物理方法 微元法
- 格式:doc
- 大小:2.47 MB
- 文档页数:11
微元法在高中物理中应用微元法是一种以计算机模拟和分析实际现象的方法,在若干学科中,如力学、热力学、流体力学、电磁学、材料力学等有广泛的应用。
物理学也是其中的重要应用领域,微元法在高中物理教学中的应用是一种新兴的教学方法,它可以使物理实验更加直观、实用和深入,也可以有效提高学生的学习效率。
一、微元法的基本原理微元法是一种基于数值模拟的方法,它将物理实验中的复杂现象分解为若干基本现象,然后逐一计算,从而获得结果。
它的基本思想是:将实际情况分解为多个简单的微元,将每个微元的物理量用数值代替,经过一系列的计算,可以得出实验结果。
二、微元法在高中物理教学中的应用1、模拟物理实验微元法可以用来模拟各种物理实验,提供学生更直观的实验体验,更加直观地理解物理现象。
比如,在学习曲线运动时,可以用微元法模拟出曲线运动的过程,使学生能够更加直观地理解曲线运动的物理原理。
同时,微元法还可以用来模拟物理实验,可以替代传统的实验方式,节省采购实验器材的时间和成本。
2、开展深入的物理探究微元法可以模拟出物理实验的过程,让学生可以更深入地探究物理现象。
比如,在学习静电场时,可以用微元法模拟出电荷在静电场中的运动,更深入地理解静电场的物理原理。
3、提高学生的学习效率微元法可以用来计算物理实验的结果,可以极大地提高学生的学习效率,节省实验时间。
比如,在学习电磁学时,可以用微元法模拟出电磁波的传播,而不需要耗费大量的时间来实验,更有效地掌握电磁学的知识。
三、微元法的不足微元法虽然在高中物理教学中有着广泛的应用,但也存在一些不足。
首先,微元法要求计算机具备较高的计算能力,而不是所有的学校都能满足这一要求;其次,微元法要求有一定的编程能力,因此,学习微元法需要耗费较多的学习时间;最后,微元法模拟的物理实验结果可能会有误差,因此,学生应该在理解物理原理的基础上,更加细致地检查模拟的结果。
总之,微元法是一种新兴的教学方法,它可以使物理实验更加直观、实用和深入,也可以有效提高学生的学习效率,但也有一定的不足,所以,在开展微元法的应用时,应该注意避免其缺陷,以取得最佳的教学效果。
补差专用资料 :微元思想在解题中的应用(1)- 1 -高中物理解题方法----微元法一、什么是微元法:在所研究是物理问题中,往往是针对研究对象经历某一过程或处于某一状态来进行研究,而此过程或状态中,描述此对象的物理量可能是不变的,而更多则可能是变化的。
对于那些变化的物理量的研究,有一种方法是把全过程分割成很多短暂的小过程或把研究对象整体分解为很多的微小局部的研究而归纳出适用于全过程或整体的结论。
这些微小的过程或微小的局部常被称为“微元”,此法也被称为:“微元法”。
二、对微元的理解:简单地说,微元就是时间、空间或其它物理量上的无穷小量,(注:在数学上我们把极限为“零”的物理量,叫着无穷小量)。
当某一连续变化的事物被分割成无数“微元”(无穷小量)以后,在某一微元段内,该事物也就可以看出不变的恒量了。
所以,微元法又叫小量分析法,它是微积分的理论基础。
三、微元法解题思想:在中学物理解题中,利用微元法可将非理想模型转化为理想模型(如把物体分割成质点);将曲面转化为平面,将一般的曲线转化为圆弧甚至直线段;将变量转化成恒量。
从而将复杂问题转化为简单问题,使中学阶段常规方法难以解决的问题迎刃而解。
微元法的灵魂是无限分割与逼近。
用其解决物理问题的两要诀就是取微元----无限分割和对微元做细节描述----数学逼近。
所谓取微元就是对整体对象作无限分割,分割的对象可以是各种几何体,得到“体元”、“面元”、“线元”、“角元”等;分割的对象可以是一段时间或过程,得到“时间元”、“元过程”;也可以对某一物理量分割,得到诸如“元功”、“元电荷”、“电流元”、“质元”等相应元物理量,它们是被分割成的要多么小就有多么小的无穷小量,而要解决整体的问题,就得从它们下手,对微元作细节描述即通过对微元的性质做合理的近似逼近,从而在微元取无穷小量的前提下,达到向精确描述的逼近。
例1、 如图,岸高为h ,人用不可伸长的绳经滑轮拉船靠岸, 若当绳与水平方向为θ时,人收绳速率为v ,则该位置船的速 率为多大?例2、将质量为m 的小球从某高处以初速度v 0竖直抛出,当小球落回该抛出点时速度为v 1。
[求解变力做功的五种方法]变力做功1.微元法适用于大小不变的力所做功的计算,此种情况可以通过分割求和的物理方法来求变力的功。
把曲线运动分成若干小段,每一小段上都可认为是恒力做功,再累计求和。
计算时由于力的大小不变,在累加时可以提出来,剩下的各小段累加得到的结果就等于物体通过的总路程。
我们可以通过力与物体通过的路程及其夹角的乘积来计算这一情况下大小不变的力所做功的问题。
如图所示,某个力F=10N作用于半径为R=1m的转盘的边缘上,力F的大小保持不变,但方向保持在任何时刻均与作用点的切线一致,则转动一周这个力做的总功为()。
A.0JB.20JC.10JD.20J解析:分段计算功,然后用求和的方法求变力所做的功。
可以把圆弧分成1、2、3。
,总功W=F1+ F2+ F3+。
= F(1+2+3+。
)= F·2R=20J。
故答案为:B。
2.平均法对方向不变、大小随位移发生线性变化(即力与位移成一次函数关系)的力做功问题,可以通过平均力来计算这种变力的功。
这种方法也可以用来求解弹簧的弹力做的功。
用铁锤把小铁钉钉入木板,设木板对钉子的阻力与钉进木板的深度成正比。
已知铁锤第一次将钉子钉进d,如果铁锤第二次敲钉子时对钉子做的功与第一次相同,那么,第二次钉子进入木板的深度是多少?解析:钉子钉入木板过程中随着深度的增加,阻力成正比地增加,这属于变力做功问题。
由于力与深度成正比,可将变力等效为恒力来处理。
.据题意可得第一次打击有:;第二次打击有:。
由以上两式可得。
用图象法求解变力做功问题在F—图象中,图线与坐标轴围成的面积表示功。
对于方向不变,大小随位移线性变化的力,作出F—图象,求出图线与坐标轴所围成的面积,就求出了变力所做的功。
一立方体木块,边长0.2m,放在水池中,恰在此时有一半浮出水面而处于静止状态,若池深1m,用力将木块慢慢推至池底,在这一过程必须对木块做多少功?(水的密度)解析:木块的重力。
作出整个过程的F-图象,梯形面积即为变力的功,有。
物理学科中的微元法的解题应用探究【摘要】物理学科中的微元法是一种重要的数学工具,可以帮助解决各种物理问题。
本文首先介绍了微元法的基本原理,然后探讨了微元法在力学、热学、电磁学和光学中的应用。
在力学中,微元法常常用来推导物体受力的微分方程,从而解决运动问题;在热学中,微元法可以帮助计算热力学系统的性质变化;在电磁学和光学中,微元法可以用来推导麦克斯韦方程组和光学传播方程。
通过探究这些应用,我们可以更好地理解物理学科中微元法的重要性和广泛应用。
物理学科中的微元法对于解决物理问题起着至关重要的作用,是物理学学习中不可或缺的重要内容。
【关键词】微元法、物理学科、解题应用、力学、热学、电磁学、光学、基本原理、探究、结论1. 引言1.1 物理学科中的微元法的解题应用探究微元法是物理学中一种常用的数学方法,通过将一个问题分解成无穷小的微元,然后求解每个微元的问题来得到整体的解。
微元法在物理学科中有着广泛的应用,包括力学、热学、电磁学和光学等领域。
本文将探讨微元法在这些不同领域中的应用,从而深入了解物理学中微元法的解题应用。
在力学中,微元法常常用于求解质点系的受力分布、受力矩分布等问题。
通过将物体分解成无穷小的微元,可以更加精确地求解受力情况,从而得到准确的运动方程。
通过对以上不同领域中微元法的应用探究,可以更加深入地了解物理学科中微元法的解题应用,为解决各种物理问题提供更加清晰和准确的方法。
2. 正文2.1 微元法的基本原理微元法是物理学中一种非常重要的数学工具,它在解决各种物理问题时具有广泛的应用。
微元法的基本原理是将一个复杂的问题分解成许多小的微元,通过对每个微元的特性进行分析,最终得到对整体问题的解决方案。
在微元法中,首先需要确定物理量的微元,即问题中最小的部分。
这个微元在不同的物理问题中可以是长度、面积、体积等不同的量。
然后,通过对微元的特性进行分析,可以得到微元内的物理量的微分表达式。
通过对所有微元进行求和或积分,可以得到整体物体的性质或整体物理问题的解决方案。
物理解题方法:微元法易错题知识点及练习题及答案解析一、高中物理解题方法:微元法1.雨打芭蕉是我国古代文学中重要的抒情意象.为估算雨天院中芭蕉叶面上单位面积所承受的力,小玲同学将一圆柱形水杯置于院中,测得10分钟内杯中雨水上升了15mm ,查询得知,当时雨滴落地速度约为10m /s ,设雨滴撞击芭蕉后无反弹,不计雨滴重力,雨水的密度为1×103kg /m 3,据此估算芭蕉叶面单位面积上的平均受力约为 A .0.25N B .0.5NC .1.5ND .2.5N【答案】A 【解析】 【分析】 【详解】由于是估算压强,所以不计雨滴的重力.设雨滴受到支持面的平均作用力为F .设在△t 时间内有质量为△m 的雨水的速度由v =10m/s 减为零.以向上为正方向,对这部分雨水应用动量定理:F △t =0-(-△mv )=△mv .得:F =mvt;设水杯横截面积为S ,对水杯里的雨水,在△t 时间内水面上升△h ,则有:△m =ρS △h ;F =ρSvht.压强为:3322151011010/0.25/1060F h P v N m N m S t ρ-⨯===⨯⨯⨯=⨯,故A 正确,BCD 错误.2.如图所示,长为l 均匀铁链对称挂在一轻质小滑轮上,由于某一微小扰动使铁链向一侧滑动,则铁链完全离开滑轮时速度大小为( )A 2glB glC 2glD 12gl 【答案】C 【解析】 【分析】 【详解】铁链从开始到刚脱离滑轮的过程中,链条重心下降的高度为244l l l H =-= 链条下落过程,由机械能守恒定律,得:2142l mg mv ⋅= 解得:2gl v =A. 2gl 与分析不相符,故A 项与题意不相符;B. gl 与分析不相符,故B 项与题意不相符;C. 2gl与分析相符,故C 项与题意相符; D.12gl 与分析不相符,故D 项与题意不相符.3.“水上飞人表演”是近几年来观赏性较高的水上表演项目之一,其原理是利用脚上喷水装置产生的反冲动力,使表演者在水面之上腾空而起。
微元法高中物理例子微元法是物理学中一种常用的计算方法,它通过将整个问题划分为许多微小的部分,然后对这些微小部分进行分析,最后将这些微小部分的结果加总起来得到整体的结果。
下面是高中物理中常用微元法的一些例子:1. 弹簧振子的运动:考虑一个弹簧振子,我们可以将弹簧分成许多微小的长度元素,每个长度元素受到的弹性力可以通过胡克定律计算得到。
然后将每个长度元素的弹性力加总起来,得到整个弹簧振子的合力,从而得到振子的运动方程。
2. 摩擦力的计算:考虑一个物体在倾斜面上滑动,我们可以将倾斜面分成许多微小的长度元素,每个长度元素受到的重力和法向力可以计算得到。
然后将每个长度元素的重力和法向力分解,并根据受力平衡条件计算出每个长度元素的摩擦力,从而得到整个物体受到的摩擦力。
3. 电场力的计算:考虑一个电荷在电场中受力,我们可以将电场分成许多微小的体积元素,每个体积元素受到的电场力可以通过库仑定律计算得到。
然后将每个体积元素的电场力加总起来,得到整个电荷受到的电场力,从而得到电荷的运动方程。
4. 磁场力的计算:考虑一个带电粒子在磁场中受力,我们可以将磁场分成许多微小的面元素,每个面元素受到的磁场力可以通过洛伦兹力计算得到。
然后将每个面元素的磁场力加总起来,得到整个带电粒子受到的磁场力,从而得到带电粒子的运动方程。
5. 热传导的计算:考虑一个导热体中的热传导过程,我们可以将导热体分成许多微小的体积元素,每个体积元素受到的热传导可以通过傅里叶定律计算得到。
然后将每个体积元素的热传导加总起来,得到整个导热体的热传导,从而得到导热体的温度分布。
6. 空气阻力的计算:考虑一个物体在空气中运动,我们可以将空气分成许多微小的体积元素,每个体积元素受到的空气阻力可以通过斯托克斯定律计算得到。
然后将每个体积元素的空气阻力加总起来,得到整个物体受到的空气阻力,从而得到物体的运动方程。
7. 光的折射和反射:考虑光在介质中的传播,我们可以将介质分成许多微小的面元素,每个面元素的折射和反射可以通过斯涅尔定律计算得到。
三、微元法方法简介微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。
用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化。
在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法或物理思想处理,进而使问题求解。
使用此方法会加强我们对已知规律的再思考,从而引起巩固知识、加深认识和提高能力的作用。
赛题精讲例1:如图3—1所示,一个身高为h 的人在灯以悟空速度v 沿水平直线行走。
设灯距地面高为H ,求证人影的顶端C 点是做匀速直线运动。
解析:该题不能用速度分解求解,考虑采用“微元法”。
设某一时间人经过AB 处,再经过一微小过程Δt (Δt →0),则人由AB 到达A ′B ′,人影顶端C 点到达C ′点,由于ΔS AA ′= v Δt 则人影顶端的移动速度:v C =C C t 0S limt'∆→∆∆=AA t 0HS H h lim t'∆→∆-∆=H H h-v可见v c 与所取时间Δt 的长短无关,所以人影的顶端C 点做匀速直线运动。
例2:如图3—2所示,一个半径为R 的四分之一光滑球面放在水平桌面上,球面上放置一光滑均匀铁链,其A 端固定在球面的顶点,B 端恰与桌面不接触,铁链单位长度的质量为ρ 。
试求铁链A 端受的拉力T 。
解析:以铁链为研究对象,由由于整条铁链的长度不能忽略不计,所以整条铁链不能看成质点,要分析铁链的受力情况,须考虑将铁链分割,使每一小段铁链可以看成质点,分析每一小段铁边的受力,根据物体的平衡条件得出整条铁链的受力情况。
在铁链上任取长为ΔL 的一小段(微元)为研究对象,其受力分析如图3—2—甲所示。
由于该元处于静止状态,所以受力平衡,在切线方向上应满足:T θ + ΔT θ = ΔGcos θ + T θ ,ΔT θ = ΔGcos θ = ρg ΔLcos θ由于每段铁链沿切线向上的拉力比沿切线向下的拉力大ΔT θ ,所以整个铁链对A 端的拉力是各段上ΔT θ的和,即:T = ΣΔT θ = Σρg ΔLcos θ = ρg ΣΔLcos θ观察ΔLcos θ的意义,见图3—2—乙,由于Δθ很小,所以CD ⊥OC ,∠OCE = θΔLcosθ表示ΔL 在竖直方向上的投影ΔR ,所以ΣΔLcos θ = R ,可得铁链A 端受的拉力:T = ρg ΣΔLcos θ = ρgR例3:某行星围绕太阳C 沿圆弧轨道运行,它的近日点A 离太阳的距离为a ,行星经过近日点A 时的速度为v A ,行星的远日点B 离开太阳的距离为b ,如图3—3所示,求它经过远日点B 时的速度v B 的大小。
解析:此题可根据万有引力提供行星的向心力求解。
也可根据开普勒第二定律,用微元法求解。
设行星在近日点A 时又向前运动了极短的时间Δt ,由于时间极短可以认为行星在Δt 时间内做匀速圆周运动,线速度为v A ,半径为a ,可以得到行星在Δt 时间内扫过的面积:S a =12v A Δt ⋅a同理,设行星在经过远日点B 时也运动了相同的极短时间Δt ,则也有: S b =12v B Δt ⋅b由开普勒第二定律可知:S a = S b 。
即得:v B =a bv A(此题也可用对称法求解。
)例4:如图3—4所示,长为L 的船静止在平静的水面上,立于船头的人质量为m ,船的质量为M ,不计水的阻力,人从船头走到船尾的过程中,问:船的位移为多大?解析:取人和船整体作为研究系统,人在走动过程中,系统所受合外力为零,可知系统动量守恒。
设人在走动过程中的Δt 时间内为匀速运动,则可计算出船的位移。
设v 1 、v 2分别是人和船在任何一时刻的速率,则有:mv 1 = Mv 2 ①两边同时乘以一个极短的时间Δt , 有:mv 1Δt = Mv 2Δt ②由于时间极短,可以认为在这极短的时间内人和船的速率是不变的,所以人和船位移大小分别为Δs 1 = v 1Δt ,Δs 2 = v 2Δt由此将②式化为:m Δs 1 = M Δs 2 ③ 把所有的元位移分别相加有:m ΣΔs 1 = M ΣΔs 2 ④ 即:ms 1 = Ms 2 ⑤此式即为质心不变原理。
其中s 1 、s 2分别为全过程中人和船对地位移的大小,又因为: L = s 1 + s 2 ⑥由⑤、⑥两式得船的位移:s 2 =m M m+L例5:半径为R 的光滑球固定在水平桌面上,有一质量为M 的圆环状均匀弹性绳圈,原长为πR ,且弹性绳圈的劲度系数为k ,将弹性绳圈从球的正上方轻放到球上,使弹性绳圈水平停留在平衡位置上,如图3—5所示,若平衡时弹性绳圈长为R,求弹性绳圈的劲度系数k 。
解析:由于整个弹性绳圈的大小不能忽略不计,弹性绳圈不能看成质点,所以应将弹性绳圈分割成许多小段,其中每一小段Δm 两端受的拉力就是弹性绳圈内部的弹力F 。
在弹性绳圈上任取一小段质量为Δm 作为研究对象,进行受力分析。
但是Δm 受的力不在同一平面内,可以从一个合适的角度观察。
选取一个合适的平面进行受力分析,这样可以看清楚各个力之间的关系。
从正面和上面观察,分别画出正视图的俯视图,如图3—5—甲和2—3—5—乙。
先看俯视图3—5—甲,设在弹性绳圈的平面上,Δm 所对的圆心角是Δθ ,则每一小段的质量:Δm =2∆θπMΔm 在该平面上受拉力F 的作用,合力为: T = 2Fcos2π-∆θ= 2Fsin2∆θ因为当θ很小时,sin θ≈θ ,所以:T = 2F 2∆θ= F Δθ ①再看正视图3—5—乙,Δm 受重力Δmg ,支持力N ,二力的合力与T 平衡。
即:T = Δmg ⋅tan θ现在弹性绳圈的半径为:2π2R所以:sin θ =r R=2θ = 45°,tan θ = 1因此:T = Δmg =2∆θπMg ②将①、②联立,有:2∆θπMg = F Δθ ,解得弹性绳圈的张力为:F =M g 2π设弹性绳圈的伸长量为x ,则:R -π1) πR 所以绳圈的劲度系数为:k =F x2Rπ例6:一质量为M 、均匀分布的圆环,其半径为r,几何轴与水平面垂直,若它能经受的最大张力为T ,求此圆环可以绕几何轴旋转的最大角速度。
解析:因为向心力F = mr ω2,当ω一定时,r 越大,向心力越大,所以要想求最大张力T 所对应的角速度ω ,r 应取最大值。
如图3—6所示,在圆环上取一小段ΔL ,对应的圆心角为Δθ ,其质量可表示为Δm =2∆θπM ,受圆环对它的张力为T ,则同上例分析可得:2Tsin2∆θ= Δmr ω2因为Δθ很小,所以:sin 2∆θ≈2∆θ,即:2T ⋅2∆θ=2∆θπM r ω2解得最大角速度:ω=例7:一根质量为M ,长度为L 的铁链条,被竖直地悬挂起来,其最低端刚好与水平接触,今将链条由静止释放,让它落到地面上,如图3—7所示,求链条下落了长度x 时,链条对地面的压力为多大?解析:在下落过程中链条作用于地面的压力实质就是链条对地面的“冲力”加上落在地面上那部分链条的重力。
根据牛顿第三定律,这个冲力也就等于同一时刻地面对链条的反作用力,这个力的冲量,使得链条落至地面时的动量发生变化。
由于各质元原来的高度不同,落到地面的速度不同,动量改变也不相同。
我们取某一时刻一小段链条(微元)作为研究对象,就可以将变速冲击变为恒速冲击。
设开始下落的时刻t = 0 ,在t 时刻落在地面上的链条长为x ,未到达地面部分链条的速度为v ,并设链条的线密度为ρ 。
由题意可知,链条落至地面后,速度立即变为零。
从t 时刻起取很小一段时间Δt ,在Δt 内又有ΔM = ρΔx 落到地面上静止。
地面对ΔM 作用的冲量为:(F -ΔMg) Δt = ΔI因为ΔMg ⋅Δt ≈0 ,所以:F Δt = ΔM ⋅v -0 = ρv Δx ,解得冲力: F = ρvx t∆∆,其中x t∆∆就是t 时刻链条的速度v ,故F = ρv 2 ,链条在t 时刻的速度v即为链条下落长为x 时的即时速度,即:v 2 = 2gx代入F 的表达式中,得:F = 2ρgx此即t 时刻链对地面的作用力,也就是t 时刻链条对地面的冲力。
所以在t 时刻链条对地面的总压力为:N = 2ρgx + ρgx = 3ρgx =3M gx L例8:一根均匀柔软的绳长为L ,质量为m,对折后两端固定在一个钉子上,其中一端突然从钉子上滑落,试求滑落的绳端点离钉子的距离为x 时,钉子对绳子另一端的作用力是多大?解析:钉子对绳子另一端的作用力随滑落绳的长短而变化,由此可用微元法求解。
如图3—8所示,当左边绳端离钉子的距离为x 时,左边绳长为12(l -x) ,速度12(l+x)又经过一段很短的时间Δt 以后,左边绳子又有长度12v Δt的一小段转移到右边去了,我们就分析这一小段绳子,这一小段绳子受到两力:上面绳子对它的拉力T 和它本身的重力12v Δt λg (λ =m l为绳子的线密度)根据动量定理,设向上方向为正,有:(T -12v Δt λg ) Δt = 0-(-12v Δt λ⋅v)由于Δt 取得很小,因此这一小段绳子的重力相对于T 来说是很小的,可以忽略,所以有:T =12v 2λ = gx λ因此钉子对右边绳端的作用力为:F =12(l + x)λg + T =12mg(1 +3x l)例9:图3—9中,半径为R 的圆盘固定不可转动,细绳不可伸长但质量可忽略,绳下悬挂的两物体质量分别为M 、m 。
设圆盘与绳间光滑接触,试求盘对绳的法向支持力线密度。
解析:求盘对绳的法向支持力线密度也就是求盘对绳的法向单位长度所受的支持力。
因为盘与绳间光滑接触,则任取一小段绳,其两端受的张力大小相等,又因为绳上各点受的支持力方向不同,故不能以整条绳为研究对象,只能以一小段绳为研究对象分析求解。
在与圆盘接触的半圆形中取一小段绳元ΔL ,ΔL 所对应的圆心角为Δθ ,如图3—9—甲所示,绳元ΔL 两端的张力均为T ,绳元所受圆盘法向支持力为ΔN ,因细绳质量可忽略,法向合力为零,则由平衡条件得:ΔN = Tsin2∆θ+ Tsin 2∆θ= 2T2∆θ当Δθ很小时,sin2∆θ≈2∆θ,故ΔN = TΔθ 。
又因为 ΔL = RΔθ ,则绳所受法向支持力线密度为:n =N L∆∆=T R ∆θ∆θ=T R①以M 、m 分别为研究对象,根据牛顿定律有:Mg -T = Ma ② T -mg = m a ③ 由②、③解得:T =2M mg M m+将④式代入①式得:n =2M m g(M m )R+例10:粗细均匀质量分布也均匀的半径为分别为R 和r 的两圆环相切。