高中数学《圆与方程》练习题
- 格式:doc
- 大小:565.21 KB
- 文档页数:4
( 数 学2必 修 ) 第 四 章圆 与 方 程一、选择题1.圆 (x 2)2y 25 对于原点 P(0, 0) 对称的圆的方程为 ()A . (x 2)2y 2 5B . x 2 ( y 2)25C . ( x 2) 2 ( y 2)25D . x 2 ( y 2) 2 52.若 P(2,1) 为圆 ( x1)2y 2 25 的弦 AB 的中点,则直线 AB 的方程是()A. x y 3 0B. 2x y 3 0C. x y 1 0D. 2 x y 5 03.圆 x 2 y 2 2 x 2 y 1 0 上的点到直线 x y2 的距离最大值是()A . 2B . 12C . 12D .1222 4.圆 x 2 y 24x0 在点 P(1, 3) 处的切线方程为()A . x3 y 2 0B . x3y 4 0 C . x3y 4 0D . x3y 2 05.若直线 xy 2 被圆 (x a) 2y 24 所截得的弦长为 2 2 ,则实数 a 的值为()A . 1或 3B . 或C .或D . 或132646.直线 x2y30 与圆 (x 2)2( y 3) 29 交于 E, F 两点,则EOF 的面积为( )A.3B.3C. 2 5D.652457 . 直 线 l 过 点( 2,0), l 与 圆 x 2 y 2 2x 有 两 个 交 点 时 ,斜 率 k 的 取 值 范围 是( )A .( , ) B .( , ) C .( 2 2 1 12 2 2 2 2 24 4 8 82,0) ,且与圆 x 2 y 28.设直线 l 过点 (1相切,则 l 的斜率是( )A . 1B .1 C .3 D . 3239.圆: x 2y 2 4x 6 y 0 和圆: x 2 y 2 6 x 0交于 A,B 两点,则 AB 的垂直均分线的方程是( )A. x y 3 0 B . 2x y 5 0C . 3x y 9 0D . 4x 3y 7 010.已知圆 C : ( x a) 2 ( y 2) 2 4( a0) 及直线 l : x y 30 ,当直线 l 被 C 截得的弦长为 2 3 时,则 a ( )A . 2B . 22C .21D .2111.圆 ( x 1)2y21的圆心到直线 y3x 的距离是()3A .1B .3C .1D . 32212.两圆 x 2 y 29 和 x 2 y 2 8x 6 y 90 的地点关系是( )A .相离 B.订交C.内切D .外切二、填空题1.直线 x2 y 0 被曲线 x 2y 2 6x 2 y 150 所截得的弦长等于2. P 为圆 x 2y 21 上的动点,则点 P 到直线 3x 4 y 10 0 的距离的最小值为3.若曲线 y 1 x2与直线y x b 一直有交点,则b的取值范围是_________如有一个交点,则 b 的取值范围是 ________;若有两个交点,则 b 的取值范围是_______;三、解答题1.点P a, b 在直线 x y 1 0 上,求a2b2a b2的最小值。
高中数学圆与方程知识点归纳与常考题型专题练习(附解析) 知识点:4.1.1 圆的标准方程1、圆的标准方程:222()()x a y b r -+-=圆心为A(a,b),半径为r 的圆的方程2、点00(,)M x y 与圆222()()x a y b r -+-=的关系的判断方法:(1)2200()()x a y b -+->2r ,点在圆外(2)2200()()x a y b -+-=2r ,点在圆上(3)2200()()x a y b -+-<2r ,点在圆内4.1.2 圆的一般方程1、圆的一般方程:022=++++F Ey Dx y x ,圆心为半径为2、圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0.②没有xy 这样的二次项.(2)圆的一般方程中有三个特定的系数D 、E 、F ,因之只要求出这三个系数,圆的方程就确定了.(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。
4.2.1 圆与圆的位置关系1、用点到直线的距离来判断直线与圆的位置关系.设直线l :0=++c by ax ,圆C :022=++++F Ey Dx y x ,圆的半径为r ,圆心)2,2(E D --到直线的距离为d ,则判别直线与圆的位置关系的依据有以下几点: (1)当r d >时,直线l 与圆C 相离;(2)当r d =时,直线l 与圆C 相切;(3)当r d <时,直线l 与圆C 相交;直线、圆的位置关系注意:1.直线与圆的位置关系 直线与圆相交,有两个公共点d R ⇔<⇔方程组有两组不同实数解(0)∆> 直线与圆相切,只有一个公共点d R ⇔=⇔方程组有唯一实数解(0)∆=直线与圆相离,没有公共点d R ⇔>⇔方程组无实数解(0)∆<2.求两圆公共弦所在直线方程的方法:将两圆方程相减。
2.2圆与方程考纲要求:①掌握确定圆的几何要素,掌握圆的标准方程与一般方程.②能根据给定直线、圆的方程.判断直线与圆的位置关系;能根据给定两个圆的方程,判断两圆的位置关系.③能用直线和圆的方程解决一些简单的问题.④初步了解用代数方法处理几何问题的思想.2.2.1 圆的方程重难点:会根据不同的已知条件,利用待定系数法求圆的标准方程;了解圆的一般方程的代数特征,能实现一般方程与标准方程间的互化,根据已知条件确定方程中的系数,D、E、F.经典例题:求过三点A(0,0),B(1,1),C(4,2)的圆的方程,并求这个圆的半径长和圆心坐标.当堂练习:1.点(1,1)在圆(x-a)2+(y+a)2=4的内部,则a的取值范围是()A.-1<a<1 B.0<a<1 C.a<-1或a>1 D.a=12.点P(m2,5)与圆x2+y2=24的位置关系是()A.在圆内B.在圆外C.在圆上D.不确定3.方程(x+a)2+(y+b)2=0表示的图形是()A.点(a,b)B.点(-a,-b) C.以(a,b)为圆心的圆D.以(-a,-b)为圆心的圆4.已知一圆的圆心为点(2,-3),一条直径的两个端点分别在x轴和y轴上,则此圆的方程是()A.(x-2)2+(y+3)2=13 B.(x+2)2+(y-3)2=13 C.(x-2)2+(y+3)2=52 D.(x+2)2+ (y-3)2=525.圆(x-a)2+(y-b)2=r2与两坐标轴都相切的充要条件是()A.a=b=r B.|a|=|b|=r C.|a|=|b|=|r|0 D.以上皆对6.圆(x-1)2+(y-3)2=1关于2x+y+5=0对称的圆方程是()A.(x+7)2+(y+1)2=1 B.(x+7)2+(y+2)2=1 C.(x+6)2+(y+1)2=1 D.(x+6)2+ (y+2)2=17.如果圆的方程为x2+y2+kx+2y+k2=0,那么当圆面积最大时,圆心坐标为()A.(-1,1)B.(1,-1)C.(-1,0)D.(0,-1)8.圆x2+y2-2Rx-2Ry+R2=0在直角坐标系中的位置特征是()A.圆心在直线y=x上B.圆心在直线y=x上, 且与两坐标轴均相切C.圆心在直线y=-x上D.圆心在直线y=-x上, 且与两坐标轴均相切9.如果方程x2+y2+Dx+Ey+F=0与x轴相切于原点,则()A.D=0,E=0,F0 B.E=0,F=0,D0 C.D=0,F=0,E0 D.F=0,D0,E010.如果方程x2+y2+Dx+Ey+F=0(D2+E2-4F>0) 所表示的曲线关于直线y=x对称,那么必有()A.D=E B.D=F C.E=F D.D=E=F11.方程x4-y4-4x2+4y2=0所表示的曲线是()A.一个圆B.两条平行直线C.两条平行直线和一个圆D.两条相交直线和一个圆12.若a0, 则方程x2+y2+ax-ay=0所表示的图形()A.关于x轴对称B.关于y轴对称C.关于直线x-y=0对称D.关于直线x+y=0对称13.圆的一条直径的两端点是(2,0)、(2,-2),则此圆方程是()A.x2+y2-4x+2y+4=0 B.x2+y2-4x-2y-4=0 C.x2+y2-4x+2y-4=0 D.x2+y 2+4x+2y+4=014.过点P(12,0)且与y轴切于原点的圆的方程为__________________.15.圆(x-4)2+(y-1)2=5内一点P(3,0),则过P点的最短弦的弦长为_____,最短弦所在直线方程为___________________.16.过点(1,2)总可以向圆x2+y2+kx+2y+k2-15=0作两条切线,则k的取值范围是_______________.17.已知圆x2+y2-4x-4y+4=0,该圆上与坐标原点距离最近的点的坐标是___________,距离最远的点的坐标是________________.18.已知一圆与直线3x+4y-2=0相切于点P(2,-1),且截x轴的正半轴所得的弦的长为8,求此圆的标准方程.19.已知圆C:x2+y2-4x-6y+12=0, 求在两坐标轴上截距相等的圆的切线方程.20.已知方程x2+y2-2(t+3)x+2(1-4t2)y+16t4+9=0表示一个圆,(1)求t的取值范围;(2)求该圆半径r的取值范围.21.已知曲线C:x2+y2-4mx+2my+20m-20=0(1)求证不论m取何实数,曲线C恒过一定点;(2)证明当m≠2时,曲线C是一个圆,且圆心在一条定直线上;(3)若曲线C与y轴相切,求m的值.参考答案:经典例题:解:设所求的圆的方程为:∵在圆上,所以它们的坐标是方程的解.把它们的坐标代入上面的方程,可以得到关于的三元一次方程组,即解此方程组,可得:∴所求圆的方程为:;得圆心坐标为(4,-3).或将左边配方化为圆的标准方程,,从而求出圆的半径,圆心坐标为(4,-3)当堂练习:1.A;2.B;3.B;4.A;5.C;6.A;7.D;8.B;9.C; 10.A; 11.D; 12.D; 13.A; 14. (x-6)2+y2=36; 15. 2, x+y-3=0; 16. ; 17. (2-,2-), (2+,2+);18. 解:设所求圆圆心为Q(a,b),则直线PQ与直线3x+4y-2=0垂直,即,(1)且圆半径r=|PQ|=,(2)由(1)、(2)两式,解得a=5或a= -(舍),当a=5时,b=3,r=5, 故所求圆的方程为(x-5)2+(y-3)2=25.19. 解:圆C的方程为(x-2)2+(y-3)2=1, 设圆的切线方程为=1或y=kx,由x+y-a=0,d=.由kx-y=0,d=.综上,圆的切线方程为x+y-5=0或(2)x-y=0.20. 解:(1)方程表示一个圆的充要条件是D2+E2-4F=4(t+3)2+4(1-4t2)2-4(16t4+9)>0,即:7t2-6t-1<0,(2)r2= D2+E2-4F=4(t+3)2+4(1-4t2)2-4(16t4+9)=-28t2+24t+4=-28(t-)2+,21. 解:(1)曲线C的方程可化为:(x2+y2-20)+m(-4x+2y+20)=0,由,∴不论m取何值时,x=4, y=-2总适合曲线C的方程,即曲线C恒过定点(4, -2).(2)D=-4m, E=2m, F=20m-20, D2+E2-4F=16m2+4m2-80m+80=20(m-2)2∵m≠2, ∴(m-2)2>0, ∴D2+E2-4F>0, ∴曲线C是一个圆, 设圆心坐标为(x, y), 则由消去m得x+2y=0, 即圆心在直线x+2y=0上.(3)若曲线C与y轴相切,则m≠2,曲线C为圆,其半径r=,又圆心为(2m, -m),则=|2m|, .。
2.4.1圆的标准方程基础巩固1.圆(x+1)2+(y-2)2=4的圆心与半径分别为()A.(-1,2),2B.(1,-2),2C.(-1,2),4D.(1,-2),42.方程(x-1)√x2+y2-3=0所表示的曲线是()A.一个圆B.两个点C.一个点和一个圆D.一条直线和一个圆3.已知一圆的圆心为点A(2,-3),一条直径的端点分别在x轴和y轴上,则圆的标准方程为()A.(x+2)2+(y-3)2=13B.(x-2)2+(y+3)2=13C.(x-2)2+(y+3)2=52D.(x+2)2+(y-3)2=524.已知点A(-4,-5),B(6,-1),则以线段AB为直径的圆的方程是()A.(x+1)2+(y-3)2=29B.(x-1)2+(y+3)2=29C.(x+1)2+(y-3)2=116D.(x-1)2+(y+3)2=1165.若点(5a+1,12a)在圆(x-1)2+y2=1的内部,则实数a的取值范围是()A.(-1,1)B.(-∞,13) C.(-15,15) D.(-113,113)6.方程x=√1-y2表示的图形是()A.两个半圆B.两个圆C.圆D.半圆7.设O为原点,点M在圆C:(x-3)2+(y-4)2=1上运动,则|OM|的最大值为.8.已知圆C与圆C1:(x-1)2+y2=1关于直线y=-x对称,则圆C的标准方程为.9.已知圆C的圆心在x轴上,且过A(1,4),B(2,-3)两点,则圆C的标准方程是.10.已知点A(1,2)和圆C:(x-a)2+(y+a)2=2a2(a≠0),试分别求满足下列条件的实数a的值或取值范围:(1)点A在圆C的内部;(2)点A在圆C上;(3)点A在圆C的外部.能力提升1.若直线y=ax+b经过第一、二、四象限,则圆(x+a)2+(y+b)2=1的圆心位于()A.第一象限B.第二象限C.第三象限D.第四象限2.已知直线(3+2λ)x+(3λ-2)y+5-λ=0恒过定点P,则与圆C:(x-2)2+(y+3)2=16有公共的圆心且过点P的圆的标准方程为() A.(x-2)2+(y+3)2=36 B.(x-2)2+(y+3)2=25C.(x-2)2+(y+3)2=18D.(x-2)2+(y+3)2=93.设P是圆M:(x-3)2+(y+1)2=4上的动点,Q是直线x=-3上的动点,则|PQ|的最小值为()A.6B.4C.3D.24.已知圆M的圆心坐标为(3,4),且A(-1,1),B(1,0),C(-2,3)三点一个在圆M内,一个在圆M上,一个在圆M外,则圆M的方程为.5.已知圆C的方程为(x-a)2+(y+a)2=4,若点(1,1)在圆C上,则a=;若圆C关于直线x+2y+4=0对称,则a=. 6.已知圆C的方程为(x-3)2+(y-4)2=25,则点M(2,3)到圆上的点的距离的最大值为.7.已知圆C的圆心为C(x0,x0),且过定点P(4,2).(1)求圆C的标准方程.(2)当x0为何值时,圆C的面积最小?求出此时圆C的标准方程.参考答案基础巩固1. A2. D3. B4. B5. D6. D7. 68. x 2+(y+1)2=19. (x+2)2+y 2=2510.∵点A 在圆C 的内部,∴(1-a )2+(2+a )2<2a 2,即2a+5<0,解得a<-52.故a 的取值范围是(-∞,-52). (2)将点A (1,2)的坐标代入圆C 的方程,得(1-a )2+(2+a )2=2a 2,即2a+5=0,解得a=-52, 故a 的值为-52. (3)∵点A 在圆C 的外部,∴(1-a )2+(2+a )2>2a 2,即2a+5>0,解得a>-52,又a ≠0,故a 的取值范围是(-52,0)∪(0,+∞).能力提升1.D2. B3. B4. (x-3)2+(y-4)2=255.±146. 5+√27.设圆C的标准方程为(x-x0)2+(y-x0)2=r2(r≠0).∵圆C过定点P(4,2),∴(4-x0)2+(2-x0)2=r2.∴r2=2x02-12x0+20.∴圆C的标准方程为(x-x0)2+(y-x0)2=2x02-12x0+20.(2)∵(x-x0)2+(y-x0)2=2x02-12x0+20=2(x0-3)2+2,∴当x0=3时,圆C的半径最小,即面积最小.此时圆C的标准方程为(x-3)2+(y-3)2=2。
高中圆的方程基础练习题及讲解### 高中圆的方程基础练习题及讲解#### 练习题一题目:已知圆心在原点的圆的方程为 \(x^2 + y^2 = r^2\),求半径为3的圆的方程。
解答:将 \(r = 3\) 代入圆的标准方程,我们得到:\[ x^2 + y^2 = 3^2 \]\[ x^2 + y^2 = 9 \]这就是半径为3的圆的方程。
#### 练习题二题目:圆 \(x^2 + y^2 + 6x - 8y + 20 = 0\) 与直线 \(x + y - 1 = 0\) 相切。
求圆的半径。
解答:首先,将圆的方程化为标准形式:\[ (x + 3)^2 + (y - 4)^2 = r^2 \]\[ x^2 + 6x + y^2 - 8y + 20 = r^2 \]\[ x^2 + y^2 + 6x - 8y = r^2 - 20 \]由于圆与直线相切,圆心到直线的距离等于圆的半径。
圆心坐标为\((-3, 4)\),直线方程可以写成 \(y = -x + 1\)。
使用点到直线距离公式:\[ \text{距离} = \frac{|-3 + 4 - 1|}{\sqrt{2}} \]将距离等于半径代入:\[ r = \frac{|-3 + 4 - 1|}{\sqrt{2}} \]\[ r = \frac{1}{\sqrt{2}} \]#### 练习题三题目:已知圆 \(x^2 + y^2 = 1\) 与直线 \(y = x + b\) 相切,求\(b\) 的值。
解答:由于圆与直线相切,圆心到直线的距离等于圆的半径,即1。
圆心坐标为 \((0, 0)\),直线方程可以写成 \(x - y + b = 0\)。
使用点到直线距离公式:\[ 1 = \frac{|0 - 0 + b|}{\sqrt{1^2 + (-1)^2}} \]\[ 1 = \frac{|b|}{\sqrt{2}} \]解得:\[ b = \pm \sqrt{2} \]#### 练习题四题目:求圆 \(x^2 + y^2 - 4x - 6y + 9 = 0\) 的圆心坐标和半径。
圆的方程专项测试题一、选择题1.若直线4x-3y -2=0与圆x 2+y 2-2ax+4y +a 2-12=0总有两个不同交点,则a 的取值范围是( )A.-3<a <7B.-6<a <4C.-7<a <3D.-21<a <192.圆(x-3)2+(y -3)2=9上到直线3x+4y -11=0的距离等于1的点有( ) A.1个 B.2个 C.3个 D.4个3.使圆(x-2)2+(y +3)2=2上点与点(0,-5)的距离最大的点的坐标是( ) A.(5,1) B.(3,-2)C.(4,1)D.(2 +2,2-3)4.若直线x+y =r 与圆x 2+y 2=r(r >0)相切,则实数r 的值等于( ) A.22B .1C.2D.25.若曲线x 2+y 2+a 2x +(1–a 2)y –4=0关于直线y –x =0的对称曲线仍是其本身,则实数a =( B )A .21± B .22± C .2221-或 D .2221或-6.直线x-y +4=0被圆x 2+y 2+4x-4y +6=0截得的弦长等于( ) A.8B.4C.22D.427.圆9)3()3(22=-+-y x 上到直线3 x + 4y -11=0的距离等于1的点有( C ) A .1个 B .2个 C .3个 D .4个 8.圆(x-3)2+(y +4)2=2关于直线x+y =0的对称圆的标准方程是( ) A.(x+3)2+(y -4)2=2 B.(x-4)2+(y +3)2=2 C.(x+4)2+(y -3)=2 D.(x-3)2+(y -4)2=29.点P(5a+1,12a)在圆(x-1)2+y 2=1的内部,则实数a 的取值范围是( ) A.|a |<1B.|a |<51 C.|a |<121D.|a |<131 10.关于x,y 的方程Ax 2+Bx y +C y 2+Dx+E y +F=0表示一个圆的充要条件是( ) A.B=0,且A=C≠0 B.B=1且D 2+E 2-4AF >0 C.B=0且A=C≠0,D 2+E 2-4AF≥0 D.B=0且A=C≠0,D 2+E 2-4AF >0 11.过点P(-8,-1),Q(5,12),R(17,4)三点的圆的圆心坐标是( ) A.(314,5) B.(5,1) C.(0,0) D.(5,-1)12.若两直线y =x+2k 与y =2x+k+1的交点P 在圆x 2+2=4的内部,则k 的范围是( ) A.-51<k <-1B.-51<k <1C.-31<k <1 D.-2<k <2二、填空题13.圆x 2+y 2+ax=0(a≠0)的圆心坐标和半径分别是 .14.若实数x,y 满足x 2+y 2-2x+4y =0,则x-2y 的最大值是 .15.若集合A={(x 、y )|y =-|x |-2},B={(x,y )|(x-a)2+y 2=a 2}满足A∩B=ϕ,则实数a 的取值范围是 .16.过点M(3,0)作直线l 与圆x 2+y 2=16交于A 、B 两点,当θ= 时,使△AOB 的面积最大,最大值为 (O 为原点).三、解答题17.求圆心在直线2x-y -3=0上,且过点(5,2)和(3,-2)的圆的方程.18. 过圆(x -1)2+(y -1)2=1外一点P(2,3),向圆引两条切线切点为A 、B. 求经过两切点的直线l 方程.19. 已知圆02422=++-+m y x y x 与y 轴交于A 、B 两点,圆心为P ,若︒=∠90APB . 求m 的值.20.已知直角坐标平面内点Q(2,0),圆C :x 2+y 2=1,动点M 到圆C 的切线长与|MQ |的比等于常数λ(λ>0),求动点M 的轨迹方程,并说明轨迹是什么曲线.21. 自点A (-3,3)发出的光线L 射到x 轴上,被x 轴反射,其反射光线m 所在直线与圆C :x 2 + y 2 -4x -4y +7 = 0相切,求光线L 、m 所在的直线方程.22. 已知圆C :044222=-+-+y x y x ,是否存在斜率为1的直线L ,使L 被圆C 截得的弦AB 为直径的圆过原点,若存在求出直线L 的方程,若不存在说明理由.参考答案:1.B2.C3.B4.D5.B6.C7.C8.B9.D 10.D 11.D 12.B 13.(-2a ,0), 2a 14.10 15.-2(2+1)<a <2(2+1)16.θ=arccot22 或π-arccot22, 817.(x-2)2+(y -1)2=10 10.3x+4y +1=0或4x+3y -1=0 ;18. 解:设圆(-1)2+(y -1)2=1的圆心为1O ,由题可知,以线段P 1O 为直径的圆与与圆1O 交于AB 两点,线段AB 为两圆公共弦,以P 1O 为直径的圆方程5)20()23(22=-+-y x △已知圆1O 的方程为(x-1)2+(y -1)2=1 △ △△作差得x+2y -41=0, 即为所求直线l 的方程。
习题精选精讲圆标准方程已知圆心),(b a C 和半径r ,即得圆的标准方程222)()(r b y a x =-+-;已知圆的标准方程222)()(r b y a x =-+-,即得圆心),(b a C 和半径r ,进而可解得与圆有关的任何问题.一、求圆的方程例1 以点)1,2(-为圆心且与直线0543=+-y x 相切的圆的方程为( )(A)3)1()2(22=++-y x (B)3)1()2(22=-++y x(C)9)1()2(22=++-y x (D)9)1()2(22=-++y x二、位置关系问题例2 直线1=+y x 与圆0222=-+ay y x )0(>a 没有公共点,则a 的取值范围是( ) (A))12,0(- (B))12,12(+- (C))12,12(+-- (D))12,0(+三、切线问题例3 (06重庆卷理) 过坐标原点且与圆0252422=++-+y x y x 相切的直线方程为( ) (A)x y 3-=或x y 31=(B)x y 3=或x y 31-= (C)x y 3-=或x y 31-= (D)x y 3=或x y 31=四、弦长问题例4设直线03=+-y ax 与圆4)2()1(22=-+-y x 相交于B A 、两点,且弦AB 的长为32,则=a .五、夹角问题例5 从圆012222=+-+-y y x x 外一点)2,3(P 向这个圆作两条切线,则两切线夹角的余弦值为( ) (A)21 (B)53 (C)23 (D) 0六、圆心角问题例6 过点)2,1(的直线l 将圆4)2(22=+-y x 分成两段弧,当劣弧所对的圆心角最小时,直线l 的斜率=k .七、最值问题例7 圆0104422=---+y x y x 上的点到直线14-+y x 0=的最大距离与最小距离的差是( )(A) 30 (B) 18 (C)26 (D)25八、综合问题例8 若圆0104422=---+y x y x 上至少有三个不同的点到直线0:=+by ax l 的距离为22,则直线l 的倾斜角的取值范围是( ) (A)]4,12[ππ (B)]125,12[ππ (C)]3,6[ππ (D)]2,0[π圆的方程1. 确定圆方程需要有三个互相独立的条件.圆的方程有两种形式,要注意各种形式的圆方程的适用范围.(1) 圆的标准方程:(x -a)2+(y -b)2=r 2,其中(a ,b)是圆心坐标,r 是圆的半径;(2) 圆的一般方程:x 2+y 2+Dx +Ey +F =0 (D 2+E 2-4F >0),圆心坐标为(2,2E D --),半径为r =2422F E D -+ 2. 直线与圆的位置关系的判定方法.(1) 法一:直线:Ax +By +C =0;圆:x 2+y 2+Dx +Ey +F =0.消元⎩⎨⎧=++++=++0022F Ey Dx y x C By Ax 一元二次方程⎪⎩⎪⎨⎧⇔<∆⇔=∆⇔>∆−−→−相离相切相交判别式000 (2) 法二:直线:Ax +By +C =0;圆:(x -a)2+(y -b)2=r 2,圆心(a ,b)到直线的距离为d =⎪⎩⎪⎨⎧⇔>⇔=⇔<→+++相离相切相交r d r d r d B A CBb Aa 22. 3. 两圆的位置关系的判定方法.设两圆圆心分别为O 1、 O 2,半径分别为r 1、 r 2, |O 1O 2|为圆心距,则两圆位置关系如下:|O 1O 2|>r 1+r 2⇔两圆外离;|O 1O 2|=r 1+r 2⇔两圆外切;|r 1-r 2|<|O 1O 2|<r 1+r 2⇔两圆相交;|O 1O 2|=|r 1-r 2|⇔两圆内切;0<|O 1O 2|<|r 1-r 2|⇔两圆内含.●点击双基1.方程x 2+y 2-2(t +3)x +2(1-4t 2)y +16t 4+9=0(t ∈R )表示圆方程,则t 的取值范围是A.-1<t <71B.-1<t <21C.-71<t <1 D .1<t <2 2.点P (5a +1,12a )在圆(x -1)2+y 2=1的内部,则a 的取值范围是 A.|a |<1 B.a <131C.|a |<51 D .|a |<1313.已知圆的方程为(x -a )2+(y -b )2=r 2(r >0),下列结论错误的是A.当a 2+b 2=r 2时,圆必过原点B.当a =r 时,圆与y 轴相切C.当b =r 时,圆与x 轴相切D .当b <r 时,圆与x 轴相交●典例剖析【例2】 一圆与y 轴相切,圆心在直线x -3y =0上,且直线y =x 截圆所得弦长为27,求此圆的方程.夯实基础1.方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)表示的曲线关于x +y =0成轴对称图形,则A.D +E =0B. B.D +F =0C.E +F =0D. D +E +F =02.(2004年全国Ⅱ,8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有A.1条B.2条C.3条 D .4条3.(2005年黄冈市调研题)圆x 2+y 2+x -6y +3=0上两点P 、Q 关于直线kx -y +4=0对称,则k =____________.4.(2004年全国卷Ⅲ,16)设P 为圆x 2+y 2=1上的动点,则点P 到直线3x -4y -10=0的 距离的最小值为____________.5.(2005年启东市调研题)设O 为坐标原点,曲线x 2+y 2+2x -6y +1=0上有两点P 、Q ,满足关于直线x +my +4=0对称,又满足·=0.(1)求m 的值;(2)求直线PQ 的方程.培养能力7.已知实数x 、y 满足方程x 2+y 2-4x +1=0.求(1)xy 的最大值和最小值;(2)y -x 的最小值;(3)x 2+y 2的最大值和最小值.8.(文)求过两点A (1,4)、B (3,2),且圆心在直线y =0上的圆的标准方程.并判断点M 1(2,3),M 2(2,4)与圆的位置关系.“求经过两圆04622=-++x y x 和028622=-++y y x 的交点,并且圆心在直线04=--y x 上的圆的方程。
第四章测试(时间:120分钟总分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知两圆的方程是x2+y2=1和x2+y2-6x-8y+9=0,那么这两个圆的位置关系是()A.相离B.相交C.外切D.内切解析将圆x2+y2-6x-8y+9=0,化为标准方程得(x-3)2+(y-4)2=16.∴两圆的圆心距(0-3)2+(0-4)2=5,又r1+r2=5,∴两圆外切.答案 C2.过点(2,1)的直线中,被圆x2+y2-2x+4y=0截得的最长弦所在的直线方程为()A.3x-y-5=0 B.3x+y-7=0C.x+3y-5=0 D.x-3y+1=0解析依题意知所求直线通过圆心(1,-2),由直线的两点式方程,得y+2 1+2=x-12-1,即3x-y-5=0.答案 A3.若直线(1+a)x+y+1=0与圆x2+y2-2x=0相切,则a的值为() A.1,-1 B.2,-2C .1D .-1解析 圆x 2+y 2-2x =0的圆心C (1,0),半径为1,依题意得|1+a +0+1|(1+a )2+1=1,即|a +2|=(a +1)2+1,平方整理得a =-1.答案 D4.经过圆x 2+y 2=10上一点M (2,6)的切线方程是( ) A .x +6y -10=0 B.6x -2y +10=0 C .x -6y +10=0D .2x +6y -10=0解析 ∵点M (2,6)在圆x 2+y 2=10上,k OM =62, ∴过点M 的切线的斜率为k =-63. 故切线方程为y -6=-63(x -2). 即2x +6y -10=0. 答案 D5.垂直于直线y =x +1且与圆x 2+y 2=1相切于第一象限的直线方程是( ) A .x +y -2=0 B .x +y +1=0 C .x +y -1=0D .x +y +2=0解析 由题意可设所求的直线方程为y =-x +k ,则由|k |2=1,得k =±2.由切点在第一象限知,k = 2.故所求的直线方程y =-x +2,即x +y -2=0.答案 A6.关于空间直角坐标系O -xyz 中的一点P (1,2,3)有下列说法: ①点P 到坐标原点的距离为13; ②OP 的中点坐标为⎝⎛⎭⎪⎫12,1,32;③与点P关于x轴对称的点的坐标为(-1,-2,-3);④与点P关于坐标原点对称的点的坐标为(1,2,-3);⑤与点P关于坐标平面xOy对称的点的坐标为(1,2,-3).其中正确的个数是()A.2 B.3C.4 D.5解析点P到坐标原点的距离为12+22+32=14,故①错;②正确;点P关于x轴对称的点的坐标为(1,-2,-3),故③错;点P关于坐标原点对称的点的坐标为(-1,-2,-3),故④错;⑤正确.答案 A7.已知点M(a,b)在圆O:x2+y2=1处,则直线ax+by=1与圆O的位置关系是()A.相切B.相交C.相离D.不确定解析∵点M(a,b)在圆x2+y2=1外,∴a2+b2>1,又圆心(0,0)到直线ax+by=1的距离d=1a2+b2<1=r,∴直线与圆相交.答案 B8.与圆O1:x2+y2+4x-4y+7=0和圆O2:x2+y2-4x-10y+13=0都相切的直线条数是()A.4 B.3C.2 D.1解析两圆的方程配方得,O1:(x+2)2+(y-2)2=1,O2:(x-2)2+(y-5)2=16,圆心O1(-2,2),O2(2,5),半径r1=1,r2=4,∴|O1O2|=(2+2)2+(5-2)2=5,r1+r2=5.∴|O1O2|=r1+r2,∴两圆外切,故有3条公切线.答案 B9.直线l将圆x2+y2-2x-4y=0平分,且与直线x+2y=0垂直,则直线l的方程是()A.2x-y=0 B.2x-y-2=0C.x+2y-3=0 D.x-2y+3=0解析依题意知直线l过圆心(1,2),斜率k=2,∴l的方程为y-2=2(x-1),即2x-y=0.答案 A10.圆x2+y2-(4m+2)x-2my+4m2+4m+1=0的圆心在直线x+y-4=0上,那么圆的面积为()A.9π B.πC.2π D.由m的值而定解析∵x2+y2-(4m+2)x-2my+4m2+4m+1=0,∴[x-(2m+1)]2+(y-m)2=m2.∴圆心(2m+1,m),半径r=|m|.依题意知2m+1+m-4=0,∴m=1.∴圆的面积S=π×12=π.答案 B11.当点P在圆x2+y2=1上变动时,它与定点Q(3,0)的连结线段PQ的中点的轨迹方程是()A.(x+3)2+y2=4 B.(x-3)2+y2=1C.(2x-3)2+4y2=1 D.(2x+3)2+4y2=1解析 设P (x 1,y 1),Q (3,0),设线段PQ 中点M 的坐标为(x ,y ), 则x =x 1+32,y =y 12,∴x 1=2x -3,y 1=2y . 又点P (x 1,y 1)在圆x 2+y 2=1上, ∴(2x -3)2+4y 2=1.故线段PQ 中点的轨迹方程为(2x -3)2+4y 2=1. 答案 C12.曲线y =1+4-x 2与直线y =k (x -2)+4有两个交点,则实数k 的取值范围是( )A .(0,512) B .(512,+∞) C .(13,34]D .(512,34] 解析 如图所示,曲线y =1+4-x 2变形为x 2+(y -1)2=4(y ≥1), 直线y =k (x -2)+4过定点(2,4), 当直线l 与半圆相切时,有 |-2k +4-1|k 2+1=2,解得k =512. 当直线l 过点(-2,1)时,k =34. 因此,k 的取值范围是512<k ≤34. 答案 D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.圆x 2+y 2=1上的点到直线3x +4y -25=0的距离最小值为____________.解析 圆心(0,0)到直线3x +4y -25=0的距离为5, ∴所求的最小值为4. 答案 414.圆心为(1,1)且与直线x +y =4相切的圆的方程是________. 解析 r =|1+1-4|2=2,所以圆的方程为(x -1)2+(y -1)2=2.答案 (x -1)2+(y -1)2=215.方程x 2+y 2+2ax -2ay =0表示的圆,①关于直线y =x 对称;②关于直线x +y =0对称;③其圆心在x 轴上,且过原点;④其圆心在y 轴上,且过原点,其中叙述正确的是__________.解析 已知方程配方,得(x +a )2+(y -a )2=2a 2(a ≠0),圆心坐标为(-a ,a ),它在直线x +y =0上,∴已知圆关于直线x +y =0对称.故②正确.答案 ②16.直线x -2y -3=0与圆(x -2)2+(y +3)2=9相交于A ,B 两点,则△AOB (O 为坐标原点)的面积为________.解析 圆心坐标(2,-3),半径r =3,圆心到直线x -2y -3=0的距离d =5,弦长|AB |=2r 2-d 2=4.又原点(0,0)到AB 所在直线的距离h =35,所以△AOB 的面积为S =12×4×35=655.答案 655三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)自A (4,0)引圆x 2+y 2=4的割线ABC ,求弦BC 中点P 的轨迹方程. 解 解法1:连接OP ,则OP ⊥BC ,设P (x ,y ),当x ≠0时,k OP ·k AP =-1,即y x ·yx -4=-1.即x2+y2-4x=0.①当x=0时,P点坐标为(0,0)是方程①的解,∴BC中点P的轨迹方程为x2+y2-4x=0(在已知圆内).解法2:由解法1知OP⊥AP,取OA中点M,则M(2,0),|PM|=12|OA|=2,由圆的定义,知P点轨迹方程是以M(2,0)为圆心,2为半径的圆.故所求的轨迹方程为(x-2)2+y2=4(在已知圆内).18.(12分)已知圆M:x2+y2-2mx+4y+m2-1=0与圆N:x2+y2+2x+2y-2=0相交于A,B两点,且这两点平分圆N的圆周,求圆M的圆心坐标.解由圆M与圆N的方程易知两圆的圆心分别为M(m,-2),N(-1,-1).两圆的方程相减得直线AB的方程为2(m+1)x-2y-m2-1=0.∵A,B两点平分圆N的圆周,∴AB为圆N的直径,∴AB过点N(-1,-1).∴2(m+1)×(-1)-2×(-1)-m2-1=0.解得m=-1.故圆M的圆心M(-1,-2).19.(12分)点M在圆心为C1的方程x2+y2+6x-2y+1=0上,点N在圆心为C2的方程x2+y2+2x+4y+1=0上,求|MN|的最大值.解把圆的方程都化成标准形式,得(x+3)2+(y-1)2=9,(x+1)2+(y+2)2=4.如图所示,C 1的坐标是(-3,1),半径长是3;C 2的坐标是(-1,-2),半径长是2.所以,|C 1C 2|=(-3+1)2+(1+2)2=13.因此,|MN |的最大值是13+5.20.(12分)已知圆C :x 2+y 2+2x -4y +3=0,从圆C 外一点P 向圆引一条切线,切点为M ,O 为坐标原点,且有|PM |=|PO |,求|PM |的最小值.解 如图:PM 为圆C 的切线,则CM ⊥PM ,∴△PMC 为直角三角形,∴|PM |2=|PC |2-|MC |2.设P (x ,y ),C (-1,2),|MC |= 2. ∵|PM |=|PO |,∴x 2+y 2=(x +1)2+(y -2)2-2.化简得点P 的轨迹方程为2x -4y +3=0.求|PM |的最小值,即求|PO |的最小值,即求原点O 到直线2x -4y +3=0的距离,代入点到直线的距离公式可求得|PM |最小值为3510.21.(12分)已知圆C :x 2+y 2-4x -14y +45=0及点Q (-2,3), (1)若点P (m ,m +1)在圆C 上,求PQ 的斜率;(2)若点M 是圆C 上任意一点,求|MQ |的最大值、最小值;(3)若N (a ,b )满足关系:a 2+b 2-4a -14b +45=0,求出t =b -3a +2的最大值.解 圆C :x 2+y 2-4x -14y +45=0可化为(x -2)2+(y -7)2=8. (1)点P (m ,m +1)在圆C 上,所以m 2+(m +1)2-4m -14(m +1)+45=0,解得m =4,故点P (4,5).所以PQ 的斜率是k PQ =5-34+2=13;(2)如图,点M 是圆C 上任意一点,Q (-2,3)在圆外, 所以|MQ |的最大值、最小值分别是 |QC |+r ,|QC |-r . 易求|QC |=42,r =22, 所以|MQ |max =62,|MQ |min =2 2.(3)点N 在圆C :x 2+y 2-4x -14y +45=0上,t =b -3a +2表示的是定点Q (-2,3)与圆上的动点N 连线l 的斜率. 设l 的方程为y -3=k (x +2), 即kx -y +2k +3=0. 当直线和圆相切时,d =r ,即|2k -7+2k +3|k 2+1=22,解得k =2±3.所以t =b -3a +2的最大值为2+ 3.22.(12分)已知曲线C :x 2+y 2+2kx +(4k +10)y +10k +20=0,其中k ≠-1. (1)求证:曲线C 表示圆,并且这些圆心都在同一条直线上; (2)证明曲线C 过定点;(3)若曲线C 与x 轴相切,求k 的值.解 (1)证明:原方程可化为(x +k )2+(y +2k +5)2=5(k +1)2. ∵k ≠-1,∴5(k +1)2>0.故方程表示圆心为(-k ,-2k -5),半径为5|k +1|的圆.设圆心的坐标为(x ,y ),则⎩⎨⎧x =-k ,y =-2k -5.消去k ,得2x -y -5=0.∴这些圆的圆心都在直线2x -y -5=0上. (2)证明:将原方程变形为(2x +4y +10)k +(x 2+y 2+10y +20)=0, ∵上式对于任意k ≠-1恒成立,∴⎩⎨⎧2x +4y +10=0,x 2+y 2+10y +20=0.解得⎩⎨⎧x =1,y =-3.∴曲线C 过定点(1,-3). (3)∵圆C 与x 轴相切,∴圆心(-k ,-2k -5)到x 轴的距离等于半径. 即|-2k -5|=5|k +1|.两边平方,得(2k +5)2=5(k +1)2. ∴k =5±3 5.。
高中数学圆与方程精选题目(附答案)1.在空间直角坐标系中,点P(3,4,5)关于yOz平面对称的点的坐标为()A.(-3,4,5)B.(-3,-4,5)C.(3,-4,-5) D.(-3,4,-5)解析:选A纵、竖坐标相同.故点P(3,4,5)关于yOz平面对称的点的坐标为(-3,4,5).2.已知圆O以点(2,-3)为圆心,半径等于5,则点M(5,-7)与圆O的位置关系是() A.在圆内B.在圆上C.在圆外D.无法判断解析:选B点M(5,-7)到圆心(2,-3)的距离d=(5-2)2+(-7+3)2=5,故点M 在圆O上.3.直线x+y-1=0被圆(x+1)2+y2=3截得的弦长等于()A. 2 B.2C.2 2 D.4解析:选B由题意,得圆心为(-1,0),半径r=3,弦心距d=|-1+0-1|12+12=2,所以所求的弦长为2r2-d2=2,选B.4.若点P(1,1)为圆x2+y2-6x=0的弦MN的中点,则弦MN所在直线的方程为() A.2x+y-3=0 B.x-2y+1=0C.x+2y-3=0 D.2x-y-1=0解析:选D由题意,知圆的标准方程为(x-3)2+y2=9,圆心为A(3,0).因为点P(1,1)为弦MN的中点,所以AP⊥MN.又AP的斜率k=1-01-3=-12,所以直线MN的斜率为2,所以弦MN所在直线的方程为y-1=2(x-1),即2x-y-1=0.5.已知圆M:x2+y2=2与圆N:(x-1)2+(y-2)2=3,那么两圆的位置关系是() A.内切B.相交C.外切D.外离解析:选B∵圆M:x2+y2=2的圆心为M(0,0),半径为r1=2;圆N:(x-1)2+(y-2)2=3的圆心为N(1,2),半径为r2=3;|MN|=12+22=5,且3-2<5<2+3,∴两圆的位置关系是相交.6.(2016·全国卷Ⅱ)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=()A.-43B.-34C. 3 D .2解析:选A 因为圆x 2+y 2-2x -8y +13=0的圆心坐标为(1,4),所以圆心到直线ax +y -1=0的距离d =|a +4-1|a 2+1=1,解得a =-43.7.半径长为6的圆与x 轴相切,且与圆x 2+(y -3)2=1内切,则此圆的方程为( ) A .(x -4)2+(y -6)2=6 B .(x ±4)2+(y -6)2=6 C .(x -4)2+(y -6)2=36D .(x ±4)2+(y -6)2=36解析:选D ∵半径长为6的圆与x 轴相切,设圆心坐标为(a ,b ),则b =6.再由a 2+32=5,可以解得a =±4,故所求圆的方程为(x ±4)2+(y -6)2=36.8.经过点M (2,1)作圆x 2+y 2=5的切线,则切线方程为( ) A.2x +y -5=0 B.2x +y +5=0 C .2x +y -5=0D .2x +y +5=0解析:选C ∵M (2,1)在圆上,∴切线与MO 垂直. ∵k MO =12,∴切线斜率为-2.又过点M (2,1),∴y -1=-2(x -2),即2x +y -5=0.9.把圆x 2+y 2+2x -4y -a 2-2=0的半径减小一个单位则正好与直线3x -4y -4=0相切,则实数a 的值为( )A .-3B .3C .-3或3D .以上都不对解析:选C 圆的方程可变为(x +1)2+(y -2)2=a 2+7,圆心为(-1,2),半径为a 2+7,由题意得|-1×3-4×2-4|(-3)2+42=a 2+7-1,解得a =±3. 10.如图,一座圆弧形拱桥,当水面在如图所示的位置时,拱顶离水面2米,水面宽12米,当水面下降1米后,水面宽度为( )A .14米B .15米 C.51米D .251米解析:选D 如图,以圆弧形拱桥的顶点为原点,以过圆弧形拱桥的顶点的水平切线为x 轴,以过圆弧形拱桥的顶点的竖直直线为y 轴,建立平面直角坐标系.设圆心为C ,水面所在弦的端点为A ,B , 则由已知可得A (6,-2), 设圆的半径长为r ,则C (0,-r ), 即圆的方程为x 2+(y +r )2=r 2.将点A 的坐标代入上述方程可得r =10, 所以圆的方程为x 2+(y +10)2=100,当水面下降1米后,水面弦的端点为A ′,B ′,可设A ′(x 0,-3)(x 0>0),代入x 2+(y +10)2=100,解得x 0=51, ∴水面宽度|A ′B ′|=251米.11.过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .2x +y -3=0B .2x -y -3=0C .4x -y -3=0D .4x +y -3=0解析:选A 设点P (3,1),圆心C (1,0).已知切点分别为A ,B ,则P ,A ,C ,B 四点共圆,且PC 为圆的直径.故四边形PACB 的外接圆圆心坐标为⎝⎛⎭⎫2,12,半径长为12(3-1)2+(1-0)2=52.故此圆的方程为(x -2)2+⎝⎛⎭⎫y -122=54.① 圆C 的方程为(x -1)2+y 2=1.②①-②得2x +y -3=0,此即为直线AB 的方程.12.已知在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2=-2y +3,直线l 经过点(1,0)且与直线x -y +1=0垂直,若直线l 与圆C 交于A ,B 两点,则△OAB 的面积为( )A .1B.2 C .2 D .2 2解析:选A 由题意,得圆C 的标准方程为x 2+(y +1)2=4,圆心为(0,-1),半径r =2.因为直线l 经过点(1,0)且与直线x -y +1=0垂直,所以直线l 的斜率为-1,方程为y -0=-(x -1),即为x +y -1=0.又圆心(0,-1)到直线l 的距离d =|0-1-1|2=2,所以弦长|AB |=2r 2-d 2=24-2=2 2.又坐标原点O 到弦AB 的距离为|0+0-1|2=12,所以△OAB 的面积为12×22×12=1.故选A.13.已知圆M 与直线x -y =0及x -y +4=0都相切,圆心在直线y =-x +2上,则圆M 的标准方程为____________________.解析:由圆心在y =-x +2上,设圆心为(a,2-a ), ∵圆M 与直线x -y =0及x -y +4=0都相切,∴圆心到直线x -y =0的距离等于圆心到直线x -y +4=0的距离, 即|2a -2|2=|2a +2|2,解得a =0, ∴圆心坐标为(0,2),r =|2a -2|2=2,∴圆M 的标准方程为x 2+(y -2)2=2. 答案:x 2+(y -2)2=214.已知空间直角坐标系中三点A ,B ,M ,点A 与点B 关于点M 对称,且已知A 点的坐标为(3,2,1),M 点的坐标为(4,3,1),则B 点的坐标为______________.解析:设B 点的坐标为(x ,y ,z ),则有x +32=4,y +22=3,z +12=1,解得x =5,y =4,z =1,故B 点的坐标为(5,4,1). 答案:(5,4,1)15.圆O :x 2+y 2-2x -2y +1=0上的动点Q 到直线l :3x +4y +8=0的距离的最大值是________.解析:∵圆O 的标准方程为(x -1)2+(y -1)2=1,圆心(1,1)到直线l 的距离为|3×1+4×1+8|32+42=3>1,∴动点Q 到直线l 的距离的最大值为3+1=4.答案:416.(2016·全国卷Ⅰ)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________.解析:圆C :x 2+y 2-2ay -2=0化为标准方程为x 2+(y -a )2=a 2+2,所以圆心C (0,a ),半径r =a 2+2,因为|AB |=23,点C 到直线y =x +2a ,即x -y +2a =0的距离d =|0-a +2a |2=|a |2,由勾股定理得⎝⎛⎭⎫2322+⎝⎛⎭⎫|a |22=a 2+2,解得a 2=2,所以r =2,所以圆C 的面积为π×22=4π. 答案:4π17.(本小题满分10分)已知正四棱锥P -ABCD 的底面边长为4,侧棱长为3,G 是PD 的中点,求|BG |.解:∵正四棱锥P -ABCD 的底面边长为4,侧棱长为3, ∴正四棱锥的高为1.以正四棱锥的底面中心为原点,平行于AB ,BC 所在的直线分别为y 轴、x 轴,建立如图所示的空间直角坐标系,则正四棱锥的顶点B ,D ,P 的坐标分别为B (2,2,0),D (-2,-2,0),P (0,0,1).∴G 点的坐标为G ⎝⎛⎭⎫-1,-1,12 ∴|BG |=32+32+14=732.18.(本小题满分12分)已知圆C 的圆心为(2,1),若圆C 与圆O :x 2+y 2-3x =0的公共弦所在直线过点(5,-2),求圆C 的方程.解:设圆C 的半径长为r ,则圆C 的方程为(x -2)2+(y -1)2=r 2,即x 2+y 2-4x -2y +5=r 2,圆C 与圆O 的方程相减得公共弦所在直线的方程为x +2y -5+r 2=0,因为该直线过点(5,-2),所以r 2=4,则圆C 的方程为(x -2)2+(y -1)2=4.19.(本小题满分12分)已知从圆外一点P (4,6)作圆O :x 2+y 2=1的两条切线,切点分别为A ,B.(1)求以OP 为直径的圆的方程; (2)求直线AB 的方程.解:(1)∵所求圆的圆心为线段OP 的中点(2,3), 半径为12|OP |= 12(4-0)2+(6-0)2=13,∴以OP 为直径的圆的方程为(x -2)2+(y-3)2=13.(2)∵PA ,PB 是圆O :x 2+y 2=1的两条切线, ∴OA ⊥PA ,OB ⊥PB ,∴A ,B 两点都在以OP 为直径的圆上.由⎩⎪⎨⎪⎧x 2+y 2=1,(x -2)2+(y -3)2=13,得直线AB 的方程为4x +6y -1=0. 20.(本小题满分12分)已知圆过点A (1,-2),B (-1,4). (1)求周长最小的圆的方程;(2)求圆心在直线2x -y -4=0上的圆的方程.解:(1)当线段AB 为圆的直径时,过点A ,B 的圆的半径最小,从而周长最小, 即以线段AB 的中点(0,1)为圆心,r =12|AB |=10为半径.则所求圆的方程为x 2+(y -1)2=10. (2)法一:直线AB 的斜率k =4-(-2)-1-1=-3,则线段AB 的垂直平分线的方程是y -1=13x即x -3y +3=0.由⎩⎪⎨⎪⎧x -3y +3=0,2x -y -4=0,解得⎩⎪⎨⎪⎧x =3,y =2,即圆心的坐标是C (3,2).∴r 2=|AC |2=(3-1)2+(2+2)2=20. ∴所求圆的方程是(x -3)2+(y -2)2=20. 法二:设圆的方程为(x -a )2+(y -b )2=R 2.则⎩⎪⎨⎪⎧(1-a )2+(-2-b )2=R 2,(-1-a )2+(4-b )2=R 2,2a -b -4=0⇒⎩⎪⎨⎪⎧a =3,b =2,R 2=20.∴所求圆的方程为(x -3)2+(y -2)2=20.21.(本小题满分12分)已知圆x 2+y 2-4ax +2ay +20a -20=0. (1)求证:对任意实数a ,该圆恒过一定点; (2)若该圆与圆x 2+y 2=4相切,求a 的值.解:(1)证明:圆的方程可整理为(x 2+y 2-20)+a (-4x +2y +20)=0, 此方程表示过圆x 2+y 2-20=0和直线-4x +2y +20=0交点的圆系.由⎩⎪⎨⎪⎧x 2+y 2-20=0,-4x +2y +20=0得⎩⎪⎨⎪⎧x =4,y =-2.∴已知圆恒过定点(4,-2).(2)圆的方程可化为(x -2a )2+(y +a )2=5(a -2)2. ①当两圆外切时,d =r 1+r 2, 即2+5(a -2)2=5a 2, 解得a =1+55或a =1-55(舍去); ②当两圆内切时,d =|r 1-r 2|, 即|5(a -2)2-2|=5a 2, 解得a =1-55或a =1+55(舍去). 综上所述,a =1±55.22.(本小题满分12分)(2017·全国卷Ⅲ)在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1),当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 解:(1)不能出现AC ⊥BC 的情况,理由如下: 设A (x 1,0),B (x 2,0),则x 1,x 2满足x 2+mx -2=0, 所以x 1x 2=-2. 又C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12,所以不能出现AC ⊥BC 的情况.(2)证明:由(1)知BC 的中点坐标为⎝⎛⎭⎫x 22,12,可得BC 的中垂线方程为y -12=x 2⎝⎛⎭⎫x -x 22. 由(1)可得x 1+x 2=-m , 所以AB 的中垂线方程为x =-m2.联立⎩⎨⎧x =-m 2,y -12=x 2⎝⎛⎭⎫x -x 22,x 22+mx 2-2=0,可得⎩⎨⎧x =-m2,y =-12.所以过A ,B ,C 三点的圆的圆心坐标为⎝⎛⎭⎫-m 2,-12,半径r =m 2+92.故圆在y 轴上截得的弦长为2r 2-⎝⎛⎭⎫m 22=3,即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.。
高中数学《圆与方程》练习题
1. 圆心为且经过点的圆的标准方程是()
A. B.
C. D.
2. 圆的圆心坐标是()
A. B. C. D.
3. 过三点,,的圆的方程为()
A. B.
C. D.
4. 圆的圆心和半径分别是()
A.,
B.,
C.,
D.,
5. 方程=表示的图形是()
A.以为圆心,为半径的圆
B.以为圆心,为半径的圆
C.以为圆心,为半径的圆
D.以为圆心,为半径的圆
6. 圆的半径为,则实数的值为()
A. B. C. D.
7. 圆心为点且过点的圆的方程是()
A. B.
C. D.
8. 圆的圆心坐标为( )
A. B. C. D.
9. 已知圆,那么与圆有相同的圆心,且经过点的圆的方程是()
A. B.
C. D.
10. 已知,满足,则的最大值为()
A. B. C. D.
11. 若一个圆的圆心在点,并且经过点,则这个圆的方程是________.
12. 已知直线的方程是,,是直线上的两点,且是正三角形(为坐标原点),则外接圆的方程是________.
13. 圆的半径为________.
14. 曲线关于________对称.
15. 圆的圆心坐标是________.
16. 圆的圆心为________.
17. 圆的半径等于________.
18. 求封闭曲线所围的面积为________.
19. 圆心为且与直线相切的圆的标准方程为________.
20. 一个圆经过椭圆的三个顶点,且圆心在轴的正半轴上,则该圆的标准方程为
________.
21. 已知,,,求外接圆的方程.
22. 求过点和,且半径为的圆的方程.
23. 已知内接于圆的四边形的对角线互相垂直,求证:圆心到一边的距离等于这条边所对边长的一半.
24. 已知曲线.
当为何值时,曲线表示圆;
在的条件下,若曲线与直线交于,两点,且,求的值.
参考答案
一、选择题
1.A
2.A
3.C
4.A
5.C
6.A
7.C
8.B
9.B10.D
二、填空题
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
三、解答题(本题共计4 小题,每题10 分,共计40分)
21.解:方程为,将三点坐标代入,得
,
,
,
解得:,,,方程为,
即,
圆心为,半径为.
22.解:因为圆过点和,且半径为,
所以圆的圆心坐标,
所求圆的方程为:.
23.证明:如图所示,以四边形互相垂直的对角线、所在直线分别为轴、轴,建立直角坐标系.设,,,.
过四边形外接圆的圆心分别作、、的垂线,垂足分别为、、,则、、分别是线段、、的中点,由线段的中点坐标公式,得
,,,.
所以.
又,
所以.
24.解:∵,
由,
得,
∴当时,曲线表示圆.
∵,
∴,
∴圆心,半径.
∵圆心到直线的距离为
.
又,
∴,即,
解得.。