九年级数学实际问题与一元二次方程1
- 格式:pdf
- 大小:1.35 MB
- 文档页数:10
21.3实际问题与一元二次方程(1)1.鸡瘟是一种传播速度很强的传染病,一轮传染为一天时间,红发养鸡场于某日发现一例,两天后发现共有169只鸡患有这种病.若每例病鸡传染健康鸡的只数均相同,则每只病鸡传染健康鸡的只数为( )A.10只B.11只C.12只D.13只2.某种植物的主干长出a个支干,每个支干又长出同样数目的小分支,则主干、支干和小分支的总数为_____.3.某生物实验室需培育一群有益菌.现有60个活体样本,经过两轮培植后,总和达24 000个,其中每个有益菌每一次可分裂出若干个相同数目的有益菌. (1)每轮分裂中平均每个有益菌可分裂出多少个有益菌?(2)按照这样的分裂速度,经过三轮培植后有多少个有益菌?4.在一次商品交易会上,参加交易会的每两家公司之间都要签订一份合同,会议结束后统计共签订了78份合同,问有多少家公司出席了这次交易会?5.一个两位数的十位数字比个位数字大2,把这个两位数的个位数字与十位数字互换后平方,所得的数值比原来的两位数大138,求原来的两位数.6.有人利用手机发短信,获得信息的人也按他的发送人数发送该条短信,经过两轮短信的发送,共有90人手机上获得同一条信息,则每轮发送短信一个人要向几个人发送短信?参考答案1.C2.1+a+a23.解:(1)设每轮分裂中平均每个有益菌可分裂出x个有益菌,根据题意,得60(1+x)2=24 000.解得x1=19,x2=-21(不合题意,舍去).答:每轮分裂中平均每个有益菌可分裂出19个有益菌.(2)经过三轮培植后,得60(1+19)3=60×203=480 000(个).答:经过三轮培植后共有480 000个有益菌.4.解:设有x家公司出席了这次交易会,根据题意,得x(x-1)=78.解这个方程,得x1=13,x2=-12(舍去).答:有13家公司出席了这次交易会.5.解:设原来的两位数的个位数字为x,则十位数字为(x+2).根据题意,得(10x+x+2)2=10(x+2)+x+138.解得x1=-(舍去),x2=1.答:原来的两位数为31.6.解:设要向x个人发送短信.根据题意,得 x(x+1)=90,解得x1=9,x2=-10(舍去).答:一个人要向9个人发送短信. 2 111 14。
九年级上册数学一元二次方程解实际问题公式九年级上册数学一元二次方程解实际问题公式在九年级上册数学学习中,解决一元二次方程实际问题是重要的一环。
一元二次方程是由一次项、二次项和常数项组成的方程,其一般形式为ax² + bx + c = 0,其中a、b和c分别为实数且a≠0。
在解决实际问题时,可以利用一元二次方程的公式来求解。
一元二次方程的解可以通过公式来求解,即二次方程的求根公式:x = (-b ± √(b² - 4ac)) / 2a这个公式是通过将一元二次方程化简后得到的,其中 b² - 4ac 被称为判别式。
判别式的值会决定方程的解的情况。
根据判别式的不同情况,可以得到方程有两个实根、有一个实根还是无实根。
当判别式的值大于0时,即 b² - 4ac > 0,方程有两个实根。
此时,可以使用上述公式来求解,并计算出两个不同的解。
当判别式的值等于0时,即 b² - 4ac = 0,方程有一个实根。
此时,也可以使用公式来求解,并计算出唯一的解。
当判别式的值小于0时,即 b² - 4ac < 0,方程无实根。
在这种情况下,方程无法用公式求解。
需要注意的是,当方程无实根时,我们可以通过观察方程的系数来判断其解的情况。
例如,当二次项系数a大于0时,方程图像开口向上,无实根;当二次项系数a小于0时,方程图像开口向下,也无实根。
在实际问题中,我们可以将问题抽象为一元二次方程,然后利用上述的公式来求解。
例如,某个问题要求解一个运动员从起点出发,在给定的速度和时间内到达终点的距离问题。
我们可以通过设定一个未知变量来表示距离,然后建立一元二次方程,利用公式来求解出这个未知变量的值。
总之,九年级上册的数学学习中,解决一元二次方程实际问题是一个重要的内容。
掌握一元二次方程的解法,并理解公式的原理和应用场景,能够帮助我们更好地解决实际问题,提高数学解题的能力。
实际问题与一元二次方程知识点总结及重难点精析一、知识点总结1.在九年级数学中,实际问题与一元二次方程这一章知识点主要包括:一元二次方程的基本概念、性质及其在实际问题中的应用。
2.一元二次方程的基本概念:一元二次方程是一个含有未知数x 的整式方程,其一般形式为ax²+bx+c=0(a≠0)。
其中a、b、c为常数,a≠0.且x的最高次数为2.3.一元二次方程的性质:一元二次方程有四个性质,分别是:(1) 有两个解,即x1和x2;(2) 两解的和为-b/a;(3) 两解的积为c/a;(4) 判别式△=b²-4ac,当△>0时,方程有两个不相等的实数解;当△=0时,方程有两个相等的实数解;当△<0时,方程没有实数解。
4.一元二次方程的应用:在实际问题中,一元二次方程通常用于解决一些二次关系的问题,比如物体的运动轨迹、建筑物的面积和体积、经济利润最大化等问题。
二、重难点精析在本章节中,重难点主要包括如何将实际问题转化为数学问题、一元二次方程的解法以及根的性质和应用。
1.如何将实际问题转化为数学问题:在解决实际问题时,需要从题目中提取出有用的信息,并转化为数学语言。
这需要学生具备一定的阅读理解能力和数学建模能力。
2.一元二次方程的解法:一元二次方程的解法有公式法和因式分解法两种。
公式法是通过公式直接求解,但需要学生记忆公式。
因式分解法是通过将方程左边分解成两个一次因式的乘积,再分别令每个因式等于0来求解。
这种方法更直观易懂,但需要学生掌握因式分解的技巧。
3.根的性质和应用:根的性质包括前面提到的两个解的和、积和判别式。
这些性质在解决实际问题时具有重要应用。
例如,利用判别式可以判断方程是否有实数解,从而确定实际问题是否有解;利用两解的和可以计算实际问题的某些物理量,如位移等。
三、总结通过以上知识点总结和重难点精析,我们可以看到实际问题与一元二次方程这一章知识点的重要性和应用价值。