一次函数典型题分类
- 格式:doc
- 大小:209.72 KB
- 文档页数:6
一次函数的经典例题一次函数是数学中的基础概念之一,也是数学应用中常见的函数类型。
下面给出一些经典的一次函数例题,帮助读者更好地理解和掌握一次函数的相关概念和性质。
例题1:设直线L过点A(2,3)和B(5,7),求直线L的方程。
解析:根据直线上两点的坐标,我们可以先计算出直线的斜率k。
斜率的计算公式为k=(y2-y1)/(x2-x1)。
代入点A和B的坐标,得到斜率k=(7-3)/(5-2)=4/3。
接下来,我们可以使用点斜式的方程形式来求解,即y-y1=k(x-x1)。
代入点A的坐标和斜率,得到直线L的方程为y-3=(4/3)(x-2)。
例题2:已知直线L的方程为y=2x+1,求直线L与x轴和y轴的交点坐标。
解析:当直线与x轴相交时,y坐标为0;当直线与y轴相交时,x坐标为0。
因此,我们可以分别令y=0和x=0,解方程求出交点坐标。
首先,令y=0,代入直线方程得到0=2x+1,解方程可得x=-1/2。
所以,直线L与x轴的交点坐标为(-1/2,0)。
接下来,令x=0,代入直线方程得到y=2(0)+1,解方程可得y=1。
所以,直线L与y 轴的交点坐标为(0,1)。
例题3:已知一次函数y=3x-2,求函数图像与x轴和y轴的交点坐标,并画出函数图像。
解析:当函数与x轴相交时,y坐标为0;当函数与y轴相交时,x坐标为0。
因此,我们可以分别令y=0和x=0,解方程求出交点坐标。
首先,令y=0,代入函数方程得到0=3x-2,解方程可得x=2/3。
所以,函数图像与x轴的交点坐标为(2/3,0)。
接下来,令x=0,代入函数方程得到y=3(0)-2,解方程可得y=-2。
所以,函数图像与y轴的交点坐标为(0,-2)。
为了更好地理解该一次函数的特性,我们可以绘制其函数图像。
根据函数的斜率和截距,我们可以确定函数图像的走势。
斜率为正数3表示函数是一个上升的直线,而截距-2表示函数与y轴的交点坐标为(0,-2)。
通过这些信息,我们可以在坐标系中画出该一次函数的图像。
一次函数题型分类汇编一、考点:函数的定义1.(2021.07·丰台·期末)下列各曲线中,不表示y 是x 的函数的是( D )(A) (B) (C) (D)2.(2021.07·燕山·期末)下列曲线中,表示y 是x 的函数的是( B )A B C D二、考点:自变量的取值范围1.(2021.07·东城·期末)函数11y x =+的自变量取值范围是( C )A. x ≥-1B. x≤-1C. x ≠-1D. x ≠12.(2021.07·顺义·期末)在函数y =中,自变量x 的取值范围是( A )A. 1x ≥且3x ≠ B. 1x ≥ C. 3x ≠ D. 1x >且3x ≠三、考点:函数的平移法则1.(2021.07·东城·期末)在平面直角坐标系xOy 中,将直线y =2x +1向上平移2个单位长度后,所得的直线的解析式为( C )A.y =2x ﹣1B.y =2x +2C.y =2x +3D.y =2x ﹣22.(2021.07·海淀·期末)将直线向下平移个单位长度后,得到的直线是( B )A.3+2y x =B.32y x =-C.3(2)y x =+D.3(2)y x =-3y x =2四、考点:一次函数增减性1.(2021.07·门头沟·期末)如果函数()265y k x =-+是关于x 的一次函数,且y 随x 增大而增大,那么k 取值范围是( D )A.k ≠0B.k <3C.k ≠3D.k >32.(2021.07·燕山·期末)已知),3(11y P -,),2(22y P 是一次函数1+=x y 的图象上的两个点,则21,y y 的大小关系是( A )A. 21y y <B. 21y y >C. 21y y =D. 不能确定3.(2021.07·顺义·期末)已知点(2),-A a ,(3),B b 在直线23=+y x 上,则a < b .(填“>”“<”或“=”号)4.(2021.07·海淀·期末)函数y kx =(k 是常数,0k ≠)的图象上有两个点111(,)A x y ,222(,)A x y ,当12x x <时,12y y <,写出一个满足条件的函数解析式:__y x =______.5.(2021.07·朝阳·期末)请写出一个y 随x 的增大而减小的正比例函数的表达式: 如:y = -x .6.(2021.07·石景山·期末)已知一次函数()31y k x =-+中,y 随x 的增大而减小,则k 的取值范围是3k < .五、考点:k,b--象限1.(2021.07·丰台·期末)如果一次函数y=kx+b (k ≠ 0)的图象经过二、三、四象限,写出一组满足条件的k ,b 的值:k = -1 ,b = -1 .2.(2021.07·石景山·期末)平面直角坐标系xOy 中,点A ,B ,C ,D 的位置如图所示,当0k >且0b <时,A ,B ,C ,D 四点中,一定不在一次函数y kx b =+图象上的点为 D .3.(2021.07·房山·期末)一次函数y = kx+b (k ≠ 0)的图象不经过第一象限,请你写出一组满足条件的k ,b 的值:=k -1 ,=b -1 .六、考点:一次函数解析式1.(2021.07·昌平·期末)写出一个图象经过点(0,1)的函数的表达式 y = x+1 .2.(2021.07·平谷·期末)正比例函数的图象经过点(-1,2),则此函数的表达式为 2y x =- . 七、考点:两函数交点坐标与自变量取值范围1.(2021.07·朝阳·期末)如图,一次函数y kx b =+的图象经过点A (1,2),关于x 的不等式2kx b +>的解集为 x >1 .2.(2021.07·海淀·期末)如图,一次函数1y x =+与y kx b =+的图象交于点P ,则关于x ,y的方程组1,y x y kx b =+⎧⎨=+⎩的解是( A )A.12x y =⎧⎨=⎩,B.21x y =⎧⎨=⎩,C.11x y =-⎧⎨=⎩,D.24x y =⎧⎨=⎩,3.(2021.07·顺义·期末) 如图,直线与=+y kx b (0≠k 且k ,b 为常数)的交点坐标为(3,-1),则关于x 的不等式2+≥-+kx b x 的解集为 x ≥3.2y x =-+4.(2021.07·昌平·期末)如图,已知函数y =x +b 和y =ax +3的图象交点为P ,则关于x 的不等式x +b >ax +3的解集为 x>1 .5.(2021.07·房山·期末)在平面直角坐标系xOy 中,一次函数y kx =和3y x =-+的图象如图所示,则关于x 的一元一次不等式3kx x <-+的解集是 1x < .八、考点:一次函数解析式的确定、与坐标轴交点坐标、面积1.(2021.07·东城·期末)下表是一次函数y =kx +b (k,b 为常数,k ≠0)中x 与y 的两组对应值.x -20y63(1)求这个一次函数的表达式;(2)求这个一次函数图象与坐标轴围成的三角形的面积.+b3【答案】解:(1)将x =-2,y =6和x =0,y =3分别代入,得-26,3.x b b +=⎧⎨=⎩,解得3,23.k b ⎧=-⎪⎨⎪=⎩∴所求一次函数的解析式为33.2y x =-+2 分(2)直线与坐标轴交点分别为(2,0),(0,3) …….4分123 3.52S =⨯⨯= 分2.(2021.07·丰台·期末)在平面直角坐标系xOy 中,一次函数y=kx+b (k ≠ 0)的图象经过点A (-1,1),B (0,3).(1)求这个一次函数的解析式;(2)若这个一次函数的图象与x 轴的交点为C ,求△BOC 的面积.【答案】解:(1)∵一次函数y kx b =+的图象过点A (-1,1),B (0,3),∴1,3.k b b -+=⎧⎨=⎩解得2,3.k b =⎧⎨=⎩∴一次函数的解析式为23y x =+. ................... 3分(2)令0y =,则32x =-.∴点C 的坐标为(32-,0).∴1393224BOC S ∆=⨯⨯=. ...................... 5分3.(2021.07·昌平·期末)一次函数y =kx +b (k.(1)求一次函数的表达式;(2)若此一次函数图象与x 轴交于点C ,求△BOC 的面积.【答案】4.(2021.07·房山·期末)已知一次函数14y k x =-与正比例函数2y k x=的图象都经过点(2,1).(1)分别求出这两个函数的表达式;(2)求这两个函数的图象与x 轴围成的三角形的面积.【答案】(1)将点(2,1)代入14y k x =-得:152k =……………………..1分将点(2,1)代入2y k x =得:212k = .……………………..2分∴函数的表达式为452y x =-, 12y x = ……………………..4分(2) ∵452y x =-,令为0.则85x =452y x =-,12y x =相交于点(2,1) ……………………..5分∴这两个函数的图象与x 轴围成的三角形的面积:1841255s ⨯⨯==5.(2021.07·燕山·期末)已知,直线y =2x +3与直线y = -2x-1. (1) 求两直线与y 轴交点A ,B 的坐标;(2) 求两直线交点C 的坐标;(3) 求△ABC 的面积.【答案】 解:(1) 令 x=0代入y =2x +3与y = -2x-1中,得y =3与y = -1∴两直线与y 轴交点的坐标是A (0,3),B (0,-1)………………………2′(2) 由 得∴,代入y =2x +3,得1∴两直线交点C 的坐标是(,1);……………………………3′(3)∵ AB 的长是4,点C 到 AB 的距离是1,∴△ABC 的面积=21421=⨯⨯ …………………………5′6.(2021.07·海淀·期末)在平面直角坐标系中,一次函数的图象经过点与.(1)求这个一次函数的解析式;(2)若点是轴上一点,且的面积是5,求点的坐标.【答案】(1)解:设这个一次函数的解析式为y kx b =+(0k ≠). (1)分xOy ()4,0A -()0,5B C x ABC △C∵一次函数的图象经过点()4,0A -与()0,5B ,∴40,0 5.-+=⎧⎨⋅+=⎩k b k b ………………………2分∴5,45.k b ⎧=⎪⎨⎪=⎩∴这个一次函数的解析式为554y x =+. ………………………3分(2)解:设点C 的坐标为(,0)c (4c ≠-).∵ABC r 的面积是5,∴1|4|552c --⨯=.∴6=-c 或2=-c .∴点C 的坐标为(6,0)-或(2,0)-. ………………………5分7.(2021.07·顺义·期末)如图,在平面直角坐标系xOy 中,一次函数22=+y x 的图象经过点A (-2,m ),与y 轴交于点B .(1)求点A 和点B 的坐标;(2) 若点P 是直线AB 上一点,且AOP ∆的面积为3, 求点P 的坐标.【答案】解:(1)∵一次函数22=+y x 的图象经过点A (-2,m ),与y 轴交于点B .∴ 令0=x ,则 2=y …………………………………………………………1分2(2)22=⨯-+=-m ∴ A (-2,-2),B (0 , 2) …………………………………………2分(2) 连结AO , 则1122222∆=⋅⋅=⨯⨯-=AOB A S OB x ∵点P 是直线AB 上一点,且AOP ∆的面积为3∴点P 不可能在线段AB 上.当点P 在第一象限时,AOP AOB BOP S S S ∆∆∆=+ ,1BOP S ∆= ………………………………………………………………3分∴112122P P P OB x x x ⋅⋅=⨯⨯==∴222124=+=⨯+=P P y x ∴点P 的坐标为(1,4)P …………………………………………………4分当点P 在第三象限时,AOP BOP AOB S S S ∆∆∆=-,5∆=BOP S ………………………………………………………………5分∴112522⋅⋅=⨯⨯==P P P OB x x x ∴ 5=-P x ∴222(5)28=+=⨯-+=-P P y x ∴点P 的坐标为(5,8)--P … …………………………………………6分综上,点P 的坐标为(1,4)P 和(5,8)--P 8.(2021.07·通州·期末)已知一次函数12y kx =+的图象与x 轴交于点(20)B -,,与正比例函数2y mx =的图象交于点(1)A a ,.(1)分别求k ,m 的值;(2)点C 为x 轴上一动点.如果△ABC 的面积是6,请求出点C 的坐标.【答案】解:(1)∵一次函数12y kx =+的图象与x 轴交于点(20)B -,,∴220k -+=∴1k = ………………… 1分∴12y x =+∵一次函数12y x =+的图象与正比例函数2y mx =的图象交于点(1)A a ,,∴12a =+,a m =, ………………… 2分∴3m =. ………………… 3分(2)设点C 的坐标为(0)n ,,过点A 作AD ⊥x 轴,垂足为点D .∵△ABC 的面积是6,∴162BC AD ⋅=∴()12362n --⨯=∴2n =或6n =-∴点C 的坐标为(20),或(60)-, ………………… 5分或过点A 作AD ⊥x 轴,垂足为点D .∵△ABC 的面积是6,∴162BC AD ⋅=∴1362BC ⨯=∴4BC =,∵点B 的坐标为(20)-,,∴点C 的坐标为(20),或(60)-,9.(2021.07·平谷·期末)在平面直角坐标系xOy 中,已知直线AB 与x 轴交于A 点 (2,0)与y 轴交于点B (0,1).(1)求直线AB 的解析式;(2)点M (-1,y 1),N (3,y 2)在直线AB 上,比较y 1与y 2的大小.(3)若x 轴上有一点C ,且S △ABC =2,求点C 的坐标【答案】 (1).解:设直线AB 的解析式为y kx b =+∵A(2,0)B(0,1)∴201k b b +=⎧⎨=⎩解得:k=12-,b=12∴直线AB 的解析式为112y x =-+112y x =-+3(2).设(),0,=2,1C x x OB -=则A C 112222S AC OB x ==-= 24-2=-4x x -=或126=-2x x =或()()6,0-2,0C 或九、考点:求K 的取值范围(绕定点旋转)1.(2021.07·海淀·期末)在平面直角坐标系中,直线11:1l y x =+与直线22:22l y x =-交于点A .(1)求点A 的坐标;(2)当12y y >时,直接写出x 的取值范围;(3)已知直线33:1l y kx =+,当3x <时,对于x 的每一个值,都有32y y >,直接写出k 的取值范围.【答案】(1)解:由题可知,1,2 2.y x y x =+⎧⎨=-⎩………………………1分解得3,4.x y =⎧⎨=⎩∴点A 的坐标是(3,4). ………………………2分(2)3x <; ………………………3分(3)12k ≤≤. ………………………5分2.(2021.07·丰台·期末)在平面直角坐标系xOy 中,直线l 1:22y x =+和直线l 2:y=kx+b (k ≠ 0)相交于点A (0,b ).(1)求b 的值;(2)直线l 1与x 轴的交点为B ,直线l 2与x 轴的交点为C ,若线段BC 的长度大于2,结合函图象求的取值范围.【答案】解:(1)∵点A (0,b )在直线l 1: 22y x =+上,xOy k∴b =2. .......................................2分(2)直线1:22l y x =+与x 轴交于点B (-1,0).当BC =2时,点C 的坐标为(-3,0)或(1,0).①当直线2:2l y kx =+过点(-3,0)时,得-32=0k +,解得2=3k .由图象可知,23k <<0.②当直线2:2l y kx =+过点(1,0)时,得2=0k +,解得k =-2.由图象可知,-20k <<. …...…....…................…6分综上,-2203k k <<<<或0.3.(2021.07·通州·期末)如图,在平面直角坐标系xOy 中,一次函数y =kx +4(k ≠0)的图象与y 轴交于点C ,已知点A (2,0),B (4,2).(1)求点C 的坐标;(2)直接判断线段CA 、CB 的大小关系: CA ______CB (填“>”,“=”或“<”)(3)如果点A (2,0),B (4,2)到一次函数y =kx +4(k ≠0)图象的距离相等,求k 的值.【答案】解:(1)∵令0x =,∴4y =∴点C 的坐标为(0,4) ………………… 1分(2)“=” ………………… 2分(3)当直线AB 与一次函数y =kx +4(k ≠0)图象平行时, …………………3分设直线AB 的表达式为y mx n=+∴2042m n m n +=⎧⎨+=⎩解得:12m n =⎧⎨=-⎩∴1k = ………………… 4分当一次函数y =kx +4(k ≠0)图象过线段AB 的中点时,设线段AB 的中点为D ,∴点D 的坐标为(3,1)∵CA=CB∴CD ⊥AB,∴点A (2,0),B (4,2)到一次函数y =kx +4(k ≠0)图象的距离相等 ………5分∴341k +=∴1k =-. ………………… 6分∴k 的值为1k =±十、考点:求b 的取值范围(平移)1.(2021.07·通州·期末)在平面直角坐标系xOy 中,将点A (m ,2)向右平移3个单位长度,得到点B ,点B 在直线1y x =+上.(1)求m 的值和点B 的坐标;(2)如果一次函数2y x b =+的图象与线段AB 有公共点,求b 的取值范围.【答案】解:(1)∵将点A (m ,2)向右平移3个单位长度,得到点B ,∴B (+3m ,2) ………………… 1分∵点B 在直线1y x =+上∴312m ++=∴2m =- ………………… 2分∴点B 的坐标为(1,2) ………………… 3分或把2y =代入1y x =+中,∴1x =∴点B 的坐标为(1,2),∵点B 是由点A (m ,2)向右平移3个单位长度得到的,∴点A 的坐标为(2-,2),∴2m =-(2) 把点A (2-,2)代入2y x b =+中,∴6b =, ………………… 4分把点B (1,2)代入2y x b =+中,∴0b =, ………………… 5分∴b 的取值范围是06b ≤≤. ………………… 6分十一、考点:值域与定义域1.(2021.07·燕山·期末)在坐标系中作出函数y=x+2的图象,根据图象回答下列问题:(1)方程x+2=0的解是 ;(2)不等式x+2>1的解 ;(3)若-2≤y≤2,则x 的取值范围是 .【答案】作出函数y=x+2的图象(略) ………………………2′(1)方程x+2=0的解是 x = -2 -------------------3′ ;(2)不等式x+2>1的解 x >-1 -------------------4′ ;(3)若-2≤y≤2,则x 的取值范围是 -4≤x ≤0 -------------------5′2.(2021.07·石景山·期末)一次函数y kx b =+的图象与正比例函数3y x =-的图象平行,且过点()2,4-.(1)求一次函数y kx b =+的表达式;(2)画出一次函数y kx b =+的图象;(3)结合图象解答下列问题:①当0y <时,x 的取值范围是 ;②当02x <<时,y 的取值范围是 ;【答案】解:(1)根据题意得:3,2 4.k k b =-⎧⎨+=-⎩解得3,2.k b =-⎧⎨=⎩∴一次函数的表达式为32y x =-+.…………2分(2)图象如图所示:…………3分(3)①23x >;…………4分②42y -<<.…………5分十二、考点:函数比较大小,求自变量取值范围1.(2021.07·延庆·期末)在平面直角坐标系xOy 中,一次函数)0(≠+=k b kx y 的图象是由函数x y 2= 的图象平移得到,且经过点(1,3).(1)求这个一次函数的表达式;(2)当x>1时,对于x 的每一个值,函数)0(≠=m mx y 的值大于一次函数)0(≠+=k b kx y 的值,直接写出m 的取值范围.【答案】(1)∵一次函数)0(≠+=k b kx y 的图象是由函数x y 2= 的图象平移得到∴k =2 ...................................1分∵)0(2≠+=k b x y 经过点(1,3)∴b =1 ...................................2分∴一次函数的表达式为12+=x y (2)3≥m ....................................4分2.(2021.07·密云·期末)【答案】(1)m=1;k=-1(2)①PC=PD②x p十三、考点:整数点与参数1.(2021.07·门头沟·期末)在平面直角坐标系xOy 中,直线l 1:y = kx + b 经过A (4,1)和B (7,2)两点.(1)求直线l 1的表达式;(2)如果横、纵坐标都是整数的点叫作整点.直线l 2和直线l 1关于x 轴对称,过点C (m ,0)作垂直于x 轴的直线l 3,l 3与l 1和l 2围的区域为“W”(不包含边界).① 当m = 3时,求区域“W”内整点的个数;② 如果区域“W”内恰好有6个整点,直接写出m 的取值范围.【答案】(本小题满分6分)解:(1)∵直线l 1:y = kx + b 经过A (4,1)和B (7,2)两点,∴ 41,7 2.k b k b +=⎧⎨+=⎩ 解得 131.3k b ⎧=⎪⎪⎨⎪=-⎪⎩∴直线l 1的表达式为11.33y x =-…………………………………………2分(2)① 依题意画出图形分② 43m --≤<或5 6.m <≤……………………………………………………6分2.(2021.07·燕山·期末)一次函数的图像与x 轴、y 轴分别交于点A (3,0),B (0,1),以AB 为边在第一象限内做等边△ABC(1)线段AB 的长是 ,∠BAO= °,点C 的坐标是 ;(2)如果在第二象限内有一点P (a ,1),试用含a 的代数式表示四边形ABPO 的面积。
一次函数典型题目复习题型一:概念类问题(1)已知y 与x+1成正比例,且当x=5时,y=12,写出y 与x 之间的函数解析式 (2)已知函数)4()2m (y 32-+-=-m x m,当m 为何值时,它是一次函数?(3)已知函数9m )3m (y 2-++=x 是正比例函数,求m 值是多少?题型二:求解析式问题(待定系数法) 1.若正比例函数的图像经过点(-1,2),则这个图像必经过点【 】A .(1,2)B .(-1,-2)C .(2,-1)D .(1,-2)2. 坐标平面上,点P (2,3)在直线L 上,其中直线L 的方程式为2x +by =7,求b =?A. 1B.3C.21 D. 313.如图,是一个正比例函数的图像,把该图像向左平移一个单位长度,得到的函数图像的解析式为 .题型三:一次函数图像性质问题 1.一次函数y =2x -2的图象不经过...的象限是( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限2.已知一次函数21y x =+,则y 随x 的增大而______(填“增大”或“减小”). 3. P 1(x 1,y 1),P 2(x 2,y 2)是正比例函数y = -x 图象上的两点,则下列判断正确的是( )A .y 1>y 2B .y 1<y 2C .当x 1<x 2时,y 1>y 2D .当x 1<x 2时,y 1<y 2 4.已知函数y kx b =+的图象如图,则2y kx b =+的图象可能是( )5.已知一次函数32-=x y 的大致图像为 ( )A B C DOy x2-1 o yxo yx yxo o y x题型四:综合问题1.已知一次函数y =k x +b 的图象经过点(-1,-5),且与正比例函数x y 21=的图象相交于点(2,a).求:(1 )求a 的值; (2) 求一次函数的解析式;2.已知,直线y=2x+3与直线y=-2x-1. (1)求两直线交点C 的坐标; (2)求△ABC 的面积.练习1如果()2213m y m x-=-+是一次函数,则的值是( )A 、1B 、-1C 、±1D 、2.若23y x b =+-是正比例函数,则b 的值是 ( ) A.0 B.23 C.23- D.32- 3. 若正比例函数y=(1-2m )x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1﹤x 2时,y 1>y 2,则m 的取值范围是( ) A .m ﹤OB .m >0C .m ﹤21 D .m >21 4.函数y x=,自变量x 的取值范围是( ) A .x ≥-1 B.x ≠0 C.x>-1且0x ≠ D.x ≥-1且0x ≠5.已知一次函数y =kx +b 的图象如图所示,则k 、b 的符号是( ) A. k >0,b >0 B . k >0,b <0 C . k <0,b >0 D. k <0,b <0 6.关于函数y= -x - 2的图像,有如下说法:①.图像过点(0,-2) ②图像与x 轴的交点是(-2,0) ③ 由图象可知y 随x 的增大而增大 ④图像不经过第一象限 ⑤图像是与y= -x+2平行的直线 ,其中正确说法有( )A .5个 B. 4个C. 3个D. 2个7.直线y=2-3x 不经过第______________象限,y 随x 的增大而___________. 8.直线y=2x+b 的图象过点(3,5),则该直线与x 轴的交点是______,与y 轴的交点是__。
一次函数经典题一.定义型例1. 已知函数是一次函数,求其解析式。
解:由一次函数定义知,,故一次函数的解析式为y=-6x+3。
注意:利用定义求一次函数y=kx+b解析式时,要保证k≠0。
如本例中应保证m-3≠0。
二. 点斜型例2. 已知一次函数y=kx-3的图像过点(2, -1),求这个函数的解析式。
解:一次函数的图像过点(2, -1),,即k=1。
故这个一次函数的解析式为y=x-3。
变式问法:已知一次函数y=kx-3 ,当x=2时,y=-1,求这个函数的解析式。
三. 两点型例3.已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2, 0)、(0, 4),则这个函数的解析式为_____。
解:设一次函数解析式为y=kx+b,由题意得,故这个一次函数的解析式为y=2x+4四. 图像型例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。
解:设一次函数解析式为y=kx+b由图可知一次函数的图像过点(1, 0)、(0, 2)有故这个一次函数的解析式为y=-2x+2五. 斜截型例5. 已知直线y=kx+b与直线y=-2x平行,且在y轴上的截距为2,则直线的解析式为___________。
解析:两条直线;。
当k1=k2,b1≠b2时,直线y=kx+b与直线y=-2x平行,。
又直线y=kx+b在y轴上的截距为2,故直线的解析式为y=-2x+2六. 平移型例6. 把直线y=2x+1向下平移2个单位得到的图像解析式为___________。
解析:设函数解析式为y=kx+b,直线y=2x+1向下平移2个单位得到的直线y=kx+b与直线y=2x+1平行直线y=kx+b在y轴上的截距为b=1-2=-1,故图像解析式为七. 实际应用型例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q(升)与流出时间t(分钟)的函数关系式为___________。
解:由题意得Q=20-0.2t ,即Q=-0.2t+20故所求函数的解析式为Q=-0.2t+20()注意:求实际应用型问题的函数关系式要写出自变量的取值范围。
一次函数的应用题分类总结整理剖析一次函数应用一、确定解析式的几种方法:1.直接写出一次函数表达式,根据实际意义解决相应问题;(直接法)2.利用待定系数法构建函数表达式,已经明确函数类型;(待定系数法)3.利用问题中各个量之间的关系,变形推导所求两个变量之间的函数关系式;(等式变形法)二、重点题型1.根据各类信息猜测函数类型为一次函数,并验证猜想;2.运用函数思想,构建函数模型解决(最值、决策)问题。
一)根据实际意义直接写出一次函数表达式,然后解决相应问题特点:当所给问题中的两个变量间的关系非常明了时,可以根据二者之间的关系直接写出关系式,然后解决问题。
例1:某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠。
书包每个定价20元,水性笔每支定价5元。
XXX和同学需买4个书包,水性笔若干支(不少于4支)。
1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式;直接法:对于第一种优惠方法,每个书包都赠送1支水性笔,所以购买4个书包需要买4支水性笔,总共需要花费4×20+4×5=100元。
因此,y=100.对于第二种优惠方法,购买4个书包和4支水性笔需要花费4×20×0.9+4×5×0.9=82.8元。
因此,y=82.8-0.9x。
2)对x的取值情况进行分析,说明按哪种优惠方法购买比较便宜;当0≤x≤4时,第一种优惠方法更便宜;当x>4时,第二种优惠方法更便宜。
3)XXX和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济。
由于第一种优惠方法总共需要花费100元,而第二种优惠方法的费用函数为y=82.8-0.9x,因此需要求解当x=12时,y 的值为多少。
代入公式得到y=71.4元。
因此,购买4个书包和12支水性笔的最经济方法是选择第二种优惠方法。
例2:某实验中学组织学生到距学校6千米的XXX去参观,学生XXX因事没能乘上学校的校车,于是准备在学校门口改乘出租车去XXX,出租车的收费标准为:3千米以下(含3千米)收费8元,3千米以上,每增加1千米,收费1.8元。
一次函数考点分析及典型试题【专题综述】一次函数的图象和性质正比例函数的图象和性质【方法解读】1.一次函数的意义及其图象和性质⑴.一次函数:若两个变量x、y间的关系式可以表示成y=kx+b(k、b为常数,k≠0)的形式,则称y是x 的一次函数(x是自变量,y是因变量〕特别地,当b=0时,称y是x的正比例函数.⑵.一次函数的图象:一次函数y=kx+b 的图象是经过点()(0,,0)bkb -,的一条直线,正比例函数y=kx 的图象是经过原点(0,0)的一条直线,如下表所示.⑶.一次函数的性质:y=kx +b(k 、b 为常数,k ≠0)当k >0时,y 的值随x 的值增大而增大;当k <0时,y 的值随x 值的增大而减小.⑷.直线y=kx +b(k 、b 为常数,k ≠0)时在坐标平面内的位置与k 在的关系. ①直线经过第一、二、三象限(直线不经过第四象限); ②直线经过第一、三、四象限(直线不经过第二象限); ③直线经过第一、二、四象限(直线不经过第三象限); ④直线经过第二、三、四象限(直线不经过第一象限);2.一次函数表达式的求法⑴.待定系数法:先设出式子中的未知系数,再根据条件列议程或议程组求出未知系数,从而写出这个式子的方法,叫做待定系数法,其中的未知系数也称为待定系数。
⑵.用待定系数法求出函数表壳式的一般步骤:⑴写出函数表达式的一般形式;⑵把已知条件(自变量与函数的对应值)公共秩序 函数表达式中,得到关于待定系数的议程或议程组;⑶解方程(组)求出待定系数的值,从而写出函数的表达式。
⑶.一次函数表达式的求法:确定一次函数表达式常用 待定系数法,其中确定正比例函数表达式,只需一对x 与y 的值,确定一次函数表达式,需要两对x 与y 的值。
类型1:正比例函数和一次函数的概念【例1】若函数(1)my m x =-是正比例函数,则该函数的图象经过第 象限.类型2:一次函数的图像【例2】(2017上海市)如果一次函数y =kx +b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )类型3:正比例函数和一次函数解析式的确定基础知识归纳:确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k .确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b .解这类问题的一般方法是待定系数法.基本方法归纳:求正比例函数解析式只需一个点的坐标,而求一次函数解析式需要两个点的坐标. 注意问题归纳:数形结合思想,将线段长度,图形面积与点的坐标联系起来是关键,同时注意坐标与线段间的转化时符号的处理.【例3】(2017天津)用A 4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x (x 为非负整数). (1)根据题意,填写下表:一次复印页数(页) 5 10 20 30 … 甲复印店收费(元) 0.52… 乙复印店收费(元)0.62.4…(2)设在甲复印店复印收费y 1元,在乙复印店复印收费y 2元,分别写出y 1,y 2关于x 的函数关系式; (3)当x >70时,顾客在哪家复印店复印花费少?请说明理由.类型4:一次函数图象与坐标轴围成的三角形的面积基础知识归纳:直线y =kx +b 与x 轴的交点坐标为(bk-,0),与y 轴的交点坐标为(0,b );直线与两坐标轴围成的三角形的面积为S△=12|bk|·|b|=22||bk.基本方法归纳:直线与两坐标轴交点是关键.注意问题归纳:对于k不明确时要分情况讨论,否则容易漏解.【例4】(2017怀化)一次函数y=﹣2x+m的图象经过点P(﹣2,3),且与x轴、y轴分别交于点A、B,则△AOB的面积是()A.12B.14C.4D.8【例5】(2017浙江省台州市)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a的值.类型5:一次函数的应用基础知识归纳:主要涉及到经济决策、市场经济等方面的应用.利用一次函数并与方程(组)、不等式(组)联系在一起解决实际生活中的利率、利润、租金、生产方案的设计问题.基本方法归纳:利用函数知识解应用题的一般步骤:(1)设定实际问题中的变量;(2)建立变量与变量之间的函数关系,如:一次函数,二次函数或其他复合而成的函数式;(3)确定自变量的取值范围,保证自变量具有实际意义;(4)利用函数的性质解决问题;(5)写出答案..注意问题归纳:读图时首先要弄清横纵坐标表示的实际意义,还要会将图象上点的坐标转化成表示实际意义的量;自变量取值范围要准确,要满足实际意义.【例6】(2017四川省凉山州)为了推进我州校园篮球运动的发展,2017年四川省中小学生男子篮球赛于2月在西昌成功举办.在此期间,某体育文化用品商店计划一次性购进篮球和排球共60个,其进价与售价间的关系如下表:篮球排球进价(元/个)8050售价(元/个)10570(1)商店用4200元购进这批篮球和排球,求购进篮球和排球各多少个?(2)设商店所获利润为y(单位:元),购进篮球的个数为x(单位:个),请写出y与x之间的函数关系式(不要求写出x的取值范围);(3)若要使商店的进货成本在4300元的限额内,且全部销售完后所获利润不低于1400元,请你列举出商店所有进货方案,并求出最大利润是多少?【强化训练】1.(2017内蒙古呼和浩特市)一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限2.(2017内蒙古赤峰市)将一次函数y=2x﹣3的图象沿y轴向上平移8个单位长度,所得直线的解析式为()A.y=2x﹣5B.y=2x+5C.y=2x+8D.y=2x﹣83. (2017枣庄)如图,直线243y x=+与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣3,0)B.(﹣6,0)C.(32-,0)D.(52-,0)4.(2017山东省菏泽市)如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是()A.x>2B.x<2C.x>﹣1D.x<﹣15.(2017山东省泰安市)已知一次函数y=kx﹣m﹣2x的图象与y轴的负半轴相交,且函数值y随自变量x 的增大而减小,则下列结论正确的是()A.k<2,m>0B.k<2,m<0C.k>2,m>0D.k<0,m<0 6. (2017四川省南充市)小明从家到图书馆看报然后返回,他离家的距离y与离家的时间x之间的对应关系如图所示,如果小明在图书馆看报30分钟,那么他离家50分钟时离家的距离为km.7. (2017吉林省长春市)甲、乙两车间同时开始加工一批服装.从幵始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.(1)甲车间每小时加工服装件数为件;这批服装的总件数为件.(2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.8. (2017宁夏)某商店分两次购进A.B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:购进数量(件)A B购进所需费用(元)第一次30403800第二次40303200(1)求A、B两种商品每件的进价分别是多少元?(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A、B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.9. (2017黑龙江省龙东地区)为了推动“龙江经济带”建设,我省某蔬菜企业决定通过加大种植面积、增加种植种类,促进经济发展.2017年春,预计种植西红柿、马铃薯、青椒共100公顷(三种蔬菜的种植面积均为整数),青椒的种植面积是西红柿种植面积的2倍,经预算,种植西红柿的利润可达1万元/公顷,青椒1.5万元/公顷,马铃薯2万元/公顷,设种植西红柿x公顷,总利润为y万元.(1)求总利润y(万元)与种植西红柿的面积x(公顷)之间的关系式.(2)若预计总利润不低于180万元,西红柿的种植面积不低于8公顷,有多少种种植方案?(3)在(2)的前提下,该企业决定投资不超过获得最大利润的18在冬季同时建造A、B两种类型的温室大棚,开辟新的经济增长点,经测算,投资A种类型的大棚5万元/个,B种类型的大棚8万元/个,请直接写出有哪几种建造方案?10. (2017四川省广安市)正方形A1B1C1O,A2B2C2C1,A3B3C3C2…按如图所示放置,点A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,则A n的坐标是.。
初二一次函数经典例题一、题目背景在初中数学中,学生常常遇到关于一次函数的问题。
一次函数是一种非常基础的函数类型,在数学中具有很重要的地位。
通过学习一次函数的性质和应用,可以为学生建立起一种较为系统的数学思维方式和解决问题的方法。
本文将给出一些初二一次函数的经典例题,以帮助学生更好地理解一次函数的概念和应用。
二、例题一题目:某种商品的价格与销量之间存在一种线性关系,已知当销量为0时,价格为100元;当销量为200时,价格为50元。
那么销量为350时,价格是多少元?解析:我们可以设商品的价格为P,销量为S。
根据题目中给出的信息,可以列出两个点的坐标:(0, 100)和(200, 50)。
由于这两个点在直线上,我们可以利用直线的斜率公式来求解。
首先,我们需要计算出直线的斜率k。
斜率可以通过两个点的纵坐标之差除以横坐标之差来计算。
在这个例子中,斜率k为:k = (50 - 100) / (200 - 0) = -50 / 200 = -1/4接下来,我们可以利用直线的斜截式方程来求解。
斜截式方程的一般形式为:y = kx + b,其中k为斜率,b为截距。
已知斜率k为-1/4,我们可以将一个已知点的坐标代入方程来求解截距b。
以(0, 100)代入方程:100 = (-1/4) * 0 + b,可以得到b = 100。
因此,直线的方程为:y = (-1/4)x + 100。
最后,我们可以代入销量为350的坐标x = 350,得到价格y = (-1/4) * 350 + 100 = 25。
所以销量为350时,价格为25元。
三、例题二题目:某家电商网站进行促销活动,设定了一次函数来计算用户购买商品的折扣。
已知当购买1件商品时,折扣为10%;当购买10件商品时,折扣为30%。
那么购买20件商品时,折扣是多少?解析:同样地,我们可以设折扣为D,购买商品的数量为N。
根据题目中给出的信息,可以列出两个点的坐标:(1, 0.1)和(10, 0.3)。
一次函数知识点及分类练习题一、一次函数的定义1.若函数y=(k+1)x+k2-1是正比例函数,则k的值为()A. 0B. ﹣1C. ±1D. 12.若函数是一次函数,则m的值为( )A. B. -1 C. 1 D. 23.下列函数:①y= x,②y=2x-1,③ ,④y=-x中,是一次函数的有( )A. 4个B. 3个C. 2个D. 1个4.已知函数y=(k-1)x+k2-1,当k________时,它是一次函数,当k________时,它是正比例函数.二、一次函数的性质5.已知一次函数. 若随的增大而增大,则的取值范围是()A. B. C. D.6.已知一次函数的图象经过第二、三、四象限,则的取值范围在数轴上表示为(). A. B.C. D.7.已知(-1,y1),(1.8,y2),(- , y3)是直线y = -3x + m (m 为常数)上的三个点,则y1,y2,y3的大小关系是( )A. y3>y1>y2B. y1>y3>y2C. y1>y2>y3D. y3>y2>y18.下列图象中,哪个是一次函数的大致图象()A. B. C. D.9.在一次函数y=kx+2中,若y随x的增大而增大,则k________0.(填“>”或“<”),它的图象不经过第________象限.10.若点P(-3,),Q(2,)在一次函数的图象上,则与的大小关系是________三、一次函数图像的平移11.直线y=2x+2向下平移4个单位后与x轴的交点坐标是()A. (0,1)B. (0,-1)C. (-1,0)D. (1,0)12、一次函数的图像先向下平移5个单位后再向右平移4个单位,其函数关系式为13、一次函数能过平移后变为y=-5x+6,其平移过程是14.将一次函数y=﹣2x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为________.四、一次函数的求值15.若点A(2,-3)、B(4,3)、C(5,a)在同一条直线上,则a的值是( )A. 6或-6B. 6C. -6D. 6或316.下列哪一个点在直线y=-2x-5上()A. (2,-1)B. (3,1)C. (-2,1)D. (-1,-3)17.当x=-1时,一次函数y=kx+3的值为5,则k的值为________ .18.一次函数y=﹣2x+6的图象与x轴交点坐标是________,与y轴交点坐标是________.19.在一次函数中,随的增大而________(填“增大”或“减小”),当时,y的最小值为________.20.在函数y=﹣3x+7中,如果自变量x大于2,那么函数值y的取值范围是________.五、一次函数的解析式21.已知一次函数的图象过点(3,5) 与(-4, -9),那么这个函数的解析式是________,则该函数的图象与轴交点的坐标为________.22.已知直线经过点﹙1,2﹚和点﹙3,0﹚,这条直线的解析式.23.已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求此一次函数的解析式.六、一次函数与方程及不等式的关系24.如图,直线l1的解析式是y=2x-1,直线l2的解析式是y=x+1,则方程组的解是________.25.如图,直线与直线交于P ,则方程组的解是________.26.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是________.27.已知二元一次方程组的解是,直线y=2x与y=﹣3x+b的交点坐标是________.24题25题26题28.已知二元一次方程组的解是,直线y=2x与y=﹣3x+b的交点坐标是________.七、一次函数的应用29.一次函数y=x+4与坐标轴所围成的三角形的面积为________30、如图,直线y=﹣x+3与坐标轴分别交于点A、B,与直线y=x交于点C,线段OA上的点Q以每秒1个长度单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连接CQ.若△OQC是等腰直角三角形,则t的值为________.31.一个一次函数的图象与直线y=﹣2x+1平行,且经过点(﹣2,﹣6),则这个一次函数的解析式为________.32.某养猪专业户利用一堵砖墙(长度足够)围成一个长方形猪栏,围猪栏的栅栏一共长40m ,设这个长方形的相邻两边的长分别为x (m)和y(m).(1)求y关于x的函数表达式和自变量的取值范围;(2)若长方形猪栏砖墙部分的长度为5m ,求自变量x 的取值范围.33.如图,直线y=kx+6(k≠0)与x轴,y轴分别交于点E,F,点E的坐标为(-8,0),点A 的坐标为(-6,0),点P(x,y)是线段EF上的一个动点(1)求k的值;(2)求点P在运动过程中△OPA的面积S与x的函数关系式,并写出自变量x的取值范围;(3)当△OPA的面积为9时,求点P的坐标.34.如图,在平面直角坐标系中,直线与轴交于点A,直线与轴交于点B,与直线y=2x+3交于点C(-1,n).(1)求n、k的值;(2)求△ABC的面积.。
一次函数应用题一、一次函数与实际问题1. 某农户种植一种经济作物,总用水量y (米3)与种植时间x (天)之间的函数关系式如图. (1)第20天的总用水量为多少米? (2)求y 与x 之间的函数关系式. (3)种植时间为多少天时,总用水量达到7000米3?2.“5.12”汶川地震发生后,某天广安先后有两批自愿者救援队分别乘客车和出租车沿相同路线从广安赶往重灾区平武救援,下图表示其行驶过程中路程随时间的变化图象.(1)根据图象,请分别写出客车和出租车行驶过程中路程与时间之间的函数关系式(不写出自变量的取值范围);(2)写出客车和出租车行驶的速度分别是多少?(3)试求出出租车出 发后多长时间赶上客车?(天) 3二、一次函数与动点问题 1.如图,在边长为的正方形ABCD 的一边BC 上,有一点P 从点B 运动到点C ,设BP=X ,四边形APCD 的面积 为y 。
(1)写出y 与x 之间的关系式,并画出它的图象。
(2)当x 为何值时,四边形APCD 的面积等于3/2。
三、一次函数与方程(组)及不等式问题1.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是( )A B C D2.如图,已知函数y=x+b 和y=ax+3的图象交于P 点, 则x+b>ax+3不等式的解集为 .y y=ax+A B2⎩⎨⎧=--=-+012302y x y x ⎩⎨⎧=--=--0123012y x y x ⎩⎨⎧=-+=--0523012y x y x ⎩⎨⎧=-+=--02012y x y x四、.如图,直线AB 与y 轴,x 轴交点分别为A(0,2)B(4,0)问题1:求直线AB 的解析式及△AOB 的面积. 问题2:当x 满足什么条件时,y >0,y =0,y <0,0<y <2五、一次函数中方案选择问题1、某学校计划在总费用2300元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少要有1名教师,现有甲、乙两种大客车,它们的载(2)给出最节省费用的租车方案?x232-=x y 六、一次函数中的面积有关问题1.已知一次函数y=kx+b 的图象经过(-1,-5),且与正比例函数y= X 的图象相交于点(2,a),求:(1)a 的值; (2)一次函数的解析式;(3)这两个函数图象与x 轴所围成的三角形面积.作业:1.直线 分别交x 轴,y 轴于A,B 两点,O 为原点.(1)求△AOB 的面积; (2)过AOB 的顶点,能不能画出直线把△AOB 分成面积相等的两部分?写出这样的直线所对应的函数解析式2.我市某中学要印制本校高中招生的录取通知书,有两个印刷厂前来联系制作业务.甲厂的优惠条件是:按每份定价1.5元的八折收费,另收900元制版费;乙厂的优惠条件是:每份定价1.5元的价格不变,而制版费900元六折优惠.且甲、乙两厂都规定:一次印刷数至少是500份.(1)分别求两个印刷厂收费y (元)与印刷数量x (份)的函数关系式,并求出自变量x 的取值范围; (2)如何根据印刷的数量选择比较合算的方案?如果这个中学要印制2000份录取通知书,那么应选择哪个厂?需要多少费用?21。
(1)OC 的长为______,OD 的长为______;(2)如图,点()1,M a -是线段CD 上一点,连接OM ,作ON 并判断MON △的形状;(3)如备用图,若点()1,E b 为直线AB 上的点,点P 为y 轴上的点,是以点E 为直角顶点的等腰直角三角形,若存在,请求出此时(1)求直线CD 的函数表达式和点D 的坐标;(2)点P 为线段DE 上的一个动点,连接BP .①若直线BP 将ACD 的面积分为7:9两部分,试求点②点P 是否存在某个位置,将BPD △沿着直线BP 翻折,使得点在,请直接写出点P 的坐标;若不存在,请说明理由.题型2:取值范围问题(1)求点A 的坐标;(2)若点C 在第二象限,ACD ①求点C 的坐标;②直接写出不等式组4x kx +>③将CAD 沿x 轴平移,点C(1)求点C 的坐标及直线BC 的表达式;(2)在点E 运动的过程中,若△DEF 的面积为5,求此时点(3)设点E 的坐标为(0,m );①用m 表示点F 的坐标;②在点E 运动的过程中,若△DEF 始终在△ABC 的内部(包括边界)题型3:最值问题5.已知一次函数()134502y kx k k =++≠.的坐标为(),a a ,求CM MP +的最小值.6.如图1,在平面直角坐标系xoy 中,直线1:1l y x =+与x 轴交于点A ,直线2:33l y x =-与x 轴交于点B ,与1l 相交于C 点,过x 轴上动点(),0E t 作直线3l x ⊥轴分别与直线1l 、2l 交于P 、Q 两点.(1)①请直接写出点A ,点B ,点C 的坐标:A ______,B ______,C ______.②若2PQ =,求t 的值;(2)如图2,若E 为线段AB 上动点,过点P 作直线PF PQ ⊥交直线2l 于点F ,求当t 为何值时,PQ PF -最大,并求这个最大值.题型4:旋转问题7.如图1,在平面直角坐标系中,一次函数()0y kx b k =+≠的图象交y 轴于点()0,1A -,交x 轴交于点B ,且2OB OC OA ==,过点C 作y 轴的垂线,交直线AB 于点D .(1)求点D 的坐标;(2)点E 是线段CD 上一动点,直线BE 与y 轴交于点F .①若BDF V 的面积为8,求点F 的坐标;②如图2,当点F 在y 轴正半轴上时,将直线BF 绕点B 顺时针旋转45︒后的直线与线段CD 交于点M ,连接FM ,若1OF MF =+,求线段MF 的长.备用图(1)求直线1l 的表达式;(2)过M 作y 轴的平行线,分别交直线1l ,直线2l 于点D ,E ,连接DE ,①当3m =时,求DE 的长;(1)求n 的值及直线2l 的表达式;(2)在直线2l 上是否存在点E ,使BO ABE A S S =△△若存在,则求出点(3)如图2,点P 为线段AD 上的一个动点,一动点H(1)求直线AB 的表达式;(2)由图象直接写出关于x 的不等式102x kx b <<+的解集;(3)如图②所示,P 为x 轴上A 点右侧任意一点,以BP 为边作等腰Rt BPM 直线MA 交y 轴于点Q .当点P 在x 轴上运动时,线段OQ 的长度是否发生变化?若不变,求出线段长度;若变化,求线段OQ 的取值范围.题型6:定值问题11.如图1所示,直线l :10y mx m =+与x 轴负半轴、y 轴正半轴分别交于(1)若点D坐标为(12,3).①求直线BC的函数关系式;②若Q为RS中点,求点P坐标.(2)在点P运动的过程中,PQCR的值是否变化?若不变,求出该值;若变化,请说明理由.题型7:新定义题型13.函数图象是研究函数的重要工具,类比一次函数的学习,表是探究过程中的部分信息:x…2-1-01232y x=-…4a2-14(1)a的值为______;(2)在图中画出该函数的图象;(3)结合函数的图象,解决下列问题:①下列说法正确的是:______.(填所有正确选项)A.函数图像关于x轴对称x=时,函数有最小值,最小值为B.当0x>时,y随x的增大而增大C.当0③若12x -≤≤,则y 的取值范围为【拓展提升】18.对于两个不同的函数,通过加法运算可以得到一个新函数,我们把这个新函数称为两个函数的数”.例如:对于函数12y x =和231y x =-,则函数1y ,2y 的“和函数”3y =(1)已知函数1y x =和2=y ①写出3y 的表达式,并求出当②函数1y ,2y 的图象如图①所示,则....(2)已知函数4y x =和5y =,这两个函数的“和函数”记为6y .按照上图的速度步行前往学校,记录下小东10天到达学校所用的时间,如表.上学日期4号5号6号7号8号11号到达学校所用时间(单位:min)2524.825.324.925.124.8某天早上7:20,小东按照上表的速度步行上学.t(0<t≤10)分钟后,小明骑自行车以从小区出发,沿着相同的路线上学.骑行7分钟后,自行车因零件损坏无法继续骑行,小明只好将自行车停在路边非机动车停靠点(停车时间忽略不计),改用步行前往学校.为了赶时间,小明的步行速度不小于。
一次函数典型题分类题型一、点的坐标方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0;若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数; 1、 若点A (m,n )在第二象限,则点(|m|,-n )在第____象限;2、 若点P (2a-1,2-3b )是第二象限的点,则a,b 的范围为______________________;3、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_______,b=_________;若A,B 关于y 轴对称,则a=_______,b=__________;若若A ,B 关于原点对称,则a=_______,b=_________;4、 若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第______象限。
题型二、关于点的距离的问题方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示; 任意两点(,),(,)A A B B A x y B x y若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -;点(,)A A A x y1、 点B (2,-2)到x 轴的距离是_________;到y 轴的距离是____________;2、 点C (0,-5)到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________;3、 点D (a,b )到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________;4、 已知点P (3,0),Q(-2,0),则PQ=__________,已知点110,,0,22M N ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,则MQ=________; ()()2,1,2,8E F --,则EF 两点之间的距离是__________;已知点G (2,-3)、H (3,4),则G 、H 两点之间的距离是_________;5、 两点(3,-4)、(5,a )间的距离是2,则a 的值为__________;6、 已知点A (0,2)、B (-3,-2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°,则C 点坐标为___________. 题型三、一次函数与正比例函数的识别方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。
☆A 与B 成正比例 A=kB(k ≠0) 1、当k_____________时,()2323y k x x =-++-是一次函数;2、当m_____________时,()21345m y m xx +=-+-是一次函数;3、当m_____________时,()21445m y m x x +=-+-是一次函数;4、2y-3与3x+1成正比例,且x=2,y=12,则函数解析式为________________; 题型四、函数图像及其性质 方法:k(称为斜率)表示直线y=kx+b (k≠0) 的倾斜程度;b (称为截距)表示直线y=kx+b (k≠0)与y 轴交点的 ,也表示直线在y 轴上的 。
☆同一平面内,不重合的两直线 y=k 1x+b 1(k 1≠0)与 y=k 2x+b 2(k 2≠0)的位置关系: 当 时,两直线平行。
当 时,两直线垂直。
当 时,两直线相交。
当 时,两直线交于y 轴上同一点。
☆特殊直线方程:X 轴 : 直线 Y 轴 : 直线 与X 轴平行的直线 与Y 轴平行的直线 一、 三象限角平分线 二、四象限角平分线 1、对于函数y =5x+6,y 的值随x 值的减小而___________。
2、对于函数1223y x =-, y 的值随x 值的________而增大。
3、一次函数 y=(6-3m)x +(2n -4)不经过第三象限,则m 、n 的范围是__________。
4、直线y=(6-3m)x +(2n -4)不经过第三象限,则m 、n 的范围是_________。
5、已知直线y=kx+b 经过第一、二、四象限,那么直线y=-bx+k 经过第_______象限。
6、无论m 为何值,直线y=x+2m 与直线y=-x+4的交点不可能在第______象限。
7、已知一次函数)13()21(-+-=m x m y(1)当m 取何值时,y 随x 的增大而减小? (2)当m 取何值时,函数的图象过原点?题型五、待定系数法求解析式方法:依据两个独立的条件确定k,b 的值,即可求解出一次函数y=kx+b (k ≠0)的解析式。
☆ 已知是直线或一次函数可以设y=kx+b (k ≠0);☆ 若点在直线上,则可以将点的坐标代入解析式构建方程。
1、若函数y=3x+b 经过点(2,-6),求函数的解析式。
2、直线y=kx+b 的图像经过A (3,4)和点B (2,7),3、如图1表示一辆汽车油箱里剩余油量y (升)与行驶时间x (小时)之间的关系.求油箱里所剩油y (升)与行驶时间x (小时)之间的函数关系式,并且确定自变量x 的取值范围。
4、一次函数的图像与y=2x-5平行且与x 轴交于点(-2,0)求解析式。
5、若一次函数y=kx+b 的自变量x 的取值范围是-2≤x ≤6,相应的函数值的范围是-11≤y ≤ 9,求此函数的解析式。
6、已知直线y=kx+b 与直线y= -3x +7关于y 轴对称,求k 、b 的值。
7、已知直线y=kx+b 与直线y= -3x +7关于x 轴对称,求k 、b 的值。
8、已知直线y=kx+b 与直线y= -3x +7关于原点对称,求k 、b 的值。
题型六、平移方法:直线y=kx+b 与y 轴交点为(0,b ),直线平移则直线上的点(0,b )也会同样的平移,平移不改变斜率k ,则将平移后的点代入解析式求出b 即可。
直线y=kx+b 向左平移2向上平移3 <=> y=k(x+2)+b+3;(“左加右减,上加下减”)。
1. 直线y=5x-3向左平移2个单位得到直线 。
2. 直线y=-x-2向右平移2个单位得到直线3. 直线y=21x 向右平移2个单位得到直线 4. 直线y=223+-x 向左平移2个单位得到直线5. 直线y=2x+1向上平移4个单位得到直线6. 直线y=-3x+5向下平移6个单位得到直线7. 直线x y 31=向上平移1个单位,再向右平移1个单位得到直线 。
8. 直线143+-=x y 向下平移2个单位,再向左平移1个单位得到直线________。
9. 过点(2,-3)且平行于直线y=2x 的直线是____ _____。
10. 过点(2,-3)且平行于直线y=-3x+1的直线是___________.11.把函数y=3x+1的图像向右平移2个单位再向上平移3个单位,可得到的图像表示的函数是____________;12.直线m:y=2x+2是直线n向右平移2个单位再向下平移5个单位得到的,而(2a,7)在直线n上,则a=____________;题型七、交点问题及直线围成的面积问题方法:两直线交点坐标必满足两直线解析式,求交点就是联立两直线解析式求方程组的解;复杂图形“外补内割”即:往外补成规则图形,或分割成规则图形(三角形);往往选择坐标轴上的线段作为底,底所对的顶点的坐标确定高;1、直线经过(1,2)、(-3,4)两点,求直线与坐标轴围成的图形的面积。
2、已知一个正比例函数与一个一次函数的图象交于点A(3,4),且OA=OB(1)求两个函数的解析式;(2)求△AOB的面积;3、已知直线m经过两点(1,6)、(-3,-2),它和x轴、y轴的交点式B、A,直线n过点(2,-2),且与y轴交点的纵坐标是-3,它和x轴、y轴的交点是D、C;(1)分别写出两条直线解析式,并画草图;(2)计算四边形ABCD的面积;(3)若直线AB与DC交于点E,求△BCE的面积。
4、如图,A、B分别是x轴上位于原点左右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,△AOP的面积为6;(1)求△COP的面积;(2)求点A的坐标及p的值;(3)若△BOP与△DOP的面积相等,求直线BD的函数解析式。
交于点B、A,直5、已知:mxyl+=2:1经过点(-3,-2),它与x轴,y轴分别与x轴交于点D 线bkxyl+=:2经过点(2,-2),且与y轴交于点C(0,-3),它(1)求直线21ll和的解析式;(2)若直线1l与2l交于点P ,求的值。
6. 如图,已知点A(2,4),B(-2,2),C(4,0),求△ABC的面积。
一次函数的实际应用(方案择优问题)基础扫描:在同一坐标系中作一次函数y1=2x-2 与y2=0.5x+1的图象.①求出它们的交点坐标是②则方程组220.51y xy x=-⎧⎨=+⎩的解是 .③当x时, y1>y2④当x时, y1=y2⑤当x时, y1<y2举一反三:(2010 云南玉溪)某种铂金饰品在甲、乙两个商店销售.甲店标价477元/克,按标价出售,不优惠.乙店标价530元/克,但若买的铂金饰品重量超过3克,则超出部分可打八折出售.⑴分别写出到甲、乙商店购买该种铂金饰品所需费用y(元)和重量x(克)之间的函数关系式;⑵李阿姨要买一条重量不少于4克且不超过10克的此种铂金饰品,到哪个商店购买最合算?模仿操练:1.(2010山东泰安)某电视机厂要印制产品宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收1000元制版费;乙厂提出:每份材料收2元印制费,不收制版费.(1)分别写出两厂的收费y(元)与印制数量x(份)之间的函数关系式;(2)电视机厂拟拿出3000元用于印制宣传材料,找哪家印刷厂印制的宣传材料能多一些?(3)印刷数量在什么范围时,在甲厂的印制合算?2.(2009年潍坊)某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.(1)若需要这种规格的纸箱x个,请分别写出从纸箱厂购买纸箱的费用1y(元)和蔬菜加工厂自己加工制作纸箱的费用2y(元)关于x(个)的函数关系式;(2)假设你是决策者,你认为应该选择哪种方案?并说明理由.3.(2010辽宁丹东市)某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).(1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式;(2)对x的取值情况进行分析,说明按哪种优惠方法购买比较便宜;(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.一次函数的实际应用(分配方案问题)基础扫描:利用题意中的数量关系建立函数模型,利用自变量及其相关的代数式的实际意义确定其取值范围,是求函数实际问题中的常用方法。