差不为零的等差数列{an}共有100项,首项为5,其第1、4、16项分别为正项等比数列{bn }的第1、3、5项. 记{an}各项和的值为S.(1)求S (用数字作答);(2)若{bn }的末项不大于,求{bn}项数的最大值N;(3)记数列,.求数列的前项的和.【答案】(1)25250,(2)12,(3)【解析】(1)由是等差数列及第1、4、16项分别为正项等比数列{bn}的第1、3、5项,可求得该数列的公差,得其通项公式,利用等差数列的前n项和公式求(2)由题意先求出数列{bn}的通项公式,由,可得的最大值又,从而得到{bn}项数的最大值N(3)由数列通项公式的特点,利用错位相减法求和.试题解析:(1)设的公差为(),由成等比数列,得. 所以()(2)由,所以由,所以的最大值为12.又,所以时,所以.(3)得=【考点】等差数列的前n项和公式及利用错位相减法求和.【方法点睛】(1)等差数列基本量的求解是等差数列的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用;(2)一般地,如果数列是等差数列,是等比数列,求数列的前项的和时,可采用错位相减法求和,一般是和式两边同乘以等比数列的公比,然后做差求解. (3)在做题时注意观察式子特点选择有关公式和性质进行化简,这样给做题带来方便,掌握常见求和方法,如分组转化求和,裂项法,错位相减.24.在等差数列中,,,则公差等于()A.B.0C.D.【答案】A【解析】,因为,代入,故选A.【考点】等差数列25.设等差数列的前项和为,若,则________.【答案】9.【解析】等差数列的前项和为,且,由等差数列的性质,得:故答案应填:9.【考点】等差数列的性质.26.已知数列的前n项和,则该数列的通项公式=______________.【答案】【解析】当时,当时,,因为不适合该式,所以.【考点】数列前项和公式的应用.27.等比数列中,已知.(1)求数列的通项公式;(2)若分别为等差数列的第3项和第5项,求数列的通项公式.【答案】(1);(2).【解析】(1)根据求得公比利用等比数列的通项公式即可求得;(2)根据的通项公式求得即得等差数列的第项和第项,解方程组求出等差数列的首项和公差,即可得到数列的通项公式.试题解析:(1)设的公比为, 由已知得,解得,所以(2)由(1)得,,则,设的公差为,则有,解得从而.【考点】等差、等比数列的通项公式.28.已知等比数列的各项均为正数,且,则()A.10B.50C.100D.1000【答案】C【解析】由等比数列的性质可知,所以,根据对数的运算法则可知,故选C.【考点】等比数列的性质与对数运算.【方法点晴】本题主要考查了等比数列的性质与对数运算,属于基础题.本题解答的关键是根据等比数列中“当序号满足时,相应的项满足”,由条件得到,同时结合对数的运算把转化为进而得其值.29.定义在上的函数,对任意且时,都有.记,,则在数列中,( )A.B.C.D.【答案】C【解析】由题,,故选C.【考点】数列的递推关系【名师】数列应用题常见模型(1)等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差模型,增加(或减少)的量就是公差.(2)等比模型:如果后一个量与前一个量的比是一个固定的数时,该模型是等比模型,这个固定的数就是公比.(3)递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化时,应考虑是an 与an+1的递推关系,还是前n项和S n与S n+1之间的递推关系.30.已知等差数列的前项和为,且,.(1)求的通项公式和前项和;(2)若数列满足:,求的前项和.【答案】(1);(2).【解析】(1)本题已知是等差数列,因此可把已知条件用表示出来,解得,由公式可得通项和前项和;(2)由定义知,是一个等比数列,由等比数列前项和公式可得.试题解析:(1)设等差数列的首项为,公差为,由已知可得,解得(2)由,{bn}是首项为6,公比为2的等比数列,则【考点】等差数列的通项公式,等差数列的前项和,等比数列的前项和.31.已知数列满足且,其前项和为,则满足的最小正整数为()A. 6B.7C.8D.9【答案】B【解析】根据题意,4,化简可得;则是首项为,公比为的等比数列,进而可得,, 分析可得n>7;即满足不等式的最小正整数n是7.【考点】数列求和【方法点睛】1.数列与函数的综合一般体现在两个方面(1)以数列的特征量n,an ,Sn等为坐标的点在函数图象上,可以得到数列的递推关系;(2)数列的项或前n项和可以看作关于n的函数,然后利用函数的性质求解数列问题.2.数列与不等式相结合问题的处理方法解决数列与不等式的综合问题时,如果是证明题要灵活选择不等式的证明方法,如比较法、综合法、分析法、放缩法等;如果是解不等式问题要使用不等式的各种不同解法,如列表法、因式分解法、穿根法等.总之解决这类问题把数列和不等式的知识巧妙结合起来综合处理就行了.32.已知数列的通项公式为,前n项和记为.(1)求证:数列是等差数列;(2)若,求.【答案】(1)证明见解析;(2).【解析】(1)由,利用等差数列的定义即可证明数列为等差数列;(2)利用等差数列的求和公式,得,可得,再利用裂项法求解数列的和.试题解析:(1)证明:∵=3是常数,∴是等差数列.(2).∴∴.【考点】等差数列的的定义;数列求和.33.已知函数,,(1)设为等差数列,且前两项和,求的值;(2)若,证明:.【答案】(1);(2)证明见解析.【解析】(1)这是数列中的恒成立问题,可用特值法求得参数值,再检验.由,可得,从而解得,分别求出公差后,求出检验发现只有符合题意,即;(2)已知变形为,因此,故为递增数列,由知,从而,于是有,即,由累加法知,利用放缩法可得∴,从而有,;同样利用放缩法可证.由,,从而,于是得,即有,接着累加,放缩可得.试题解析:(1)设等差数列公差为,则,又,得或,但当时,,无法使恒成立,所以.(2)先证.易知,,故为递增数列,从而,∴有,由叠加法有,注意到(),∴,从而,即(),又,有()成立.再证,当时,成立,由,,从而∴,即有,叠加有,又,从而∴,即有(),综上.【考点】等差数列的性质,从特殊到一般的证明方法,放缩法证明不等式.【名师】本题通过数列为载体考查从特殊到一般的思想方法,解题时,由于要求,因此在已知式中令,可得值,但必须对求出的值代入检验,才能判断结果是否正确.放缩法证明不等式是不等式证明的一种重要方法.解题的关键是恰当的放缩,放缩不能过度,否则是欲速则不达.34.若数列的前项和满足:,记.(1)求数列的通项公式;(2)若,,求证:;(3)记,求的值.(注:[x]表示不超过x的最大整数,例:[2.1]=2,[-1.3]=-2)【答案】(1);(2)见解析;(3).【解析】(1)由先求出,从而可求出;(2)由累和法及错位相减法求出数列的通项公式,即可证明不等式成立;(3)由进行放缩可得,从而得到,可求得.试题解析:(1)当时,,解得当时,,即所以数列是以为首项,公比为的等比数列∴,从而(2)由(1)知,∴即,当时,记则两式相减得所以,即,当时,也符合上式,所以(3)由(1)知由得即,所以,所以【考点】1.等比数列的定义与性质;2.错位相减法求和;3.累和法求通项公式;4.数列与不等式.35.已知等差数列中,前项和,若,则()A.12B.33C.66D.99【答案】B【解析】因为,所以,故选B.【考点】1.等差数列的性质;2.等差数列的求和公式.36.已知等比数列的各项均为正数,且成等差数列,则_________.【答案】【解析】由题设成等差数列可得,即,所以,.【考点】等差数列、等比数列的有关知识和通项公式.本题重点考查等差数列、等比数列的有关知识和公式及解方程的能力.37.已知是上的奇函数,数列满足,则数列的通项公式为()A.B.C.D.【答案】C【解析】由题是上的奇函数,即:关于(0,0)对称,则:关于对称。