平面向量的综合应用
- 格式:ppt
- 大小:3.90 MB
- 文档页数:64
§5.4 平面向量的综合应用考情考向分析 主要考查平面向量与函数、三角函数、不等式、数列、解析几何等综合性问题,求参数范围、最值等问题是考查的热点,一般以填空题的形式出现,偶尔会出现在解答题中,属于中档题.1.向量在平面几何中的应用(1)用向量解决常见平面几何问题的技巧:(2)用向量方法解决平面几何问题的步骤:平面几何问题――→设向量向量问题――→运算解决向量问题――→还原解决几何问题. 2.向量在解析几何中的应用向量在解析几何中的应用,是以解析几何中的坐标为背景的一种向量描述.它主要强调向量的坐标问题,进而利用直线和圆锥曲线的位置关系的相关知识来解答,坐标的运算是考查的主体.3.向量与相关知识的交汇平面向量作为一种工具,常与函数(三角函数)、解析几何结合,常通过向量的线性运算与数量积,向量的共线与垂直求解相关问题.知识拓展1.若G 是△ABC 的重心,则GA →+GB →+GC →=0.2.若直线l 的方程为Ax +By +C =0,则向量(A ,B )与直线l 垂直,向量(-B ,A )与直线l 平行.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若AB →∥AC →,则A ,B ,C 三点共线.( √ )(2)在△ABC 中,若AB →·BC →<0,则△ABC 为钝角三角形.( × )(3)若平面四边形ABCD 满足AB →+CD →=0,(AB →-AD →)·AC →=0,则该四边形一定是菱形.( √ ) (4)设定点A (1,2)与动点P (x ,y )满足OP →·OA →=4,则点P 的轨迹方程是x +2y -4=0.( √ ) (5)已知平面直角坐标系内有三个定点A (-2,-1),B (0,10),C (8,0),若动点P 满足:OP →=OA →+t (AB →+AC →),t ∈R ,则点P 的轨迹方程是x -y +1=0.( √ ) 题组二 教材改编2.[P89习题T10]已知△ABC 的三个顶点的坐标分别为A (3,4),B (5,2),C (-1,-4),则该三角形为________三角形. 答案 直角解析 AB →=(2,-2),AC →=(-4,-8),BC →=(-6,-6), ∴|AB →|=22+(-2)2=22,|AC →|=16+64=45, |BC →|=36+36=62, ∴|AB →|2+|BC →|2=|AC →|2, ∴△ABC 为直角三角形.3.[P93习题T7]若O 为△ABC 所在平面内一点,且满足(OB →-OC →)·(OB →+OC →-2OA →)=0,则△ABC 为________三角形.答案 等腰解析 ∵OB →-OC →=CB →=AB →-AC →,OB →+OC →-2OA →=(OB →-OA →)+(OC →-OA →)=AB →+AC →, 由已知(OB →-OC →)·(OB →+OC →-2OA →)=0,得(AB →-AC →)·(AB →+AC →)=0, 即(AB →-AC →)⊥(AB →+AC →). ∴△ABC 为等腰三角形. 题组三 易错自纠4.在△ABC 中,已知AB →=(2,3),AC →=(1,k ),且△ABC 的一个内角为直角,则实数k 的值为________________. 答案 -23或113或3±132解析 ①若A =90°,则有AB →·AC →=0,即2+3k =0, 解得k =-23;②若B =90°,则有AB →·BC →=0, 因为BC →=AC →-AB →=(-1,k -3), 所以-2+3(k -3)=0,解得k =113;③若C =90°,则有AC →·BC →=0,即-1+k (k -3)=0, 解得k =3±132.综上所述,k =-23或113或3±132.5.在四边形ABCD 中,AC →=(1,2),BD →=(-4,2),则该四边形的面积为________. 答案 5解析 依题意得AC →·BD →=1×(-4)+2×2=0, 所以AC →⊥BD →,所以四边形ABCD 的面积为 12|AC →|·|BD →|=12×5×20=5. 6.(2017·江苏南通中学月考)已知向量a ,b 满足|a |=1,|b |=2,且(a +b )⊥a ,则a 与b 的夹角为________. 答案 120°解析 设a 与b 的夹角为θ,则0°≤θ≤180°,由题意,得(a +b )·a =0,∴a 2+a ·b =1+1×2cos θ=0,∴cos θ=-12,∴θ=120°.题型一 向量在平面几何中的应用典例 (1)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB =________. 答案 12解析 在平行四边形ABCD 中,取AB 的中点F , 则BE →=FD →,∴BE →=FD →=AD →-12AB →,又∵AC →=AD →+AB →,∴AC →·BE →=(AD →+AB →)·⎝ ⎛⎭⎪⎫AD →-12AB →=AD →2-12AD →·AB →+AD →·AB →-12AB →2=|AD →|2+12|AD →||AB →|cos 60°-12|AB →|2=1+12×12|AB →|-12|AB →|2=1.∴⎝ ⎛⎭⎪⎫12-|AB →||AB →|=0,又|AB →|≠0,∴|AB →|=12.(2)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的________.答案 重心解析 由原等式,得OP →-OA →=λ(AB →+AC →),即AP →=λ(AB →+AC →),根据平行四边形法则,知AB →+AC →是△ABC 的中线AD (D 为BC 的中点)所对应向量AD →的2倍,所以点P 的轨迹必过△ABC 的重心. 引申探究本例(2)中,若动点P 满足OP →=OA →+λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|,λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的________. 答案 内心解析 由条件,得OP →-OA →=λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|,即AP →=λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|,而AB →|AB →|和AC →|AC →|分别表示平行于AB →,AC →的单位向量,故AB →|AB →|+AC →|AC →|平分∠BAC ,即AP →平分∠BAC ,所以点P 的轨迹必过△ABC 的内心.思维升华 向量与平面几何综合问题的解法 (1)坐标法把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决. (2)基向量法适当选取一组基底,沟通向量之间的联系,利用向量间的关系构造关于未知量的方程进行求解.跟踪训练 (1)在△ABC 中,已知向量AB →与AC →满足⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,且AB →|AB →|·AC →|AC →|=12,则△ABC 为________三角形. 答案 等边解析 AB→|AB →|,AC→|AC →|分别为平行于AB →,AC →的单位向量,由平行四边形法则可知AB →|AB →|+AC →|AC →|为∠BAC 的平分线.因为⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,所以∠BAC 的平分线垂直于BC ,所以AB =AC .又AB→|AB →|·AC→|AC →|=⎪⎪⎪⎪⎪⎪⎪⎪AB →|AB →|⎪⎪⎪⎪⎪⎪⎪⎪AC →|AC →|·cos∠BAC =12,所以cos ∠BAC =12,又0<∠BAC <π,故∠BAC =π3,所以△ABC 为等边三角形. (2)如图,在平行四边形ABCD 中,AB =1,AD =2,点E ,F ,G ,H 分别是AB ,BC ,CD ,AD 边上的中点,则EF →·FG →+GH →·HE →=________.答案 32解析 取HF 中点O ,则EF →·FG →=EF →·EH →=EO →2-OH →2=1-⎝ ⎛⎭⎪⎫122=34,GH →·HE →=GH →·GF →=GO →2-OH →2=1-⎝ ⎛⎭⎪⎫122=34,因此EF →·FG →+GH →·HE →=32.题型二 向量在解析几何中的应用典例 (1)已知向量OA →=(k,12),OB →=(4,5),OC →=(10,k ),且A ,B ,C 三点共线,当k <0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________________. 答案 2x +y -3=0解析 ∵AB →=OB →-OA →=(4-k ,-7), BC →=OC →-OB →=(6,k -5),且AB →∥BC →, ∴(4-k )(k -5)+6×7=0, 解得k =-2或k =11.由k <0可知k =-2,则过点(2,-1)且斜率为-2的直线方程为y +1=-2(x -2),即2x +y -3=0.(2)若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP→的最大值为________. 答案 6解析 由题意,得F (-1,0),设P (x 0,y 0),则有x 204+y 203=1,解得y 2=3⎝ ⎛⎭⎪⎫1-x 204,因为FP →=(x 0+1,y 0),OP →=(x 0,y 0),所以OP →·FP →=x 0(x 0+1)+y 20=x 20+x 0+3⎝ ⎛⎭⎪⎫1-x 204=x 204+x 0+3,对应的抛物线的对称轴方程为x 0=-2,因为-2≤x 0≤2,故当x 0=2时,OP →·FP →取得最大值224+2+3=6.思维升华 向量在解析几何中的“两个”作用(1)载体作用:向量在解析几何问题中出现,多用于“包装”,解决此类问题的关键是利用向量的意义、运算脱去“向量外衣”,导出曲线上点的坐标之间的关系,从而解决有关距离、斜率、夹角、轨迹、最值等问题.(2)工具作用:利用a ⊥b ⇔a ·b =0(a ,b 为非零向量),a ∥b ⇔a =λb (b ≠0),可解决垂直、平行问题,特别地,向量垂直、平行的坐标表示对于解决解析几何中的垂直、平行问题是一种比较简捷的方法.跟踪训练 (1)在平面直角坐标系中,O 为坐标原点,直线l :x -ky +1=0与圆C :x 2+y 2=4相交于A ,B 两点,OM →=OA →+OB →,若点M 在圆C 上,则实数k =________. 答案 0解析 设AB 的中点为D ,则有OM →=OA →+OB →=2OD →, ∴|OM →|=2|OD →|=R =2(R 为圆C 的半径), ∴|OD →|=1.由点到直线的距离公式,得1=|0-0+1|k 2+1,解得k =0.(2)(2017·江苏灌云中学质检)设F 1,F 2为椭圆x 24+y 2=1的左、右焦点,过椭圆中心任作一直线与椭圆交于P ,Q 两点,当四边形PF 1QF 2面积最大时,PF 1→·PF 2→的值为________. 答案 -2解析 由题意得c =a 2-b 2=3, 又12PF QF S 四边形=122SPF F =2×12×F 1F 2·h (h 为P 点纵坐标的绝对值), 所以当h =b =1时,12PF QF S 四形边取得最大值, 此时|PF 1→|=|PF 2→|=2,且∠F 1PF 2=120°. 所以PF 1→·PF 2→=|PF 1→||PF 2→|·cos 120°=2×2×⎝ ⎛⎭⎪⎫-12=-2.题型三 向量的其他应用命题点1 向量在不等式中的应用典例 已知在Rt △ABC 中,∠C =90°,AB →·AC →=9,S △ABC =6,P 为线段AB 上的点,且CP →=x ·CA →|CA →|+y ·CB→|CB →|,则xy 的最大值为________. 答案 3解析 在Rt △ABC 中,由AB →·AC →=9, 得AB ·AC ·cos A =9,由面积为6,得AB ·AC ·sin A =12, 由以上两式解得tan A =43,所以sin A =45,cos A =35,所以AB ·AC =15,所以AB =5,AC =3,BC =4. 又P 为线段AB 上的点,且CP →=x 3·CA →+y 4·CB →,故x 3+y 4=1≥2x 3·y4, 即xy ≤3,当且仅当x 3=y 4=12,即x =32,y =2时取等号.命题点2 向量在解三角形中的应用典例 在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若20aBC →+15bCA →+12cAB →=0,则△ABC 最小角的正弦值等于________. 答案 35解析 ∵20aBC →+15bCA →+12cAB →=0, ∴20a (AC →-AB →)+15bCA →+12cAB →=0, ∴(20a -15b )AC →+(12c -20a )AB →=0, ∵AC →与AB →不共线,∴⎩⎪⎨⎪⎧20a -15b =0,12c -20a =0,解得⎩⎪⎨⎪⎧b =43a ,c =53a ,∴△ABC 最小角为角A ,∴cos A =b 2+c 2-a 22bc =169a 2+259a 2-a22×43a ×53a =45,∴sin A =35.跟踪训练 (1)函数y =sin(ωx +φ)在一个周期内的图象如图所示,M ,N 分别是最高点、最低点,O 为坐标原点,且OM →·ON →=0,则函数f (x )的最小正周期是______.答案 3解析 由图象可知,M ⎝ ⎛⎭⎪⎫12,1,N ()x N ,-1, 所以OM →·ON →=⎝ ⎛⎭⎪⎫12,1·(x N ,-1)=12x N -1=0,解得x N =2,所以函数f (x )的最小正周期是2×⎝ ⎛⎭⎪⎫2-12=3. (2)如图,在矩形ABCD 中,AB =2,AD =1,点E ,F 分别为DC ,BC 边上的动点,且满足EF =1,则AE →·AF →的最大值为________.答案 4解析 取EF 的中点M ,则M 点的轨迹是以C 点为圆心,12为半径的圆的四分之一(在矩形内的四分之一),而AE →·AF →=(AE →+AF →)2-(AE →-AF →)24=4AM →2-FE →24=AM →2-14≤⎣⎢⎡⎦⎥⎤22+⎝ ⎛⎭⎪⎫122-14=4,当且仅当M 是BC 的中点时,(AE →·AF →)max =4.1.在△ABC 中,(BC →+BA →)·AC →=|AC →|2,则△ABC 的形状一定是________三角形. 答案 直角解析 由(BC →+BA →)·AC →=|AC →|2, 得AC →·(BC →+BA →-AC →)=0,即AC →·(BC →+BA →+CA →)=0,2AC →·BA →=0,∴AC →⊥BA →,∴A =90°.又根据已知条件不能得到|AB →|=|AC →|, 故△ABC 一定是直角三角形.2.已知向量m =(1,cos θ),n =(sin θ,-2),且m ⊥n ,则sin 2θ+6cos 2θ的值为________. 答案 2解析 由题意可得m ·n =sin θ-2cos θ=0,则tan θ=2,所以sin 2θ+6cos 2θ=2sin θcos θ+6cos 2θsin 2θ+cos 2θ=2tan θ+6tan 2θ+1=2. 3.在△ABC 中,D 为△ABC 所在平面内一点,且AD →=13AB →+12AC →,则S △BCD S △ABD=________.答案 13解析 如图,由已知得点D 在△ABC 中与AB 平行的中位线上,且在靠近BC 边的三等分点处,从而有S △ABD =12S △ABC ,S △ACD =13S △ABC ,S △BCD =⎝⎛⎭⎪⎫1-12-13S △ABC =16S △ABC , 所以S △BCD S △ABD =13. 4.(2017·江苏如皋中学月考)在平面直角坐标系xOy 中,已知OA →=(3,-1),OB →=(0,2),若OC →⊥AB →,AC →=λOB →,则实数λ的值为________. 答案 2解析 ∵在平面直角坐标系xOy 中,OA →=(3,-1), OB →=(0,2),∴AB →=(-3,3),设C (x ,y ),则AC →=(x -3,y +1), ∵OC →⊥AB →,AC →=λOB →,∴-3x +3y =0,(x -3,y +1)=(0,2λ),∴⎩⎪⎨⎪⎧ x -3=0,y +1=2λ,x =y ,解得x =y =3,λ=2.5.已知F 1,F 2分别为椭圆C :x 29+y 28=1的左、右焦点,点E 是椭圆C 上的动点,则EF 1→·EF 2→的最大值、最小值分别为________.答案 8,7解析 由题意可知椭圆的左、右焦点坐标分别为F 1(-1,0),F 2(1,0),设E (x ,y )(-3≤x ≤3),则EF 1→=(-1-x ,-y ),EF 2→=(1-x ,-y ),所以EF 1→·EF 2→=x 2-1+y 2=x 2-1+8-89x 2=x 29+7,所以当x =0时,EF 1→·EF 2→有最小值7,当x =±3时,EF 1→·EF 2→有最大值8.6.若直线ax -y =0(a ≠0)与函数f (x )=2cos 2x +1ln 2+x 2-x的图象交于不同的两点A ,B ,且点C (6,0),若点D (m ,n )满足DA →+DB →=CD →,则m +n =________.答案 2解析 因为f (-x )=2cos 2(-x )+1ln 2-x 2+x =2cos 2x +1-ln 2+x 2-x=-f (x ),且直线ax -y =0过坐标原点,所以直线与函数f (x )=2cos 2x +1ln 2+x 2-x 的图象的两个交点A ,B 关于原点对称,即x A +x B =0,y A +y B =0,又DA →=(x A -m ,y A -n ),DB →=(x B -m ,y B -n ),CD →=(m -6,n ),由DA →+DB →=CD →,得x A -m +x B -m =m -6,y A -n +y B -n =n ,解得m =2,n =0,所以m +n =2.7.在菱形ABCD 中,若AC =4,则CA →·AB →=________.答案 -8解析 设∠CAB =θ,AB =BC =a ,由余弦定理得a 2=16+a 2-8a cos θ,∴a cos θ=2,∴CA →·AB →=4×a ×cos(π-θ)=-4a cos θ=-8.8.已知|a |=2|b |,|b |≠0,且关于x 的方程x 2+|a |x -a ·b =0有两个相等的实根,则向量a 与b 的夹角是________.答案 2π3解析 由已知可得Δ=|a |2+4a ·b =0,即4|b |2+4×2|b |2cos θ=0,∴cos θ=-12. 又∵θ∈[0,π],∴θ=2π3. 9.已知O 为△ABC 内一点,且OA →+OC →+2OB →=0,则△AOC 与△ABC 的面积之比是________.答案 1∶2解析 如图所示,取AC 的中点D ,∴OA →+OC →=2OD →,∴OD →=BO →,∴O 为BD 的中点,∴面积比为高之比.即S △AOC S △ABC =DO BD =12. 10.如图所示,半圆的直径AB =6,O 为圆心,C 为半圆上不同于A ,B 的任意一点,若P 为半径OC 上的动点,则(PA →+PB →)·PC →的最小值为________.答案 -92解析 ∵圆心O 是直径AB 的中点,∴PA →+PB →=2PO →,∴(PA →+PB →)·PC →=2PO →·PC →.∵|PO →|+|PC →|=3≥2|PO →|·|PC →|,∴|PO →|·|PC →|≤94, 即(PA →+PB →)·PC →=2PO →·PC →=-2|PO →|·|PC →|≥-92, 当且仅当|PO →|=|PC →|=32时,等号成立.故最小值为-92. 11.已知点P (0,-3),点A 在x 轴上,点Q 在y 轴的正半轴上,点M 满足PA →·AM →=0,AM →=-32MQ →,当点A 在x 轴上移动时,求动点M 的轨迹方程. 解 设M (x ,y )为所求轨迹上任一点,设A (a,0),Q (0,b )(b >0),则PA →=(a,3),AM →=(x -a ,y ),MQ →=(-x ,b -y ),由PA →·AM →=0,得a (x -a )+3y =0.①由AM →=-32MQ →,得 (x -a ,y )=-32(-x ,b -y )=⎝ ⎛⎭⎪⎫32x ,32(y -b ), ∴⎩⎪⎨⎪⎧ x -a =32x ,y =32y -32b ,∴⎩⎪⎨⎪⎧ a =-x 2,b =y 3.∵b >0,∴y >0,把a =-x 2代入到①中,得-x 2⎝ ⎛⎭⎪⎫x +x 2+3y =0, 整理得y =14x 2(x ≠0). ∴动点M 的轨迹方程为y =14x 2(x ≠0). 12.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2a -c )BA →·BC →=cCB →·CA →.(1)求角B 的大小;(2)若|BA →-BC →|=6,求△ABC 面积的最大值.解 (1)由题意,得(2a -c )cos B =b cos C .根据正弦定理,得 (2sin A -sin C )cos B =sin B cos C , 所以2sin A cos B =sin(C +B ), 即2sin A cos B =sin A ,因为A ∈(0,π),所以sin A >0.所以cos B =22,又B ∈(0,π),所以B =π4.(2)因为|BA →-BC →|=6,所以|CA →|= 6.即b =6,根据余弦定理及基本不等式,得6=a 2+c 2-2ac ≥2ac -2ac =(2-2)ac (当且仅当a =c 时取等号),即ac ≤3(2+2),故△ABC 的面积S =12ac sin B ≤3(2+1)2, 即△ABC 的面积的最大值为32+32.13.已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|cos B +AC →|AC →|cos C , λ∈(0,+∞),则________.(填序号) ①动点P 的轨迹一定通过△ABC 的重心;②动点P 的轨迹一定通过△ABC 的内心;③动点P 的轨迹一定通过△ABC 的外心;④动点P 的轨迹一定通过△ABC 的垂心.答案 ④解析 由条件,得AP →=λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|cos B +AC →|AC →|cos C , 从而AP →·BC →=λ⎝ ⎛⎭⎪⎪⎫AB →·BC →|AB →|cos B +AC →·BC →|AC →|cos C =λ·|AB →||BC →|cos(180°-B )|AB →|cos B +λ·|AC →||BC →|cos C |AC →|cos C=0, 所以AP →⊥BC →,则动点P 的轨迹一定通过△ABC 的垂心.14.已知O 为△ABC 的外心,且BO →=λBA →+μBC →.(1)若∠C =90°,则λ+μ=________;(2)若∠ABC =60°,则λ+μ的最大值为________.答案 (1)12 (2)23解析 (1)若∠C =90°,则O 为AB 边的中点,BO →=12BA →,即λ=12,μ=0,故λ+μ=12.(2)设△ABC 的三边长分别为a ,b ,c ,因为O 为△ABC 的外心,且BO →=λBA →+μBC →,所以⎩⎪⎨⎪⎧ BO →·BA →=λBA →2+μBA →·BC →,BO →·BC →=λBA →·BC →+μBC →2,即⎩⎪⎨⎪⎧ 12c 2=λc 2+12μac ,12a 2=12λac +μa 2, 化简得⎩⎪⎨⎪⎧ λc +12μa =12c ,12λc +μa =12a ,解得⎩⎪⎨⎪⎧ λ=23-a 3c ,μ=23-c 3a ,则λ+μ=43-⎝ ⎛⎭⎪⎫a 3c +c 3a ≤43-23=23.15.(2017·江苏南京一中质检)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB 的长为________.答案 12解析 在平行四边形ABCD 中,取AB 的中点F ,则BE →=FD →,∴BE →=FD →=AD →-12AB →, 又∵AC →=AD →+AB →,∴AC →·BE →=(AD →+AB →)·⎝⎛⎭⎪⎫AD →-12AB → =AD →2-12AD →·AB →+AD →·AB →-12AB →2 =|AD →|2+12|AD →||AB →|cos 60°-12|AB →|2 =1+12×12|AB →|-12|AB →|2=1. ∴⎝ ⎛⎭⎪⎫12-|AB →||AB →|=0, 又|AB →|≠0,∴|AB →|=12. 16.已知在△ABC 中,AB <AC ,∠BAC =90°,边AB ,AC 的长分别为方程x 2-2(1+3)x +43=0的两个实数根,若斜边BC 上有异于端点的E ,F 两点,且EF =1,∠EAF =θ,则tan θ的取值范围为________.答案 ⎝ ⎛⎦⎥⎤39,4311 解析 由题可知AB =2,AC =23,BC =AB 2+AC2=4.建立如图所示的坐标系,则A (0,0),B (2,0),C (0,23).设BF →=λBC →⎝ ⎛⎭⎪⎫λ∈⎝ ⎛⎭⎪⎫0,34, BE →=⎝ ⎛⎭⎪⎫λ+14BC →, 则F (2-2λ,23λ),E ⎝ ⎛⎭⎪⎫32-2λ,23λ+32. 所以AE →·AF →=(2-2λ,23λ)·⎝ ⎛⎭⎪⎫32-2λ,23λ+32 =3-4λ-3λ+4λ2+12λ2+3λ=16λ2-4λ+3=16⎝ ⎛⎭⎪⎫λ-182+114∈⎣⎢⎡⎭⎪⎫114,9. 因为点A 到BC 边的距离d =AB ·AC BC=3, 所以△AEF 的面积S △AEF =12EF ·3=32为定值. 所以S △AEF AE →·AF →=12|AE →||AF →|sin θ|AE →||AF →|cos θ=12tan θ, 故tan θ=2S △AEF AE →·AF →=3AE →·AF →∈⎝ ⎛⎦⎥⎤39,4311.。
专题5.4 平面向量的综合应用一、考情分析1.会用向量方法解决某些简单的平面几何问题.2.会用向量方法解决简单的力学问题及其他一些实际问题.二、经验分享考点一 向量在平面几何中的应用 (1)用向量解决常见平面几何问题的技巧:(2)用向量方法解决平面几何问题的步骤平面几何问题――→设向量向量问题――→运算解决向量问题――→还原解决几何问题。
考点二 向量在解析几何中的应用向量在解析几何中的应用,是以解析几何中的坐标为背景的一种向量描述.它主要强调向量的坐标问题,进而利用直线和圆锥曲线的位置关系的相关知识来解答,坐标的运算是考查的主体。
考点三 向量与相关知识的交汇平面向量作为一种工具,常与函数(三角函数)、解析几何结合,常通过向量的线性运算与数量积,向量的共线与垂直求解相关问题。
三、题型分析重难点题型突破1 平行与垂直例1、.已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________. 【答案】22【解析】由题意可得:211cos 452a b →→⋅=⨯⨯=, 由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:2202k a a b k →→→⨯-⋅=-=,解得:22k =. 故答案为:22. 【变式训练1-1】、(山东省德州一中2018-2019学年期中)若,且,则实数的值是( )A .-1B .0C .1D .-2【答案】D 【解析】由得,,∴,故.【变式训练1-2】、(河北省示范性高中2019届联考)已知向量a ,b 满足2(1,2)a b m +=,(1,)b m =,且a 在b 25,则实数m =( ) A 5B .5±C .2 D .2±【答案】D【解析】向量a ,b 满足()21,2a b m +=,()1,b m =,所以0,2m a ⎛⎫= ⎪⎝⎭,22m a b ⋅=,()2225cos 152m b a m θ=+=,所以42516160m m --=,即()()225440m m +-=, 解得2m =±.重难点题型突破2 平面向量与三角形例2、已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP ―→=OA ―→+λ(AB ―→+AC ―→),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的( )A .内心B .外心C .重心D .垂心【答案】C【解析】由原等式,得OP ―→-OA ―→=λ(AB ―→+AC ―→),即AP ―→=λ(AB ―→+AC ―→),根据平行四边形法则,知AB ―→+AC ―→=2AD ―→(D 为BC 的中点),所以点P 的轨迹必过△ABC 的重心.故选C.【变式训练2-1】、在△ABC 中,(BC →+BA →)·AC →=|AC →|2,则△ABC 的形状一定是________三角形.( ) A . 等边 B . 等腰 C . 直角 D . 等腰直角 【答案】C .【解析】 由(BC →+BA →)·AC →=|AC|2,得AC →·(BC →+BA →-AC →)=0,即AC →·(BC →+BA →+CA →)=0,2AC →·BA →=0,∴AC →⊥BA →,∴A =90°.又根据已知条件不能得到|AB →|=|AC →|,故△ABC 一定是直角三角形. 【变式训练2-2】、已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的( )A . 内心B . 外心C . 重心D . 垂心 【答案】C .【解析】 由原等式,得OP →-OA →=λ(AB →+AC →),即AP →=λ(AB →+AC →),根据平行四边形法则,知AB →+AC →是△ABC 的中线AD(D 为BC 的中点)所对应向量AD →的2倍,∴点P 的轨迹必过△ABC 的重心.【变式训练2-3】、如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O . 若6AB AC AO EC ⋅=⋅,则ABAC的值是___________.【答案】3.【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 的中点,知BF =FE =EA ,AO =OD .()()()3632AO EC AD AC AE AB AC AC AE =-=+-,()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭, 得2213,22AB AC =即3,AB AC =故3ABAC= 重难点题型突破3 平面向量与三角函数结合例3.(河北省保定市2018-2019学年期末调研)过ABC ∆内一点M 任作一条直线,再分别过顶点,,A B C 作l 的垂线,垂足分别为,,D E F ,若0AD BE CF ++=恒成立,则点M 是ABC ∆的( )A .垂心B .重心C .外心D .内心【答案】B【解析】因为过ABC ∆内一点M 任作一条直线,可将此直线特殊为过点A ,则0AD =,有0BE CF +=. 如图:则有直线AM 经过BC 的中点,同理可得直线BM 经过AC 的中点,直线CM 经过AB 的中点, 所以点M 是ABC ∆的重心,故选B 。
第4节 平面向量的综合应用课标要求 1.会用向量的方法解决某些简单的平面几何问题;2.会用向量方法解决简单的力学问题与其他一些实际问题.【知识衍化体验】知识梳理1.向量与平面图形(1)用向量解决的常见平面图形问题:、 、 、 、 等问题(2)用向量解决常见平面图形问题的步骤:问题→ 问题→ →解决 问题→解决 问题2.向量与解析几何向量在解析几何中的应用是以解析几何中的坐标为背景的一种向量描述,主要强调向量的坐标问题,用 来处理解析几何中的 ,结合直线和圆锥曲线的位置关系的相关知识来解答.3.向量与物理学科物理学中的 、 、 等可以抽象成数学中的向量,借助向量的运算可以解决物理中力的平衡、功的问题.【微点提醒】1.平面上三点A B C ,,,有A ,B ,C 三点共线()AB AC λλ⇔=∈R ;平面上不共线四点A B C D ,,,,有()AB CD AB CD λλ⇔=∈R .2.平面上四点A B C D ,,,,0AB CD AB CD ⊥⇔⋅=;平面上三点O A B ,,,向量OA ,OB 夹角的余弦值为||||OA OB OA OB ⋅⋅. 3.两点A B ,的距离||AB AB =.4.三个力1F ,2F ,3F ,同时作用于某物体上一点,物体保持平衡⇔1230F F F ++=;物体从点A 移动到点B 的位移s AB =;一个物体在力F 的作用下产生位移s ,那么力F 所做的功为W F s =⋅.基础自测疑误辨析1.判断下列说法是否正确(请在括号中打“√”或“×”).(1)若AB BC λ=,则A ,B ,C 三点共线. ( )(2)若AB CD λ=,则AB CD . ( ) (3)在ABC ∆中,0AB BC ⋅>,则ABC ∆为锐角三角形. ( ) (4)在ABC ∆中,0AB BC ⋅>,则ABC ∆为钝角三角形. ( )(5)点O 是平面上一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足,[0,)||sin ||sin AB AC OP OA AB B AC C λλ⎛⎫=++∈+∞ ⎪⎝⎭,则动点P 的轨迹一定过△ABC的重心. ( ) 教材衍化2.已知O 是坐标原点,点C 满足OC OA OB αβ=+,其中R αβ∈,.若点C 在直线AB 上,则αβ+的值为______________.(必修4第77页第11题改编)3.在ABC ∆中,设(2,3),(1,),AB BC k ==且ABC ∆是直角三角形,则k =______________. (必修4第81页第例4改编)考题体验4.(2015新课标)设D 为ABC ∆所在平面内一点,3BC CD =,则( )A .1433AD AB AC =-+ B .1433AD AB AC =- C .4133AD AB AC =+ D .4133AD AB AC =- 5.(2017新课标Ⅱ)已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是( )A .2-B .32-C .43- D .1- 6.(2014天津)已知菱形ABCD 的边长为2,120BAD ∠=︒,点E ,F 分别在边BC 、DC 上,3BC BE =,DC DF λ=.若1AE AF ⋅=,则λ的值为______________.7.(2019年全国卷Ⅱ理科19.2) 已知抛物线C :y 2=3x 的焦点为F ,斜率为的直线l 与C 的交点为A ,B ,与x 轴的交点为P .若3AP PB =,则AB =______________.【考点聚焦突破】考点1 向量在平几情境中的应用【例1】(1)已知O ,A ,B ,C 是平面上不共线的四点,32若320-+=OA OB OC ,则||||=AB BC ______________. (2)如图,在圆O 的内接ABC ∆中,M 是BC 的中点,3AC =,若4AO AM ⋅=,则AB =______________.【训练1】(1)在△ABC 中,2=AB ,3=AC ,1=AB BC ,则BC =______________.(2)已知O 是ABC ∆所在平面上一点,若222()()()OA OB OC ==,则O 是ABC ∆的( )A .重心B .内心C .外心D .垂心考点2 向量在解几情境中的应用【例2】(1)已知两点(1,0)M -,(1,0)N ,若直线340x y m -+=上存在点P 满足0PM PN ⋅=,则实数m 的取值范围是( )A .(][),55,-∞-+∞ B .(][),2525,-∞-+∞ C .[]5,5-D .[]25,25- (2)过抛物线)0(22>=p px y 的焦点F 的直线与抛物线相交于、A B 两点,自、A B 向准线作垂线,垂足分别为C 、D ,则CFD ∠=______________.【训练2】在平面直角坐标系xOy 中,已知F 是抛物线24x y =的焦点,过点F 作两条相互垂直的直线12,l l ,12,l l 分别与抛物线交于点,A B 和,C D ,记AB 的中点为M ,CD 的中点为N ,则OM ON ⋅的最小值是( )A .3B .4C .5D .6考点3 向量在物理情境中的应用【例3】(1)已知两个力()11,2F =,()22,3F =-作用于平面内某静止物体的同一点上,为使该物体仍保持静止,还需给该物体同一点上再加上一个力3F ,则3F =( ) A .()1,5- B .()1,5- C .()5,1- D .()5,1-(2)在平面直角坐标系中,力()2,3F =作用一物体,使物体从点()2,0A 移动到点()4,0B ,则力F 对物体作的功为______________.【训练3】(1)已知三个力()12,1F =--,()23,2F =-,()34,3F =-,同时作用于某物体上一点,为使物体保持平衡,现加上一个力4F ,则4F =( )A .()1,2--B .()1,2-C .()1,2-D .()1,2(2)一个物体在力()1,2f =的作用下产生位移()3,4s =,那么力f 所做的功为________.考点4 向量的其他应用【例4】构造合适的向量,证明:βαβαβαsin sin cos cos )cos(+=-.【训练4】已知11122=-+-a b b a ,则22a b +=______________.反思与感悟【思维升华】向量具有深刻的数学内涵、丰富的物理背景,既是代数研究对象,也是几何研究对象,是沟通几何与代数的桥梁,是数形结合思想的重要体现。
学习指导2023年12月上半月㊀㊀㊀平面向量与其他知识的综合应用问题◉江苏省灌云高级中学㊀周玉凤㊀㊀平面向量是既有大小又有方向的量,同时具有 数 与 形 的双重特点,是数形结合自然一体的 桥梁 ,可以有效 串联 起平面向量与其他知识,实现不同数学知识点之间的交汇与融合.平面向量既可以将几何问题代数化,借助坐标㊁符号㊁数量等将推理转化为数学运算来处理,也可以将代数问题几何化,借助几何意义㊁图形等将运算转化为直观模型来解决.1平面向量的实际应用问题平面向量这一 数 形 兼备工具在实际问题中的应用,可以使一些相关问题转化为数学问题.合理应用平面向量,可使问题的解答更加简捷,清晰.特别是借助平面向量来解决实际生活中一些与 力 有关的应用问题.图1例1㊀(多选题)在日常生活中,我们会看到两人共提一个行李包的情境,如图1所示,假设行李包所受重力为G ,两个拉力分别为F 1,F 2,若|F 1|=|F 2|,F 1与F 2的夹角为θ,则以下结论正确的是(㊀㊀).A.|F 1|的最小值为12|G |B .θ的取值范围为[0,π]C .当θ=π2时,|F 1|=22|G |D.当θ=2π3时,|F 1|=|G |分析:根据题目条件,利用行李包为平衡状态时的受力平衡构建力的关系式,通过平面向量数量积公式的应用与转化,结合两拉力的夹角θ的取值范围或确定的取值,与各选项中的条件联系加以分析与判断.解析:当行李包为平衡状态时,|G |=|F 1+F 2|为定值,且|F 1|=|F 2|,所以有|G |2=|F 1|2+|F 2|2+2|F 1||F 2| c o s θ=2|F 1|2(1+c o s θ),解得|F 1|2=|G |22(1+c o s θ).对于选项A ,由θɪ[0,π),y =co s θ在[0,π)上单调递减,可知|F 1|的最小值为12|G |,故选项A 正确;对于选项B ,由题意可知,当θ=π时,|F 1|2=|G |22(1+c o s θ)没有意义,故选项B 不正确;对于选项C ,当θ=π2时,|F 1|2=|G |22,所以|F 1|=22|G |,故选项C 正确;对于选项D ,当θ=2π3时,|F 1|2=|G |2,所以|F 1|=|G |,故选项D 正确.综上分析,选择:A C D.2平面向量与三角函数(或解三角形)的综合问题三角函数(或解三角形)和平面向量的综合问题是近几年高考数学的一个高频考点与热点.这类问题的求解,既要求我们具有娴熟的三角恒等变换技能,又要求能熟练地进行平面向量的基本运算,特别是平面向量中的数乘运算和数量积运算.例2㊀ 2021年全国决胜高考数学仿真试卷(理科)(一)(全国Ⅱ卷) 已知A ,B ,C 三点共线,A B =3,A C ң=2CB ң,平面内一点P 满足P A ң PC ң|P A ң|=P B ң P C ң|P B ң|,则s i n øP A B 的最大值是(㊀㊀).A.32㊀㊀㊀B .12㊀㊀㊀C .13㊀㊀㊀D.223分析:根据题目条件,结合平面向量的线性关系式确定线段上三点的比例关系,利用平面向量的数量积公式与条件加以转化,确定P C 为øA P B 的平分线,借助三角形的角平分线定理以及余弦定理的应用,最后利用同角三角函数的基本关系式来确定s i n øP A B 的最大值.解析:由A C ң=2C B ң,可知C 为线段A B 上靠近点B 的三等分点,且|AC |=2|C B |.由P A ң P C ң|P A ң|=P B ң P Cң|P B ң|,可以得到c o s øA P C =c o s øB P C ,则øA P C =øB P C ,所以P C 为øA P B的平分线.根据三角形的角平分线定理,得|P A ||P B |=|A C ||C B |=21,设|P B |=m (m >0),则|P A |=2m .242023年12月上半月㊀学习指导㊀㊀㊀㊀在әA B P 中,由余弦定理,可得c o søP A B =|P A |2+|A B |2-|P B |22|P A | |A B |=4m 2+9-m 212m =m 4+34mȡ2m 4ˑ34m =32,当且仅当m =3时,等号成立.结合同角三角函数基本关系式,有s i n øP A B =1-c o s 2øP A B ɤ1-(32)2=12.所以s i n øP A B 的最大值是12.故选择:B .点评:平面向量的概念㊁运算㊁数量积等的几何意义中涉及三角函数(或解三角形)相关知识,这也为三角函数(或解三角形)和平面向量的综合问题做好了无缝链接,实现不同知识之间交互与整合.3平面向量与函数(或不等式㊁数列)的综合问题平面向量作为数学工具,在 数 的视角与函数(或不等式㊁数列)等知识层面之间有着千丝万缕的联系,以 数 为本,拓展类比,交汇融合起平面向量与函数(或不等式㊁数列)相关知识的联系,创设更加丰富多彩的综合应用场景.例3㊀ 2021年全国高考数学临门一卷试卷(二) 定义向量列a 1,a 2,a 3, ,a n 从第二项开始,每一项与它的前一项的差都等于同一个常向量(即坐标都是常数的向量),即a n =a n -1+d (n ȡ2,且n ɪN ∗),其中d 为常向量,则称这个向量列{a n }为等差向量列.这个常向量叫作等差向量列的公差向量,且向量列{a n }的前n 项和S n =a 1+a 2+ +a n .已知等差向量列{a n }满足a 1=(1,1),a 2+a 4=(6,10),则向量列{a n }的前n 项和S n =.分析:根据题目条件,结合等差向量列的创新定义,易知等差数列的性质㊁通项公式与求和公式对等差向量列也适合,进而分别确定公差向量d 与通项公式a n ,利用对应的求和公式即可求解.解析:根据创新定义,类比等差数列的等差中项的性质,可得2a 3=a 2+a 4=(6,10),解得a 3=(3,5).所以,等差向量列{a n }的公差向量d =a 3-a 12=(3,5)-(1,1)2=(3-1,5-1)2=(2,4)2=(1,2).类比等差数列的通项公式,可得等差向量列{a n }的通项公式为a n =(1,1)+(n -1)(1,2)=(1,1)+(n -1,2n -2)=(1+n -1,1+2n -2)=(n ,2n -1).再类比等差数列的前n 项和公式求S n .所以得到等差向量列{a n }的前n 项和S n =n (a 1+a n )2=n [(1,1)+(n ,2n -1)]2=n (1+n ,2n )2=(n +n 2,2n 2)2=(n +n 22,n 2).故填:(n +n 22,n 2).4平面向量与几何(平面几何㊁解析几何或立体几何)的综合应用㊀㊀平面向量作为数学工具,在 形 的视角与几何(平面几何㊁解析几何或立体几何)知识层面之间有着密切的联系,以 形 为媒,以 形 创设,可以将向量知识渗透进平面几何㊁解析几何或立体几何等相关知识中.例4㊀ 2021年浙江省Z 20联盟高考数学第三次联考试卷(5月份) 已知A ,B ,C ,D 是以O 为球心,2为半径的球面上的四个点,O A ң+O B ң+O C ң=0,则A D +B D +C D 不可能等于(㊀㊀).A.6B .7C .8D.62分析:根据题目条件,确定O ,A ,B ,C 四点共面,进而结合点D 的变化情况,从 点D 和A ,B ,C 中的一个重合 与 O D ʅ平面A B C 两个极端位置来确定A D +B D +C D 的取值,进而求出其取值范围,利用选项中的数值加以分析与判断.解析:连接A B ,B C ,A C .因为A ,B ,C ,D 是以O 为球心,2为半径的球面上的四个点,O A ң+O B ң+O C ң=0,所以O ,A ,B ,C 四点共面,且әA B C 为等边三角形,øA O B =øA O C =øB O C =120ʎ.当点D 和A ,B ,C 中的一个重合时,A D +B D +C D =2ˑ22+22-2ˑ2ˑ2c o s 120ʎ=43(极限状态,不能重合).连接O D ,当O D ʅ平面A B C 时,易得A D +B D +C D =3ˑ22=62.所以43<A D +B D +C D ɤ62.对比各选项中的数值,则知选项A 中的值不可能,故选择:A .点评:利用平面向量解决此类平面向量与几何(平面几何㊁解析几何或立体几何)的综合问题时,可以选择建系,使问题坐标化,从 数 的视角将问题巧妙解决;也可直接利用平面向量自身 形 的性质来数形结合,合理解决.平面向量是衔接代数与几何的纽带,沟通 数 与形 ,是数形结合的典范,也为平面向量与其他知识的交汇融合提供了更多的新颖情境与创新应用,实现抽象的问题与具体的问题之间的交互与转化,方法巧妙,思维创新,在解决一些具体问题中有奇效,值得借鉴与推广.在复习备考过程中,应当选择一些典型的平面向量与实际应用问题㊁三角函数(或解三角形)问题㊁函数(或不等式㊁数列等)问题以及几何(平面几何㊁解析几何或立体几何)问题的综合应用进行求解训练,提高学生处理这类综合问题的能力.Z34。
高考必备:十一、平面向量的综合应用要点强记一、平面向量的基:1、 基的概念:平面向量的基,实际上就是我们选定的两个向量12,e e ,它们满足如下两个条件:①两个均为非零向量;②两个向量不平行。
特殊地,当121,1e e == 时,我们称这一组基(12,e e )为单位基。
在直角坐标系中,我们所取的基为(,i j),不但其模长为1,且互相垂直,因此,它是一组非常特殊的基。
2、 基的功能:如果(12,e e )是某一平面的一组基,那么这一平面内的任一向量a 有且只有一对实数12,λλ,使1122a e e λλ=+ ;这是平面向量的基本定理,它表明了该平面内的任一向量都可以用这组基来线性表示。
因此,基的功能是把平面内的向量运算转化为基的运算。
3、 坐标的概念:若(12,e e )是某一平面的一组基,a 是该平面内的一个向量,且12a xe ye =+ ,则称(),x y 是向量a 在基(12,e e )下的坐标。
根据定义,我们知道:①向量的坐标与选取的基有关,基不同则坐标不同;②我们前面所学习的向量的坐标运算,只是在直角坐标系下(特殊基,i j 下)有效,对于一般的基,不能套用运算公式,建议大家根据向量的几何运算进行。
二、平面向量的四大亮点:1、 向量的模:公式22AB AB = ,为我们提供了求两点距离的工具。
当12AB xe ye =+ 时,则222222121122()2AB xe ye x e xye e y e =+=++ ;注意只有在直角坐标系的单位基(),i j 下,才有222AB x y =+ ;在解题过程中,选取适当的基底()12,e e ,然后利用上面的公式求解,这是解题的关键。
2、 向量的定比分点:定比分点公式,为判定三点共线、求各点的坐标、各线段长度的比值等解析几何问题,提供了更为方便、简捷的工具。
①定比分点有三种形式的定义:(文字语言定义)点p 分有向线段AB 的比为λ;⇔(向量形式定义)AP PB λ= ;⇔(坐标形式定义)设(,)p p P x y 、(,)A A A x y 、(,)B B B x y ,则;1;1A B p A B p x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩要熟练掌握三者之间的转换; ②λ的确定:先定AP PBλ= ,再定λ的符号,根据“内分为正,外分为负”原则。
第 1 页 共 18 页 2022年高考数学总复习:平面向量的综合应用1.向量在平面几何中的应用(1)用向量解决常见平面几何问题的技巧:问题类型所用知识 公式表示 线平行、点共线等问题 共线向量定理 a ∥b ⇔a =λb ⇔x 1y 2-x 2y 1=0,其中a =(x 1,y 1),b =(x 2,y 2),b ≠0垂直问题 数量积的运算性质 a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0,其中a =(x 1,y 1),b =(x 2,y 2),且a ,b 为非零向量夹角问题 数量积的定义 cos θ=a ·b |a ||b |(θ为向量a ,b 的夹角),其中a ,b 为非零向量长度问题数量积的定义 |a |=a 2=x 2+y 2,其中a =(x ,y ),a 为非零向量(2)用向量方法解决平面几何问题的步骤:平面几何问题――→设向量向量问题――→运算解决向量问题――→还原解决几何问题.2.向量在解析几何中的应用向量在解析几何中的应用,是以解析几何中的坐标为背景的一种向量描述.它主要强调向量的坐标问题,进而利用直线和圆锥曲线的位置关系的相关知识来解答,坐标的运算是考查的主体.3.平面向量在物理中的应用(1)由于物理学中的力、速度、位移都是矢量,它们的分解与合成与向量的加法和减法相似,可以用向量的知识来解决.(2)物理学中的功是一个标量,是力F 与位移s 的数量积,即W =F·s =|F||s |cos θ(θ为F 与s 的夹角).4.向量与相关知识的交汇平面向量作为一种工具,常与函数(三角函数)、解析几何结合,常通过向量的线性运算与数量积,向量的共线与垂直求解相关问题.知识拓展。
2021年新高考数学总复习第五章《平面向量与复数》平面向量的综合应用1.向量在平面几何中的应用(1)用向量解决常见平面几何问题的技巧:问题类型所用知识公式表示线平行、点共线等问题共线向量定理a∥b⇔a=λb⇔x1y2-x2y1=0,其中a=(x1,y1),b=(x2,y2),b≠0垂直问题数量积的运算性质a⊥b⇔a·b=0⇔x1x2+y1y2=0,其中a=(x1,y1),b=(x2,y2),且a,b为非零向量夹角问题数量积的定义cos θ=a·b|a||b|(θ为向量a,b的夹角),其中a,b为非零向量长度问题数量积的定义|a|=a2=x2+y2,其中a=(x,y),a为非零向量(2)用向量方法解决平面几何问题的步骤平面几何问题――→设向量向量问题――→运算解决向量问题――→还原解决几何问题.2.向量在解析几何中的应用向量在解析几何中的应用,是以解析几何中的坐标为背景的一种向量描述.它主要强调向量的坐标问题,进而利用直线和圆锥曲线的位置关系的相关知识来解答,坐标的运算是考查的主体.3.平面向量在物理中的应用(1)由于物理学中的力、速度、位移都是矢量,它们的分解与合成与向量的加法和减法相似,可以用向量的知识来解决.(2)物理学中的功是一个标量,是力F与位移s的数量积,即W=F·s=|F||s|cos θ(θ为F与s 的夹角).4.向量与相关知识的交汇平面向量作为一种工具,常与函数(三角函数)、解析几何结合,常通过向量的线性运算与数量积,向量的共线与垂直求解相关问题.概念方法微思考1.根据你对向量知识的理解,你认为可以利用向量方法解决哪些几何问题?提示 (1)线段的长度问题.(2)直线或线段平行问题.(3)直线或线段垂直问题.(4)角的问题等.2.如何用向量解决平面几何问题?提示 用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题然后通过向量运算,研究几何元素之间的关系,如距离、夹角等问题,最后把运算结果“翻译”成几何关系.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若AB →∥AC →,则A ,B ,C 三点共线.( √ )(2)在△ABC 中,若AB →·BC →<0,则△ABC 为钝角三角形.( × )(3)若平面四边形ABCD 满足AB →+CD →=0,(AB →-AD →)·AC →=0,则该四边形一定是菱形.( √ )(4)已知平面直角坐标系内有三个定点A (-2,-1),B (0,10),C (8,0),若动点P 满足:OP →=OA →+t (AB →+AC →),t ∈R ,则点P 的轨迹方程是x -y +1=0.( √ )题组二 教材改编2.已知△ABC 的三个顶点的坐标分别为A (3,4),B (5,2),C (-1,-4),则该三角形为( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰直角三角形 答案 B解析 AB →=(2,-2),AC →=(-4,-8),BC →=(-6,-6),∴|AB →|=22+(-2)2=22,|AC →|=16+64=45,|BC →|=36+36=62,∴|AB →|2+|BC →|2=|AC →|2,∴△ABC 为直角三角形.3.平面直角坐标系xOy 中,若定点A (1,2)与动点P (x ,y )满足OP →·OA →=4,则点P 的轨迹方程是____________.答案 x +2y -4=0解析 由OP →·OA →=4,得(x ,y )·(1,2)=4,即x +2y =4.题组三 易错自纠。