国内外金属材料低周疲劳试验标准对比
- 格式:docx
- 大小:38.11 KB
- 文档页数:5
E319全铸铝合金材料低周疲劳试验研究一、前言随着航空工业和汽车工业的不断发展,轻量化、高强度、高温性、高耐久性和高可靠性的材料需求越来越高。
特别是对于飞机材料而言,拥有更高的强度、更低的密度以及更高的抗腐蚀能力,是其关注的重点。
全铸铝合金是航空制造中的一种重要材料,具有轻量化、高强度、高耐蚀性、易加工和成形等优点。
在航材制造中,铸造工艺的优越性也将铸造成为全铸铝合金材料制造过程的首选方式。
本文将对全铸铝合金材料进行低周疲劳试验研究,以探究该材料在实际应用中的性能表现,为其应用提供支持。
二、材料和方法1. 材料本次试验使用的全铸铝合金是E319,其化学成分如下:化学成分Si Fe Cu Mn Mg Zn Ti Cr Ni Ag Al质量分数7.87 0.32 1.99 0.26 2.53 0.03 0.27 0.02 0.02 0.02 85.672. 方法试验采用电液伺服控制硫化橡胶试验机进行,载荷模式为谐波,载荷幅值为正弦波形式,测试频率为10Hz,测试温度为室温(25℃),样品尺寸为直径10mm,长度30mm。
样品表面处理方式采用砂纸+针管喷砂处理,以消除表面氧化膜和金属表面凹陷,改善疲劳表现。
三、结果和分析1. 结果在10Hz的频率下,E319全铸铝合金材料的低周疲劳性能得到了实验评估。
试验结果表明,该材料在测试周期内的载荷模式下能够实现循环加载和循环卸载。
试验数据表明,载荷幅值为20kN和30kN时,样品的疲劳寿命显示出稳定的低周疲劳性能。
在载荷幅值为30kN时,样品疲劳寿命达到了1.11x10^4循环次数,也就是说,材料的低周疲劳寿命在试验条件下继续提高,并且显示出良好的强度和韧性。
2. 分析该试验结果表明,E319全铸铝合金材料在10Hz的频率下,能够承受循环加载和卸载,并在载荷幅值为20kN和30kN时显示出较好的低周疲劳性能。
特别地,在载荷幅值为30kN时,材料表现出具有更好强度和韧性的性能,并且可以承受更高的循环次数。
国内外疲劳寿命探析技艺综述【摘要】因疲劳而引发的机械零件破坏约占80%,因此疲劳破坏的问题得到了国内外的极大关注,其中疲劳寿命的预测尤其重要,本文简单探讨国内外关于疲劳现象的系统研究。
【关键词】疲劳寿命;研究美国试验与材料协会(ASTM)在“疲劳试验及数据统计分析之有关术语的标准定义”(ASTM E206-72)中给出疲劳的定义:在某点或某些点承受扰动应力,且在足够多的循环扰动作用之后形成裂纹或完全断裂的材料中所发生的局部永久结构变化的发展过程,称为疲劳。
1964年,日内瓦的国际标准化组织在《金属疲劳试验的一般原理》中给疲劳下了一个描述性的定义:金属材料在应力或应变的反复作用下所发生的性能变化叫做疲劳。
据统计,机械零件破坏的80%由疲劳引起的,特别是随着机械零件向大型、复杂化和高温、高速使用环境的方向发展,大量的随机因素增加,疲劳破坏更是层出不穷,因此关于疲劳破坏问题的研究得到了极大的关注,其中疲劳寿命的预测尤为重要。
1847年,德国人W?hler用旋转疲劳试验机首先对疲劳现象进行了系统研究,提出S-N曲线及疲劳极限的概念,奠定了疲劳破坏的经典强度理论基础。
1874年,W. Gerber等研究平均应力的影响,画出相应的疲劳极限线图―Gerber 抛物线。
1929年,英国人Haigh发表了高强度钢与低碳钢有不同的缺口敏感性的论文,他所采用的缺口应变分析及“残余应力”的概念,被后人加以补充和发展。
1930年,英国人Goodman简化了疲劳极限图,即用直线将纵轴上的对称循环疲劳极限点和横轴上的强度极限点连接,以此来替代Gerber 抛物线;由于Goodman的疲劳极限图相对简单,所以至今仍在常规疲劳强度设计中被广泛使用。
20世纪20-30年代人们已经开始研究疲劳机理,把疲劳过程划分为裂纹萌生、裂纹扩展及断裂三个阶段。
1945年,M. A. Miner(US)提出了损伤与循环次数成线性关系即Palmgren-Miner线性累积损伤准则。
金属低周热疲劳试验方法标准金属低周热疲劳试验方法标准一、引言1. 金属材料在高温下易发生热疲劳现象,因而对金属材料的低周热疲劳性能进行评价非常重要。
而评价的方法就是通过热疲劳试验来进行。
2. 金属低周热疲劳试验方法标准对于确保金属材料的高温使用安全至关重要,因此标准的制定和遵守不容忽视。
二、什么是金属低周热疲劳试验方法标准3. 金属低周热疲劳试验方法标准是一套规范,用于规定金属材料在热膨胀和收缩的条件下进行试验以评估其热疲劳性能的方法。
4. 这些标准涵盖了试验样品的准备、加载方式、试验环境、试验过程、试验结果评定等内容,旨在确保试验的可重复性和有效性。
三、金属低周热疲劳试验方法标准的意义5. 金属低周热疲劳试验方法标准的制定可以帮助工程师和研究人员在设计和使用金属材料时更好地了解其在高温下的性能表现。
6. 合理的试验方法标准可以提高试验的准确性和可比性,为工程实践提供可靠的参考依据。
四、金属低周热疲劳试验方法标准的分类7. 目前,国际上的金属低周热疲劳试验方法标准主要分为两类,一类是基于高温蠕变试验的方法标准,另一类是基于高温振动试验的方法标准。
8. 这两种方法标准都有各自的特点和适用范围,工程师和研究人员需要根据具体情况选择合适的试验方法标准。
五、金属低周热疲劳试验方法标准的实施9. 实施金属低周热疲劳试验方法标准需要严格按照标准规定的试验条件和程序进行,并且需要保证试验设备的精度和稳定性。
10. 对试验结果的评定也需要按照标准的要求进行,才能得到可靠的试验数据和评价结果。
六、个人观点和理解11. 在实际工作中,我认为金属低周热疲劳试验方法标准的制定和实施对于确保金属材料在高温环境下的安全可靠运行至关重要。
12. 合理的试验方法标准可以帮助工程师更好地选用材料、设计结构,并且可以为新材料的研发提供重要参考。
七、总结13. 金属低周热疲劳试验方法标准的制定和实施对于金属材料的高温使用具有重要意义,需要得到工程师和研究人员的高度重视和遵守。
国内外金属材料低周疲劳试验标准对比作者:刘千硕来源:《科学导报·学术》2020年第35期摘; 要:近年來,我国经济发展十分迅速,社会在不断进步,为评价材料抵抗疲劳失效的能力,必须进行低周疲劳性能试验。
目前,国内外都制定了金属材料低周疲劳试验标准。
选取国内低周疲劳试验常用标准ASTME606—2012和GB/T15248—2008,以及参考ISO国际标准建立的GB/T26077—2010,归纳总结了这些标准之间的差异及特点。
发现GB/T15248—2008和GB/T26077—2010在试样要求、设备要求、试验程序及试验报告等方面差异不大,建议考虑合并两项标准,形成一个统一的轴向应变控制疲劳试验标准。
关键词:金属材料;低周疲劳;应变控制;试验标准引言火电机组启停或负荷变化引起交变热应力和机械应力,金属部件在交变应力循环作用下将产生疲劳损伤。
金属部件的疲劳损伤是一种累积过程,随着运行时间的增长及机组启停次数的增多,可能由于裂纹的萌生和扩展而导致部件最终失效。
机组重要部件(如汽包、转子等)失效将造成严重后果。
因此,对于运行时间较长尤其是超过设计寿命的机组,进行金属部件的寿命评估十分必要。
材料疲劳曲线表征疲劳寿命与循环应变或应力之间的关系,是进行疲劳寿命评估的基本依据。
材料疲劳曲线通常通过疲劳试验确定,也可以根据材料的常规拉伸机械性能进行推算。
但是由于疲劳试验周期长,费用高,而且对于在役部件一般无法取样进行试验,因此,采用计算方法确定材料疲劳曲线在工程中具有重大意义。
1多轴疲劳多轴疲劳是指多轴应力或应变作用下的疲劳破坏,在加载过程中有两个或三个主应力(或主应变)分量独立地随时间发生周期性变化,根据加载时主应力(或主应变)方向的变化又可分为比例加载与非比例加载.相对于单轴疲劳而言,非比例加载下的多轴疲劳会使材料内部的应力和应变主轴不断旋转,开动更多的滑移系,导致疲劳裂纹在不同的方向、不同的平面内形成,一些材料在此期间会出现非比例循环附加强化效应,因此多轴疲劳问题相对来说更加复杂.目前单轴与多轴疲劳理论的区别主要反映在以下几个方面:(1)材料循环塑性模型单轴本构关系如Ramberg-Osgood方程不能直接应用于多轴荷载情况,为了精确预测材料在多轴非比例加载下的疲劳寿命就需要综合考虑多轴状态下的非比例强化、等效强化、随动强化等现象.(2)损伤模型传统的S-N法或ε-N法只是针对单轴或多轴比例加载情况,而多轴非比例加载时主应力(或主应变)轴的变化会使裂纹萌生面方向发生变化,而使传统的疲劳寿命模型对此类问题失效.(3)循环计数法在随机多轴加载下各方向的主应力(或主应变)峰谷值不能时时匹配,因此传统的雨流计数法不再适用.2国内外金属材料低周疲劳试验标准对比2.1试样要求ASTME606—2012和GB/T15248—2008标准中给出的推荐试样都是等截面试样和漏斗形试样。
金属材料的疲劳性能研究1. 引言金属材料是广泛应用于工程结构和设备制造领域的重要材料之一。
然而,在长期使用和高强度工作环境下,金属材料容易出现疲劳现象,导致失效和损坏。
因此,研究金属材料的疲劳性能具有重要意义。
本文将探讨金属材料的疲劳现象、疲劳寿命预测方法以及相关测试技术。
2. 金属材料的疲劳现象金属材料在受到重复加载和应力循环时,会逐渐失去耐久性能,最终导致失效。
这种失效称为疲劳。
疲劳失效可以分为低周疲劳和高周疲劳两种。
低周疲劳主要发生在高载荷和应力幅值的情况下,常常引起严重的断裂。
高周疲劳则发生在载荷频率较高、应力幅值相对较小的情况下,其失效通常表现为表面裂纹的扩展。
3. 疲劳寿命预测方法为了评估金属材料在实际使用中的疲劳寿命,科学家们开发了多种疲劳寿命预测方法。
其中最常用和有效的方法是基于应力幅与寿命的S-N曲线法。
这种方法通过实验测定金属材料的疲劳寿命数据,建立应力幅与寿命之间的关系曲线,从而预测材料在特定应力水平下的寿命。
此外,还有一些基于裂纹扩展机理的疲劳寿命预测方法,如裂纹扩展生长率法和残余寿命模型。
这些方法基于裂纹的扩展速率来评估疲劳寿命,能够更加精确地预测金属材料的寿命。
4. 金属材料疲劳性能测试技术为了获得金属材料的疲劳性能数据,人们开发了各种测试技术和试验设备。
最常用的测试方法是疲劳试验。
疲劳试验通常采用标准试样,通过对试样进行循环加载和应力幅变化,从而模拟真实使用条件下的疲劳状态。
疲劳试验可以分为拉伸疲劳试验、弯曲疲劳试验、扭转疲劳试验等。
这些试验方法能够精确测定金属材料的疲劳强度、疲劳寿命和裂纹扩展速率。
此外,还有一些先进的非破坏性测试方法用于评估金属材料的疲劳性能,如超声波检测、红外热成像等。
这些方法可以检测材料中的裂纹、缺陷和应变分布,为疲劳性能研究提供了有力的辅助手段。
5. 结论金属材料的疲劳性能研究对于确保工程结构和设备的安全和可靠性至关重要。
本文讨论了金属材料的疲劳现象、疲劳寿命预测方法以及相关测试技术。
第42卷第4期2023年8月沈㊀阳㊀理㊀工㊀大㊀学㊀学㊀报JournalofShenyangLigongUniversityVol 42No 4Aug 2023收稿日期:2022-12-27基金项目:国家自然科学基金项目(51871221)作者简介:祝祥(1997 )ꎬ男ꎬ硕士研究生ꎮ通信作者:杜晓明(1976 )ꎬ男ꎬ教授ꎬ博士ꎬ研究方向为先进铝合金的制备与加工成型ꎮ文章编号:1003-1251(2023)04-0069-06DD419镍基单晶高温合金980ħ下低周疲劳行为研究祝㊀祥1ꎬ杜晓明1ꎬ刘纪德2(1.沈阳理工大学材料科学与工程学院ꎬ沈阳110159ꎻ2.中国科学院金属研究所ꎬ沈阳110016)摘㊀要:对DD419镍基单晶高温合金在980ħ下的低周疲劳行为进行试验研究ꎬ并对疲劳数据进行分析ꎬ获得该温度下合金疲劳参数ꎮ结果表明:该合金低周疲劳变形过程中ꎬ弹性变形起主要作用ꎬ塑性变形较低ꎻ循环应力响应行为以先循环软化㊁再趋于稳定为主要方式ꎬ并且随着应力幅的增加ꎬ循环寿命不断降低ꎮ低应变幅下ꎬ合金的疲劳断裂表现为脆性断裂的特征ꎬ并呈现出明显的多源疲劳特征ꎬ微观断口形貌的主要特征是出现准解理台阶ꎬ可判断准解理断裂是主要的断裂机制ꎮ关㊀键㊀词:镍基单晶高温合金ꎻ低周疲劳ꎻ疲劳寿命ꎻ断裂机制中图分类号:TU973.2+54文献标志码:ADOI:10.3969/j.issn.1003-1251.2023.04.011StudyonLowCycleFatigueBehaviorofDD419NickelBaseSingleCrystalSuperalloyat980ħZHUXiang1ꎬDUXiaoming1ꎬLIUJide2(1.ShenyangLigongUniversityꎬShenyang110159ꎬChinaꎻ2.InstituteofMetalResearchꎬChineseAcademyofSciencesꎬShenyang110016ꎬChina)Abstract:Thelow ̄cyclefatiguebehaviorofDD419Nickel ̄basedsinglecrystalsuperalloyat980ħisexperimentallystudiedandthefatiguedataisanalyzedtoobtainthefatiguepa ̄rameters.Theresultsshowthatelasticdeformationplaysamajorroleintheprocessoflowcyclefatiguedeformationꎬwhileplasticdeformationisrelativelylow.Thecyclicstressre ̄sponsebehavioriscyclicsofteningfirstandthenstabilizingꎬandthecycliclifedecreaseswiththeincreaseofstressamplitude.Atlowstrainamplitudeꎬthefatiguefractureoftheal ̄loyshowsthecharacteristicsofbrittlefractureꎬandpresentsobviousmulti ̄sourcefatiguecharacteristics.Themainfeatureofthemicroscopicfracturemorphologyisthepresenceofquasi ̄dissociationfractureꎬbywhichitcanbejudgedthatthequasi ̄dissociationfractureisthemainfracturemechanism.Keywords:nickel ̄basedsinglecrystalsuperalloyꎻlowcyclefatigueꎻfatiguelifeꎻfracturemechanism㊀㊀DD419镍基单晶高温合金相较于其他高温合金ꎬ具有高温强度高㊁综合力学性能好㊁铸造工艺性能良好等优势ꎬ广泛应用在航空发动机的涡轮叶片中[1]ꎮ与国外的CMSX ̄4高温合金相比ꎬDD419合金在拉伸性能㊁蠕变性能㊁抗氧化性能㊁耐热和耐腐蚀等方面的表现基本相近[2-3]ꎬ且其含铼元素少㊁制备成本低㊁使用范围更广ꎮ疲劳是高温合金最主要的失效形式ꎬ低周疲劳损伤又是涡轮叶片材料的主要失效形式之一ꎮ为确保构件服役过程中的安全与稳定ꎬ很多学者研究了高温合金材料的疲劳性能ꎮFan等[4]研究了镍基单晶高温合金DD10分别在温度为760ħ和980ħ下不同应变幅的低周疲劳行为ꎬ结果表明:在高应变范围内ꎬ由于塑性变形ꎬ合金在760ħ时更容易萌生裂纹ꎻ在低应变范围内ꎬ980ħ时断口会出现明显的氧化损伤ꎬ加速了裂纹萌生ꎮCharles等[5]研究了CMSX ̄4合金低周疲劳过程中位错结构的变化ꎬ得出位错形态在低应力下类似于蠕变㊁高应力下与拉伸断裂类似的结论ꎮDD419合金常作为燃气轮机涡轮叶片材料ꎬ其工作温度通常能达到980ħꎮ因此ꎬ本文研究DD419合金在980ħ下的低周疲劳断裂行为ꎬ并从理论上分析应变-寿命关系㊁循环应力响应行为及疲劳裂纹的产生与扩展行为之间的关系ꎬ以期获得关于该合金低周疲劳行为较为完整的认识ꎮ1㊀试验部分1.1㊀试样的制备试验选用含Re第二代镍基单晶高温合金ꎬ其成分含量见表1ꎮ首先ꎬ用真空感应炉(VIDP ̄25型ꎬ沈阳真空技术研究所有限公司)冶炼试验合金的母合金ꎬ并在真空条件下浇铸形成母合金铸锭ꎬ采用螺旋选晶法ꎬ在工业用大型双区域加热真空高梯度单晶炉(ZGD ̄2型ꎬ锦州航星真空设备有限公司)中制备具有<001>取向的单晶棒材ꎻ然后ꎬ用热电偶温度计测量箱式热电阻炉(CWF型ꎬ德国CARBOLITEGERO公司)的温度ꎬ测温结果满足ʃ5ħ的误差范围内再对单晶棒材进行热处理操作ꎻ之后ꎬ进行固溶处理(温度1280~1300ħꎬ时间为9hꎬ空冷)ꎻ最后ꎬ进行两级时效处理(温度1110~1150ħꎬ时间4hꎬ空冷ꎻ温度870ħꎬ时间14hꎬ空冷)ꎮ经完全热处理之后ꎬ将单晶棒材试样加工成如图1所示的尺寸ꎮ图1㊀单晶棒材试样尺寸表1㊀DD419合金成分含量(质量分数)%CrCoWMoReAlTiTaHfNi6.809.306.501.003.005.801.106.500.09余量1.2㊀试验方法低周疲劳试验在电液伺服疲劳试验机(100kN ̄8型ꎬMTS系统公司)上进行ꎬ试验温度为980ħꎬ试验数据采集(按照对数采集)与处理全部在计算机上进行ꎮ具体试验条件见表2ꎮ表2㊀高温低周疲劳试验条件试验温度/ħ试验波形应变比应变速率/s-1加载频率/Hz介质控制方式980三角波0.050.0060.15~0.3空气恒定应变㊀㊀DD419合金试样在低周疲劳试验后ꎬ采用线切割切下约2~3mm的断口试样ꎬ切割时尽量避07沈㊀阳㊀理㊀工㊀大㊀学㊀学㊀报㊀㊀第42卷免破坏或污染切割部位ꎮ切割结束后将断口试样置于盛有丙酮溶液的烧杯中ꎬ并用超声波仪器清洗ꎬ冲洗完毕后烘干ꎬ得到清洁干净的断口试样ꎮ随后ꎬ采用扫描电子显微镜(S ̄3400N型ꎬ日立公司)观察断口的宏观和微观形貌ꎮ2㊀结果与讨论2.1㊀应变-寿命行为测得DD419高温合金在980ħ下的弹性应变幅(Δεe/2)㊁塑性应变幅(Δεp/2)和总应变幅(Δεt/2)与疲劳寿命(2Nf)之间的关系ꎬ在双对数坐标系下绘制关系曲线ꎬ如图2所示ꎮ图2㊀应变-疲劳寿命关系曲线㊀㊀塑性应变幅值和弹性应变幅值的交点称为过渡寿命ꎬ图2中两条曲线无交点ꎬ故DD419合金低周疲劳过程中不存在过渡寿命ꎮ由图2可见ꎬ弹性应变幅远远大于塑性应变幅ꎬ这一特点与多数高强度镍基高温合金相似ꎮ因此ꎬ在低周疲劳区间ꎬ弹性应变在变形中占主导地位ꎬ材料疲劳寿命的长短主要取决于强度ꎮ文献[6]指出ꎬ多数钴基合金由于塑性较好ꎬ在断裂过程中塑性往往起主要作用ꎮ对于恒定应变幅控制下的应变-寿命曲线ꎬ可用Manson ̄Coffin[7]寿命模型来表达ꎬ公式为Δεt2=Δεe2+Δεp2=σfᶄE(2Nf)b+εfᶄ(2Nf)c(1)式中:σfᶄ为疲劳强度系数ꎻb为疲劳强度指数ꎻεfᶄ为疲劳延性系数ꎻc为疲劳延性指数ꎻE为弹性模量ꎮ将应变比为0.05的DD419低周疲劳数据进行拟合ꎬ得到与疲劳相关的系数ꎬ代入式(1)可得Δεt2=0.0589(2Nf)-0.6173+0.0233(2Nf)-0.1784(2)根据式(2)并利用线性回归分析方法即可确定DD419镍基单晶高温合金在980ħ下的低周疲劳参数σfᶄ㊁εfᶄ㊁b㊁cꎬ如表3所示ꎮ表3㊀DD419合金疲劳参数试验温度/ħσfᶄ/MPaεfᶄbcKᶄ/MPanᶄE/GPa98020490.0589-0.1784-0.617339070.2691882.2㊀循环应力-应变关系材料的循环应力-应变曲线能较好地体现低周疲劳条件下材料的实际应力和应变特征ꎮDD419高温合金循环应力-应变关系曲线如图3所示ꎮ图3中曲线由半寿命附近的滞回曲线获得ꎬ详见文献[8]ꎬ可采用下式描述Δσ2=Kᶄ(Δεp2)nᶄ(3)式中:Δσ/2为应力幅ꎻKᶄ为循环强度系数ꎻnᶄ为循环应变硬化指数ꎮ通过对图3中的试验数据进行非线性拟合ꎬ即可确定Kᶄ与nᶄ值(见表3)ꎮ图3㊀循环应力-应变关系曲线2.3㊀循环应力响应行为循环应力响应行为主要包括循环硬化㊁循环17第4期㊀㊀㊀祝㊀祥等:DD419镍基单晶高温合金980ħ下低周疲劳行为研究稳定和循环软化三个阶段ꎮ在恒定应变控制的低周疲劳循环中ꎬ随着加载周次增加ꎬ应力逐渐上升是循环硬化ꎬ反之为循环软化ꎮ循环硬化和软化现象与材料的位错运动有关[9]ꎬ循环硬化可导致材料性能下降甚至失效ꎬ循环软化常伴随着循环应力水平的快速下降ꎬ通常出现在已经充满了位错缠结和阻碍的冷加工合金中ꎮ循环应力响应曲线反映了双对数坐标下应力幅与循环周次的关系ꎬDD419高温合金在980ħ下循环应力响应曲线如图4所示ꎮ图4㊀DD419在980ħ下循环应力响应曲线㊀㊀从图4中可看出ꎬDD419合金的循环应力响应行为与应变幅的大小密切相关ꎬ随着总应变幅值的不断增加ꎬ合金所受应力幅值亦逐渐增大ꎬ且疲劳寿命随循环周次减小而缩短ꎮ当应变幅为0.3%时ꎬ合金在循环过程中的应力响应行为呈现先循环软化㊁再过渡到循环稳定阶段ꎬ随后出现短暂硬化阶段ꎬ最后过渡到循环稳定阶段ꎬ直至突然断裂ꎻ当应变幅为0.4%时ꎬ合金循环应力响应行为的整体趋势与总应变幅为0.3%时相近ꎬ不同之处在于总应变幅为0.4%时ꎬ合金循环稳定阶段的疲劳周次要少ꎬ且循环软化行为更加明显ꎻ当总应变幅为0.5%时ꎬ合金首先显示出循环硬化ꎬ继而转入循环稳定过程ꎬ最后萌生出裂纹ꎬ并发生突然断裂ꎻ在总应变幅达到0.6%㊁0.7%时ꎬ由于循环周次不断上升ꎬ合金的循环应力响应行为也趋于稳定ꎬ但在疲劳过程的中期ꎬ合金的循环应力响应曲线由循环硬化过渡到循环软化ꎬ而疲劳过程后期ꎬ循环应力响应曲线又呈现了迅速下降的态势ꎬ随之在很短的疲劳周次中出现了突然断裂ꎮ2.4㊀断口形貌分析镍基高温合金疲劳断口的一个典型特征是有多个疲劳源区[10]ꎮ图5为总应变幅分别为0.3%㊁0.5%㊁0.6%下断口的宏观形貌ꎮ图5㊀不同应变幅下疲劳断口的宏观形貌㊀㊀宏观上看ꎬ高温合金的疲劳断口形貌一般都比较粗糙ꎬ断口颜色呈青蓝色ꎮ疲劳裂纹主要萌生于试样边缘及附近ꎬ且有多个疲劳源ꎮ从图5中可见ꎬ随着总应变幅的增加ꎬ断口边缘及表面出现的疲劳裂纹也逐渐变多ꎬ导致疲劳断裂拓展速率加快ꎬ疲劳寿命降低ꎮ另外ꎬ疲劳断口区域主要由疲劳源㊁疲劳扩展区和瞬断区三部分组成[11-12]ꎬ图中A㊁B㊁C分别代表疲劳源区㊁疲劳扩展区和瞬断区ꎬ三个区域具有明显的特征ꎮ随着总应变幅的增大ꎬ断口中三个部分的面积也发生27沈㊀阳㊀理㊀工㊀大㊀学㊀学㊀报㊀㊀第42卷了变化ꎬ其中瞬断区面积变化最大ꎬ在整个断口区域所占比重越来越大ꎻ随着低周疲劳测试过程中总应变幅的增加ꎬ合金在低周疲劳过程中承受的外加载荷逐渐增大ꎬ从而导致DD419合金低周疲劳断口中瞬断区的面积逐渐增大ꎮ图6为不同应变幅下疲劳断口的微观形貌ꎮ对于同一合金ꎬ在低周疲劳试验过程中ꎬ随着应变幅值的增大ꎬ疲劳源区域的光滑度降低ꎬ平坦的小平面也减少ꎬ使得疲劳源区域表面逐渐变得粗糙ꎻ这是由于伴随应变幅值的增加ꎬ微观中滑移带或位错结构与合金中的强化粒子γᶄ相的交互作用加剧ꎬ导致强化粒子γᶄ相失去其有序结构ꎬ降图6㊀不同应变幅下疲劳断口的微观形貌低了γᶄ相对合金基体γ相的强化作用ꎬ从而导致合金的抗疲劳变形能力下降ꎬ合金的循环疲劳周次逐渐减少[13]ꎮ因此ꎬ疲劳过程中疲劳源区的断面所经受的持续摩擦和挤压的次数也在减少ꎬ表面的光滑程度也逐渐降低ꎮ在低应变幅下ꎬ疲劳扩展区断口处存在明显的裂纹ꎬ并沿晶面拓展ꎬ如图6(a)所示ꎻ断口表面存在许多短小的裂纹ꎬ局部区域存在撕裂棱和准解理台阶的特征ꎬ扩展区还出现不明显的疲劳辉纹ꎬ可能是氧化腐蚀较严重导致ꎬ如图6(b)所示ꎻ部分区域还存在很多深浅不一的韧窝和孔洞ꎬ如图6(c)所示ꎮ瞬断区断口处有明显的金属滑移痕迹ꎬ并出现了准解理台阶ꎬ因此可判断合金的断裂机制为准解理断裂ꎮ文献[14-15]指出ꎬ随温度的上升ꎬ更容易发生位错的交滑移和攀移ꎬ在不动位错累积到一定水平时ꎬ就会出现准解理断裂ꎮ3㊀结论本文研究了DD419镍基单晶高温合金在980ħ下的低周疲劳行为ꎬ得到如下结论ꎮ1)根据Manson ̄Coffin寿命模型ꎬDD419疲劳断裂过程中弹性变形起主要作用ꎮ2)980ħ下ꎬ由于位错的往复运动和交互作用ꎬDD419镍基单晶高温合金的循环应力响应行为在0.3%㊁0.4%应变幅下表现为先循环软化ꎬ后由循环硬化过渡到循环稳定阶段ꎬ最后突然断裂ꎻ在0.5%应变幅下首先出现循环硬化ꎬ继而转入到循环稳定阶段ꎬ最后断裂ꎻ0.6%㊁0.7%应变幅下表现为先稳定阶段ꎬ后循环硬化又过渡到循环软化ꎬ最后逐渐稳定ꎬ直至突然断裂ꎮ3)DD419镍基单晶高温合金在980ħ低周疲劳断裂特征表现为明显的多裂纹源性ꎬ随着应变幅的降低ꎬ裂纹数目也逐渐减少ꎬ疲劳寿命随之增加ꎮ在0.3%㊁0.5%㊁0.6%应变幅下ꎬ裂纹萌生于试样表面位置ꎬ出现准解理台阶ꎬ因此判断合金的断裂机制为准解理断裂ꎮ参考文献:[1]史振学ꎬ胡颖涛ꎬ刘世忠.不同温度下镍基单晶高温合金的低周疲劳性能[J].机械工程材料ꎬ2021ꎬ4537第4期㊀㊀㊀祝㊀祥等:DD419镍基单晶高温合金980ħ下低周疲劳行为研究(3):16-20ꎬ28.[2]赵运兴ꎬ员莹莹ꎬ马德新ꎬ等.高温合金CMSX ̄4和DD419单晶铸件中共晶含量的试验研究[J].航空制造技术ꎬ2022ꎬ65(17):74-80.[3]李寒松ꎬ孙士江ꎬ刁爱民ꎬ等.热等静压对DD419单晶高温合金组织与持久性能的影响[J].铸造ꎬ2021ꎬ70(5):554-559.[4]FANZDꎬWANGDꎬLOULH.Corporateeffectsoftemperatureandstrainrangeonthelowcyclefatiguelifeofasingle ̄crystalsuperalloyDD10[J].ActaMet ̄allurgicaSinica(EnglishLetters)ꎬ2015ꎬ28(2):152-158.[5]CHARLESCMꎬDREWGAꎬBAGNALLSꎬetal.Dislocationdeformationmechanismsduringfatigueofthenickel ̄basedsuperalloyCMSX ̄4[J].MaterialsScienceForumꎬ2007ꎬ62:546-549.[6]储昭贶ꎬ于金江ꎬ孙晓峰ꎬ等.DZ951合金的持久性能与断裂行为[J].稀有金属材料与工程ꎬ2009ꎬ38(5):834-837.[7]张罡ꎬ龙占云ꎬ赵凯ꎬ等.WFG36Z钢焊接接头低周疲劳性能与寿命的试验研究[J].沈阳工业学院学报ꎬ1994(2):7-12.[8]刘雪莹ꎬ陈立佳ꎬ周舸ꎬ等.应变波形对Inconel625合金低周疲劳性能的影响[J].稀有金属材料与工程ꎬ2021ꎬ50(4):1263-1269.[9]水丽.应变幅对一种新型镍基单晶高温合金高温低周疲劳性能的影响[J].机械工程材料ꎬ2022ꎬ46(6):31-35ꎬ43.[10]刘柳.一种镍基单晶高温合金低周疲劳行为的研究[D].沈阳:东北大学ꎬ2016.[11]SHUILꎬLIUP.Low ̄cyclefatiguebehaviorofanickelbasesinglecrystalsuperalloyathightemperature[J].RareMetalMaterialsandEngineeringꎬ2015ꎬ44(2):288-292.[12]闫鹏ꎬ冯寅楠ꎬ乔双ꎬ等.镍基变形高温合金低周疲劳研究进展[J].稀有金属ꎬ2021ꎬ45(6):740-748. [13]张敏.一种镍基单晶高温合金蠕变损伤行为研究[D].沈阳:沈阳工业大学ꎬ2022.[14]朱强.GH4698镍基合金高温低周疲劳行为及断裂机理[D].哈尔滨:哈尔滨工业大学ꎬ2016.[15]孙超.N18合金低周疲劳行为研究[D].成都:西华大学ꎬ2006.(责任编辑:徐淑姣)(上接第68页)[26]刘铠铭ꎬ姜秀榕ꎬ林昕ꎬ等.羧甲基壳聚糖对Cr(Ⅵ)吸附性能及吸附热力学㊁动力学研究[J].离子交换与吸附ꎬ2021ꎬ37(3):234-243.[27]JUSGꎬXUEFꎬQIANJYꎬetal.SynthesisofGa3+dopedlithiummanganeseionsieveforLi+extractionanditsadsorptionthermodynamicbehavior[J].Separa ̄tionScienceandTechnologyꎬ2022ꎬ57(18):2923-2936. [28]KALAITZIDOUKꎬZOUBOULISAꎬMITRAKASM.Thermodynamicstudyofphosphateadsorptionandre ̄movalfromwaterusingironoxyhydroxides[J].Wa ̄terꎬ2022ꎬ14(7):1163.(责任编辑:宋颖韬)47沈㊀阳㊀理㊀工㊀大㊀学㊀学㊀报㊀㊀第42卷。
ASTM美国材料实验协会(American Society of Testing Materials )前身是国际材料试验协会(International Association for Testing Materials, IATM)。
19世纪80年代,为解决采购商与供货商在购销工业材料过程中产生的意见和分歧,有人提出建立技术委员会制度,由技术委员会组织各方面的代表参加技术座谈会,讨论解决有关材料规范、试验程序等方面的争议问题。
ASTM是美国最老、最大的非盈利性的标准学术团体之一。
经过一个世纪的发展,ASTM现有33669个(个人和团体)会员,其中有22396个主要委员会会员在其各个委员会中担任技术专家工作。
ASTM的技术委员会下共设有2004个技术分委员会。
有105817个单位参加了ASTM标准的制定工作,主要任务是制定材料、产品、系统、和服务等领域的特性和性能标准,试验方法和程序标准,促进有关知识的发展和推广。
下面是金属疲劳与断裂标准一览:B645-02 铝合金的平面应变断裂韧性试验 Standard Practice forPlane-Strain Fracture Toughness Testing of Aluminum AlloysB646-04 铝合金断裂韧性试验 Standard Practice for Fracture Toughness Testing of Aluminum AlloysE6-03 有关力学试验方法的标准术语 Standard Terminology Relating to Methods of Mechanical TestingE23-02a 金属材料切口试棒的冲击试验方法 Standard Test Methods for Notched Bar Impact Testing of Metallic MaterialsE139-00e1 金属材料蠕度、蠕变断裂和应力断裂试验 Standard Test Methods for Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic MaterialsE292-01 材料断裂时间的凹口张力试验 Standard Test Methods for Conducting Time-for-Rupture Notch Tension Tests of Materials E328-02 材料和结构件的应力松弛试验 Standard Test Methods for Stress Relaxation Tests for Materials and StructuresE338-03 高强度薄板材料的锐切口张力试验方法 Standard Test Method of Sharp-Notch Tension Testing of High-Strength Sheet MaterialsE340-00e1 金属和合金宏观腐蚀的测试方法 Standard Test Method for Macroetching Metals and AlloysE399-05 金属材料水平变形断裂强度的测试方法 Standard Test Method for Plane-Strain Fracture Toughness of Metallic MaterialsE436-03 铁素体钢的坠重破裂试验方法 Standard Test Method forDrop-Weight Tear Tests of Ferritic SteelsE466-96(2002)e1 金属材料上进行的恒定振幅轴向疲劳试验 Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic MaterialsE467-05 轴向负载疲劳试验机中恒振幅动态负载检验 Standard Practice for Verification of Constant Amplitude Dynamic Forces in an Axial Fatigue Testing SystemE468-90(2004)显示金属材料定幅疲劳试验结果的方法 Standard Practice for Presentation of Constant Amplitude Fatigue Test Results for Metallic MaterialsE561-05 R-曲线测定 Standard Practice for R-Curve DeterminationE602-03 圆柱形试样的锐切口张力的试验方法 Standard Test Method for Sharp-Notch Tension Testing with Cylindrical SpecimensE604-83(2002) 金属材料的动态断裂试验方法 Standard Test Method for Dynamic Tear Testing of Metallic MaterialsE606-92(2004)e1 应变控制环疲劳试验 Standard Practice forStrain-Controlled Fatigue TestingE646-00 金属薄钢板材料的拉伸应变硬化指数(n值)的测试方法 Standard Test Method for Tensile Strain-Hardening Exponents (n-Values) of Metallic Sheet MaterialsE647-05 疲劳裂缝增大率测量用测试方法 Standard Test Method for Measurement of Fatigue Crack Growth RatesE739-91(2004) 线性或线性化应力寿命(S-N)和应变寿命(e-N)疲劳数据的统计分析 Standard Practice for Statistical Analysis of Linear or LinearizedStress-Life (S-N) and Strain-Life (ε-N) Fatigue DataE740-03 用表面破裂张力试样做断裂试验 Standard Practice for Fracture Testing with Surface-Crack Tension SpecimensE812-91(1997) 高强度金属材料制慢弯预裂落摆冲击试样的破裂强度的测试方法 Standard Test Method for Crack Strength of Slow-Bend Precracked Charpy Specimens of High-Strength Metallic MaterialsE813-91 断裂韧性JIC测定的标准试验方法 Standard Test Method For JIC,A Measure Of Fracture ToughnessE992 使用等效能量法确定钢的断裂韧度的惯例 Practice for Determination of Fracture Toughness of Steels Using Equivalent Energy Methodology E1049-85(1997) 疲劳分析的周期计数 Standard Practices for Cycle Counting in Fatigue AnalysisE1152 Test Method for Determining J-R Curves3E1169-02 耐久性试验的实施 Standard Guide for Conducting Ruggedness TestsE1221-96(2002) 测定Kla铁素体钢的平面应变,断裂抑制,破裂韧性的试验方法 Standard Test Method for Determining Plane-Strain Crack-Arrest Fracture Toughness, KIa, of Ferritic SteelsE1290-02 测量裂缝尖端开口位移(CTOD)裂缝韧性的试验方法 Standard Test Method for Crack-Tip Opening Displacement (CTOD) Fracture Toughness MeasurementE1304-97(2002) 金属材料平面应变(V型槽口)断裂韧度的测试方法(代替SAE ARP 1704) Standard Test Method for Plane-Strain (Chevron-Notch) Fracture Toughness of Metallic MaterialsE1457-00 测量金属蠕变开裂增长速度的试验方法 Standard Test Method for Measurement of Creep Crack Growth Rates in MetalsE1681-03 恒定载荷下金属材料环境促使裂纹的阈应力强度系数测定标准试验方法 Standard Test Method for Determining a Threshold Stress Intensity Factor for Environment-Assisted Cracking of Metallic MaterialsE1737-1996 断裂韧性J积分的表征 J-INTERGRAL CHARACTERIZATION OF FRACTURE TOUGHNESSE1820-01 断裂韧性测定的标准试验方法 Standard Test Method for Measurement of Fracture ToughnessE1823-96(2002) 疲劳和裂纹试验相关的标准术语 Standard Terminology Relating to Fatigue and Fracture TestingE1921-05 测定铁素体钢在转变范围内基准温度的标准试验方法 Standard Test Method for Determination of Reference Temperature, To’, for Ferritic Steels in the Transition RangeE1942-98(2004) 周期性疲劳和断裂力学试验中采用的数据采集系统的评定标准导则 Standard Guide for Evaluating Data Acquisition Systems Used in Cyclic Fatigue and Fracture Mechanics TestingE2207-02 用薄壁管状样本进行张力控制轴向扭力疲劳试验惯例 Standard Practice for Strain-Controlled Axial-Torsional Fatigue Testing with Thin-Walled Tubular SpecimensE2368-04 张力受控的热机械疲劳测试惯例 Standard Practice for Strain Controlled。
拉拉疲劳试验标准
拉拉疲劳试验是一种用来评估材料在循环载荷作用下的疲劳性能的试验方法。
在这种试验中,材料样品通常会受到拉伸-拉伸的循环载荷,以模拟在实际应用中材料可能经历的疲劳载荷条件。
拉拉疲劳试验的标准主要用于确定材料在疲劳载荷下的抗力能力,包括其疲劳寿命、疲劳强度和疲劳韧性等特性。
拉拉疲劳试验的标准可能因国家和标准化组织而异。
以下是一些国际上常用的拉拉疲劳试验标准:
1.ASTME466-这是一项美国材料与试验协会(ASTM)制定的标准,它规定了金属和其他材料在室温下进行拉拉疲劳试验的方法。
2.ISO28900-国际标准化组织(ISO)制定的标准,它涵盖了金属和合金的拉拉疲劳试验方法。
3.EN10002-3-欧洲标准,适用于金属材料的拉拉疲劳试验。
4.GB/T28900-中国国家标准,规定了金属材料的拉拉疲劳试验方法。
这些标准通常会详细说明试验的原理、设备要求、试验程序、数据记录和分析方法等。
在执行拉拉疲劳试验时,应遵循相应标准的具体规定,以确保试验结果的准确性和可比
性。
国内外金属材料低周疲劳试验标准对比
《国内外金属材料低周疲劳试验标准对比》
一、引言
金属材料在工程领域中具有广泛的应用,而金属材料的疲劳性能一直是工程设计和材料研究的重要课题之一。
低周疲劳是指在较低应力下进行的疲劳试验,对于金属材料的使用寿命和安全性具有重要意义。
在国内外,针对金属材料低周疲劳性能的测试标准各有不同,本文将就国内外金属材料低周疲劳试验标准进行对比,以便于更全面地了解不同标准的优劣和适用范围。
二、国内金属材料低周疲劳试验标准概述
1. GB/T 3077-2015《合金结构钢技术条件》
GB/T 3077-2015是我国针对合金结构钢制定的技术条件标准,其中包括了对合金结构钢低周疲劳性能的测试方法和要求。
该标准以静载荷下的疲劳极限为评定指标,适用于常见的合金结构钢材料,但对于特殊合金材料的测试要求较为局限。
2. GB/T 25972-2010《金属材料低周疲劳试验方法》
GB/T 25972-2010是我国金属材料低周疲劳试验方法的标准,对于金属材料在低周疲劳条件下的试验方法和评定要求做出了详细规定。
该
标准涵盖了多种金属材料,但对于不同类型金属材料的测试方法和评
定标准并不具体化,适用范围相对较窄。
三、国外金属材料低周疲劳试验标准概述
1. ASTM E606-92《Standard Test Method for Strain-Controlled Fatigue Testing》
ASTM E606-92是美国材料和试验协会制定的一项低周疲劳试验标准,该标准以应变控制的疲劳试验为基础,着重于金属材料在低周疲劳条
件下的耐久性能测试。
相较于国内标准,ASTM E606-92更为全面和
具体,对不同类型的金属材料和应变控制方式都有详细规定。
2. BS 3518-2018《Determination of low-cycle fatigue properties of metallic materials》
BS 3518-2018是英国标准协会发布的一项关于金属材料低周疲劳性
能测试的标准,覆盖了多种金属材料的低周疲劳性能测试方法和评定
标准。
该标准与ASTM E606-92类似,但在一些测试方法和条件上略有差异。
四、对比分析与个人观点
通过对国内外金属材料低周疲劳试验标准的概述,可以发现国外标准
相对更为详细和具体,同时也更加突出对不同材料和应变控制方式的
适用性。
相比之下,国内标准在具体化和适用范围上存在一定的不足,对于一些特殊合金材料和应变控制方式的测试要求并不明确。
个人观点认为,应该借鉴国外标准的具体化和适用性,对国内金属材
料低周疲劳试验标准进行修订和完善,以适应不同金属材料和实际工
程应用的需要。
国内外标准之间也应加强交流与合作,共同推动金属
材料低周疲劳性能测试的国际化和标准化进程。
五、总结与回顾
本文对国内外金属材料低周疲劳试验标准进行了对比分析,并就个人
观点进行了阐述。
通过全面评估国内外低周疲劳试验标准的优劣和适
用范围,可以更深入地理解金属材料低周疲劳性能的测试方法和标准
要求。
也为我国相关标准的修订和完善提供了一定的参考和借鉴意义。
在未来的工作中,我将继续深入研究国内外金属材料低周疲劳试验标准,积极推动标准化工作的开展,为金属材料的疲劳性能测试和工程
应用提供更加可靠和具体的标准支持。
以上就是本文的全部内容,希望对您有所帮助。
感谢您的阅读!金属
材料低周疲劳性能是指在受到较低应力水平影响下所进行的疲劳试验。
疲劳性能直接关系到材料的使用寿命和安全性,因此对金属材料低周疲劳性能的测试标准的制定和完善显得尤为重要。
本文将进一步探讨国内外金属材料低周疲劳试验标准的差异和发展趋势。
国内金属材料低周疲劳试验标准存在的不足主要表现在具体化程度和适用范围方面。
在金属材料的种类和应变控制方式上,国内标准并没有进行详细的规定,这导致在具体测试过程中存在一定的模糊性和不确定性。
在特殊合金材料和应变控制方式的测试要求上也存在较大的局限性,这对于一些特殊工程应用的材料则显得不够适用。
相比之下,国外金属材料低周疲劳试验标准更为具体和详细。
ASTM E606-92和BS 3518-2018都对不同类型的金属材料和应变控制方式都有详细规定,这样有助于提高测试的精确性和准确性。
国外标准还着重于不同金属材料的适用性和特定工程应用的需求,这为实际工程设计提供了更加可靠的技术支持。
在未来的工作中,国内金属材料低周疲劳试验标准需要借鉴国外标准的具体化和适用性,对国内标准进行相应的修订和完善。
在测试方法和评定要求上,需要更加具体化和细致化,以满足不同金属材料和工程应用的需要。
国内外标准之间也应加强交流与合作,共同推动金属材料低周疲劳性能测试的国际化和标准化进程,为金属材料的工程应用提供更加可靠和具体的标准支持。
除了对国内外低周疲劳测试标准的对比分析,我们也需要关注金属材料低周疲劳性能测试技术的最新发展趋势。
数字化和自动化技术在疲劳试验中的应用,以及新型材料的疲劳性能评定方法等都是当前研究的热点领域。
这些新技术的应用将极大地提高疲劳试验的效率和可靠性,对于工程设计和材料研究都具有重要的价值。
国内外金属材料低周疲劳试验标准的不同之处提醒我们需要对国内标准进行改进,以适应不同金属材料和实际工程应用的需求。
也需要密切关注新技术的发展,以推动金属材料低周疲劳性能测试的标准化和国际化进程。
希望各方能够共同致力于推动金属材料低周疲劳性能测试技术的发展,为工程设计和材料研究提供更加可靠和具体的技术支持。