北师大版--七年级数学下册第二单元平行线与相交线试题(八)
- 格式:doc
- 大小:75.50 KB
- 文档页数:7
第二章 相交线与平行线一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.如图,1∠和2∠是同位角的图形有( )A.③④B.①③⑤C.①②⑤D.①②③2.同一平面内三条直线互不重合,那么交点的个数可能是( )A.0,1,2B.0,1,3C.1,2,3D.0,1,2,33.如图,给出下列条件:①12∠=∠;②34∠=∠;③//AD BE ,且D B ∠=∠.其中能推出//AB DC 的条件为( )A.①②B.①③C.②③D.①②③4.下列说法正确的有( )①两点之间的所有连线中,线段最短②相等的角叫对顶角③过一点有且只有一条直线与已知直线平行④不相交的两条直线叫做平行线⑤直线外一点到该直线的所有线段中垂线最短⑥在同一平面内,过一点有且只有一条直线与已知直线垂直A.1个B.2个C.3个D.4个5.如图,快艇从P 处向正北航行到A 处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为( )A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°6.如图,直线AB ,CD 相交于点O ,EO AB ⊥,垂足为O ,若30EOC ∠=︒,则AOD ∠的度数为( )A.115°B.120°C.125°D.130°7.如图木条a 、b 、c 用螺丝固定在木板a 上,且50ABM ∠=︒,70DEM ∠=︒,将木条a 、木条b 、木条c 看作是在同一平面a 内的三条直线AC 、DF 、MN ,若使直线AC 、直线DF 达到平行的位置关系则下列描述错误的是( )A.木条b 、c 固定不动,木条a 绕点B 顺时针旋转20°B.木条b 、c 固定不动,木条a 绕点B 逆时针旋转160°C.木条a 、c 固定不动,木条b 绕点E 逆时针旋转20°D.木条a 、c 固定不动,木条b 绕点E 顺时针旋转110°8.如图,//AB CD .62AEF ∠=︒,FG 平分EFC ∠,则1∠的度数为( )A.62°B.60°C.59°D.50°9.如图,AC 、BD 相交于点O ,连接AB 、BC 、CD 、DA ,能判定//AD BC 的条件是( )A.CDB ABD ∠=∠B.180ADC DAB ∠+∠=︒C.DCA BAC ∠=∠D.DAC BCA ∠=∠10.如图,//AB CD ,α∠=( )A.70°B.75°C.80°D.85°二、填空题(每小题4分,共20分)11.如图,用一个钉子(点O )将两根木条AB ,CD 钉在一起,已知2AOC BOC ∠=∠.(1)AOC ∠的度数为______;(2)调整AOC ∠的大小,使45AOC ∠=︒,则图中的BOD ∠的度数减少______.12.如图,直线1l ,2l 被3l 所截,下列条件:①12∠=∠;②34∠=∠;③12//l l ,其中能判断//AC BD 的一个条件是_________.13.光线在不同介质中传播速度不同,从一种介质射向另一种介质时会发生折射.如图,水面AB 与水杯下沿CD 平行,光线EF 从水中射向空气时发生折射,光线变成FH ,点G 在射线EF 上,已知20HFB ∠=︒,45FED ∠=︒,则GFH ∠的度数为___________.14.如图,AE 平分BAC ∠,CE 平分ACD ∠,要使//AB CD ,则E ∠的大小为___________.15.已知:如图,直线EF 、GH 被直线MN 所截,AB GH ⊥,B 为垂足,12∠=∠.求证:AB EF ⊥.证明:12∠=∠(_____),//EF ∴___________(_____),FAB HBA ∴∠+∠=___________(_____),AB GH ∴⊥(已知),90HBA ∴∠=︒(_____),1801809090FAB HBA ∴∠=︒-∠=-︒=︒,AB EF ∴⊥(_____).三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)如图,在一张半透明的纸上画一条直线l ,在l 上任取一点P ,在l 外任取一点Q ,折出过点P 且与l 垂直的直线.这样的直线能折出几条?为什么?过点Q 呢?17.(8分)如图,已知//AB CD ,线段GH 交AB 于点J ,直线EF 分别交AB ,CD ,GH 于点L ,M ,H ,且148243∠=︒∠=︒,.(1)找出图中1∠的所有同位角;(2)求GHF ∠的度数.18.(10分)如图,AF 分别与BD 、CE 交于点G 、H ,155∠=︒.若A F ∠=∠,C D ∠=∠,求2∠的度数.19.(10分)如图,直线AB ,CD 相交于点O ,OE 平分BOD ∠,OF 平分COE ∠,:4:1AOD BOE ∠∠=,求AOF ∠的度数.20.(12分)如图,在四边形ABCD 中,180ADC ABC ∠+∠=︒,90ADF AFD ∠+∠=︒,点E 、F 分别在DC 、AB 上,且BE 、DF 分别平分ABC ∠、ADC ∠,判断BE 、DF 是否平行,并说明理由.21.(12分)如图1,直线MN 与直线AB 、CD 分别交于点E 、F ,MEB ∠与NFD ∠互补.(1)试判断直线AB 与直线CD 的位置关系,并说明理由;(2)如图2,BEF ∠与EFD ∠的角平分线交于点P ,EP 与CD 交于点G ,点H 是MN 上一点,且GH EG ⊥,求证://PF GH ;(3)如图3,在(2)的条件下,连接PH ,K 是GH 上一点,使PHK HPK ∠=∠,作PQ 平分EPK ∠,问HPQ ∠的大小是否发生变化,若不变,请求出其值;若变化,说明理由.答案以及解析1.答案:C解析:根据同位角定义可得①②⑤是同位角,故选:C.2.答案:D 解析:三条直线位置不明确,所以分情况讨论:①三条直线互相平行,有0个交点;②一条直线与两平行线相交,有2个交点;③三条直线都不平行,有1个或3个交点,故选D.3.答案:C解析:①12∠=∠,可判定//AD BC ,不能判定//AB CD ,故①错误,不符合题意; ②34∠=∠,可判定//AB CD ,故②正确,符合题意;③由//AD BE 可得D DCE ∠=∠,再由D B ∠=∠可得B DCE ∠=∠,可判定//AB CD ,故③正确,符合题意;故选:C.4.答案:B解析:①两点之间的所有连线中,线段最短,正确;②相等的角叫对顶角,错误,应该是对顶角相等;③过一点有且只有一条直线与已知直线平行,错误,应该强调在直线外一点; ④不相交的两条直线叫做平行线,错误,应该强调在同一平面内;⑤直线外一点到该直线的所有线段中垂线最短,错误,应该是垂线段最短; ⑥在同一平面内,过一点有且只有一条直线与已知直线垂直,正确,正确的有2个,故选:B.5.答案:A解析:如图,过点B 作//BC PA ,则50CBD ∠=︒,805030CBE ∴∠=︒-︒=︒,故此时快艇的航行方向为北偏东30°.故选A.6.答案:B解析:EO AB ⊥,90EOB ∴∠=︒.又30EOC ∠=︒,120COB EOC BOE ∴∠=∠+∠=︒.AOD COB ∠=∠(对顶角相等),120AOD ∴∠=︒.故选B.7.答案:D解析:A 、木条b 、c 固定不动,木条a 绕点B 顺时针旋转20°,此时502070ABM ∠=︒+︒=︒,则ABM DEM ∠=∠,有//AC DF ,故本选项正确,不符合题意;B 、木条b 、c 固定不动,木条a 绕点B 逆时针旋转160°,此时()5018016070ABM ∠=︒+︒-︒=︒,则ABM DEM ∠=∠,有//AC DF ,故本选项正确,不符合题意;C 、木条a 、c 固定不动,木条b 绕点E 逆时针旋转20°,此时702050DEM ∠=︒-︒=︒,则ABM DEM ∠=∠,有//AC DF ,故本选项正确,不符合题意;D 、木条a 、c 固定不动,木条b 绕点E 顺时针旋转110°,木条b 、c 重合,则180DEM ABM ∠=︒≠∠,故本选项错误,符合题意.故选:D.8.答案:C解析://AB CD ,180AEF CFE ∴∠+∠=︒,62AEF ∠=︒,180118CFE AEF ∠=︒-∠=︒,FG 平分EFC ∠,1592CFG CFE ∴∠=∠=︒, //AB CD ,159CFG ∴∠=∠=︒,故选:C.9.答案:D解析:A.CDB ABD ∠=∠,可得//AB CD ,不合题意,故此选项错误;B.180ADC DAB ∠+∠=,可得//AB CD ,不合题意,故此选项错误;C.DCA BAC ∠=∠,可得//AB CD ,不合题意,故此选项错误;D.DAC BCA ∠=∠,可得//AD BC ,符合题意,故此选项正确;故选:D.10.答案:D解析:如图,过点E 作//EF AB ,120B ∠=︒,18060BEF B ∴∠=︒-∠=︒,//AB CD ,//EF CD ∴,25C ∠=︒,25CEF C ∴∠=∠=︒,85BEF CEF α∴∠=∠+∠=︒,故选:D.11.答案:(1)120°(2)75°解析:(1)2AOC BOC ∠=∠,=180AOC BOC ∠+∠︒,1=1802AOC AOC ∴∠+∠︒, 120AOC ∴∠=︒,故答案:120°;(2)AOC ∠与BOD ∠为对顶角,45AOC BOD ∴∠=∠=︒,BOD ∴∠的度数减少:1204575︒-︒=︒,故答案为:75°.12.答案:①解析:12∠=∠,//AC BD ∴(同位角相等,两直线平行),而34∠=∠或12//l l 均不能判定//AC BD ,故答案为:①.13.答案:25°解析://AB CD ,45GFB FED ∴∠=∠=︒,20HFB ∠=︒,452025GFH GFB HFB ∴∠=∠-︒-︒∠==︒,故答案为:25°.14.答案:90︒解析:若//AB CD ,180BAC DCA ∴∠+∠=︒,AE 平分BAC ∠,CE 平分ACD ∠,180121809090E ∴∠=-∠-∠=︒-︒=︒.故答案为:90°.15.答案:已知;GH ;内错角相等,两直线平行;两直线平行,同旁内角互补;垂直的定义;垂直的定义解析:证明:12∠=∠(已知),//EF GH ∴(内错角相等,两直线平行)180FAB HBA ∴∠+∠=︒(两直线平行,同旁内角互补)AB GH ⊥(已知),90HBA ∴∠=︒(垂直的定义)1801809090FAB HBA ∴∠=︒-∠=-︒=︒,AB EF ∴⊥(垂直的定义),故答案为:已知;GH ;内错角相等,两直线平行;两直线平行,同旁内角互补;垂直的定义;垂直的定义.16.答案:都只能折出一条,理由见解析解析:折出过点P 且与l 垂直的直线,这样的直线只能折出一条,理由是:过直线上的一点有且只有一条直线与已知直线垂直;过点Q 且与l 垂直的直线,这样的直线也只能折出一条,理由是:过直线外的一点有且只有一条直线与已知直线垂直.17.答案:(1)由图可得,1∠的同位角是ELB JHM ∠∠,.(2)如图,过点H 作//HN AB ,则//HN CD ,故12GHN FHN ∠=∠∠=∠,.因为148243∠=︒∠=︒,,所以1291∠+∠=︒,所以91GHN FHN ∠+∠=︒,所以91GHF GHN FHN ∠=∠+∠=︒,即91GHF ∠=︒.18.答案:125°解析:证明:1180BGF ∠+∠=︒,155∠=︒,180118055125BGF ∴∠=︒-∠=︒-︒=︒,A F ∠=∠,//AC DF ∴,C CEF ∴∠=∠,C D ∠=∠,CEF D ∴∠=∠,//CE BD ∴,2125BGF ∴∠=∠=︒.19.答案:135AOF ∠=︒解析:因为:4:1AOD BOE ∠∠=,所以设4AOD x ∠=,则BOE x ∠=.因为OE 平分BOD ∠,所以22BOD BOE x ∠=∠=.因为180AOD BOD ∠+∠=︒,所以42180x x +=︒,解得30x =︒. 所以120AOD ∠=︒,60BOD ∠=︒,30BOE DOE ∠=∠=︒,所以150COE ∠=︒. 因为OF 平分COE ∠,所以1752EOF COE ∠=∠=︒.所以45BOF EOF BOE ∠=∠-∠=︒.所以180135AOF BOF ∠=-∠=︒︒.20.答案:平行,理由见解析解析://BE DF ,理由如下:BE ,DF 分别平分ABC ∠,ADC ∠,12ABE ABC ∴∠=∠,12ADF ADC ∠=∠, 180ADC ABC ∠+∠=︒,()1902ADF ABE ADC ABC ∴∠+∠=∠+∠=︒, 又90ADF AFD ∠+∠=︒,ABE AFD ∴∠=∠,//BE DF ∴.21.答案:(1)//AB CD(2)证明见解析(3)HPQ ∠的大小不会发生变化,其值为45°解析:(1)如图1,//AB CD , 1∠与2∠互补,12180∴∠+∠=︒. 又1AEF ∠=∠,2CFE ∠=∠,180AEF CFE ∴∠+∠=︒, //AB CD ∴;(2)如图2,由(1)知,//AB CD ,180BEF EFD ∴∠+∠=︒.又BEF ∠与EFD ∠的角平分线交于点P ,1()902FEP EFP BEF EFD ∴∠+∠=∠+∠=︒, 90EPF ∴∠=︒,即EG PF ⊥. GH EG ⊥, //PF GH ∴;(3)HPQ ∠的大小不会发生变化,理由如下: PHK HPK ∠=∠,2PKG HPK ∴∠=∠, GH EG ⊥,90902KPG PKG HPK ∴∠=︒-∠=︒-∠, 180902EPK KPG HPK ∴∠=︒-∠=︒+∠, PQ 平分EPK ∠,1452QPK EPK HPK ∴∠=∠=︒+∠, 45HPQ QPK HPK ∴∠=∠-∠=︒,HPQ ∴∠的大小不会发生变化,其值为45°.。
北师大版七年级数学下册第二章相交线与平行线同步测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,直线b、c被直线a所截,则1∠与2∠是()A.对顶角B.同位角C.内错角D.同旁内角2、如图,射线AB的方向是北偏东70°,射线AC的方向是南偏西30°,则∠BAC的度数是()A.100°B.140°C.160°D.105°3、以下3个说法中:①连接两点间的线段叫做这两点的距离;②经过两点有一条直线,并且只有一条直线;③同一个锐角的补角一定大于它的余角.正确的是()A .①B .③C .①②D .②③4、下列关于画图的语句正确的是( ).A .画直线8cm AB =B .画射线8cm OA =C .已知A 、B 、C 三点,过这三点画一条直线D .过直线AB 外一点画一直线与AB 平行5、若α∠的补角是125°24',则α∠的余角是( )A .90°B .54°36'C .36°24'D .35°24'6、下列说法中,正确的是( )A .从直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离B .互相垂直的两条直线不一定相交C .直线AB 外一点P 与直线上各点连接而成的所有线段中最短线段的长是7cm ,则点P 到直线AB 的距离是7cmD .过一点有且只有一条直线垂直于已知直线7、若α∠的补角是150°,则α∠的余角是( )A .30°B .60°C .120°D .150°8、已知∠A =37°,则∠A 的补角等于( )A .53°B .37°C .63°D .143°9、在如图中,∠1和∠2不是同位角的是( )A .B .C .D .10、如图,若AB ∥CD ,CD ∥EF ,那么∠BCE =( )A .180°-∠2+∠1B .180°-∠1-∠2C .∠2=2∠1D .∠1+∠2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B =40°,则∠DAC 的度数为____.2、(1)已知α∠与β∠互余,且3518α'∠=︒,则β∠=________.(2)82325'''︒+________=180°.(3)若27m n a b -+与443a b -是同类项,则m +n =________.3、如图,点O 在直线AB 上,OD ⊥OE ,垂足为O .OC 是∠DOB 的平分线,若∠AOD =70°,则∠COE =__________度.4、已知∠1=71°,则∠1的补角等于__________度.5、已知一个角的补角是这个角的余角的3倍,则这个角是______度.三、解答题(5小题,每小题10分,共计50分)1、如图,直线AB,CD相交于点O,90∠.∠=︒,OF平分AOEFOD(1)写出图中所有与AOD∠互补的角;(2)若120∠的度数.AOE∠=︒,求BOD2、如图,直线AB,CD,EF相交于点O,(1)指出∠AOC,∠EOB的对顶角及∠AOC的邻补角.(2)图中一共有几对对顶角?指出它们.3、如图,已知AB CD∠,求证1290∠,CE平分BCD∥,BE平分ABC∠+∠=︒.证明:∵BE平分ABC∠(已知),∴2∠=(),同理1∠=,∴1122∠+∠=,又∵AB CD∥(已知)∴ABC BCD∠+∠=(),∴1290∠+∠=︒.4、(感知)已知:如图①,点E在AB上,且CE平分ACD∠,12∠=∠.求证:AB CD∥.将下列证明过程补充完整:证明:∵CE平分ACD∠(已知),∴2∠=∠__________(角平分线的定义),∵12∠=∠(已知),∴1∠=∠___________(等量代换),∴AB CD ∥(______________).(探究)已知:如图②,点E 在AB 上,且CE 平分ACD ∠,AB CD ∥.求证:12∠=∠.(应用)如图③,BE 平分DBC ∠,点A 是BD 上一点,过点A 作AE BC ∥交BE 于点E ,:4:5ABC BAE ∠∠=,直接写出E ∠的度数.5、如图,直线AB 、CD 相交于点O ,∠EOC =90°,OF 是∠AOE 的角平分线,∠COF =34°,求∠BOD 的度数.-参考答案-一、单选题1、B【分析】根据对顶角、同位角、内错角、同旁内角的特征去判断即可.【详解】∠1与∠2是同位角故选:B【点睛】本题考查了同位角的含义,理解同位角的含义并正确判断同位角是关键.2、B【分析】BAD CAE DAE再利用角的和差关系可得答案. 根据方位角的含义先求解,,,【详解】解:如图,标注字母,射线AB的方向是北偏东70°,射线AC的方向是南偏西30°,907020,30,BAD CAE而90,DAE ∠=︒309020140,BAC CAE DAE BAD故选B【点睛】本题考查的是角的和差关系,垂直的定义,方位角的含义,掌握“角的和差与方位角的含义”是解本题的关键.3、D【分析】由题意根据线段的性质,余、补角的概念,两点间的距离以及直线的性质逐一进行分析即可.【详解】解:连接两点间的线段的长度,叫做这两点的距离,故①不符合题意;经过两点有一条直线,并且只有一条直线,故②符合题意;同一个锐角的补角一定大于它的余角,故③符合题意.故选:D.【点睛】本题考查线段的性质,余、补角的概念和两点间的距离以及直线的性质,主要考查学生的理解能力和判断能力.4、D【分析】直接利用直线、射线的定义分析得出答案.【详解】解:A 、画直线AB =8cm ,直线没有长度,故此选项错误;B 、画射线OA =8cm ,射线没有长度,故此选项错误;C 、已知A 、B 、C 三点,过这三点画一条直线或2条、三条直线,故此选项错误;D 、过直线AB 外一点画一直线与AB 平行,正确.故选:D .【点睛】此题主要考查了直线、射线的定义及画平行线,正确把握相关定义是解题关键.5、D【分析】根据题意,得α∠=180°-125°24',α∠的余角是90°-(180°-125°24')=125°24'-90°,选择即可.【详解】∵α∠的补角是125°24',∴α∠=180°-125°24',∴α∠的余角是90°-(180°-125°24')=125°24'-90°=35°24',故选D .【点睛】本题考查了补角,余角的计算,正确列出算式是解题的关键.6、C【分析】根据点到直线距离的定义分析,可判断选项A 和C ;根据相交线的定义分析,可判断选项B ,根据垂线的定义分析,可判断选项D ,从而完成求解.【详解】从直线外一点到这条直线的垂线段的长度,叫做这个点到这条直线的距离,即选项A 错误;在同一平面内,互相垂直的两条直线一定相交,即选项B错误;直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cm,即选项C正确;在同一平面内,过一点有且只有一条直线垂直于已知直线,即选项D错误;故选:C.【点睛】本题考查了点和直线的知识;解题的关键是熟练掌握点到直线距离、相交线、垂线的性质,从而完成求解.7、B【分析】根据补角、余角的定义即可求解.【详解】∠的补角是150°∵α∠=180°-150°=30°∴α∠的余角是90°-30°=60°∴α故选B.【点睛】此题主要考查余角、补角的求解,解题的关键是熟知如果两个角的和为90度,这两个角就互为余角;补角是指如果两个角的和是一个平角,那么这两个角叫互为补角,其中一个角叫做另一个角的补角8、D【分析】根据补角的定义:如果两个角的度数和为180度,那么这两个角互为补角,进行求解即可.【详解】解:∵∠A=37°,∴∠A的补角的度数为180°-∠A=143°,故选D.【点睛】本题主要考查了求一个角的补角,熟知补角的定义是解题的关键.9、D【分析】同位角的定义:两条直线a,b被第三条直线c所截,在截线c的同侧,被截两直线a,b的同一方向的两个角,我们把这样的两个角称为同位角,依此即可求解.【详解】解:A、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;B、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;C、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;D、∠1与∠2的一边不在同一条直线上,不是同位角,符合题意.故选:D.【点睛】本题题考查三线八角中的同位角识别,解题关键在于掌握判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.10、A【分析】根据两直线平行,内错角相等,同旁内角互补,这两条性质解答.【详解】∵AB∥CD,CD∥EF,∴∠1=∠BCD ,∠ECD +∠2=180°,∴∠BCE =∠BCD +∠ECD =180°-∠2+∠1,故选A .【点睛】本题考查了平行线的性质,正确选择合适的平行线性质是解题的关键.二、填空题1、40°【分析】根据平行线的性质可得∠EAD =∠B ,根据角平分线的定义可得∠DAC =∠EAD ,即可得答案.【详解】∵AD ∥BC ,∠B =40°,∴∠EAD =∠B =40°,∵AD 是∠EAC 的平分线,∴∠DAC =∠EAD =40°,故答案为:40°【点睛】本题考查平行线的性质及角平分线的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.2、5442'︒ 972755'''︒ 3【分析】(1)根据余角的定义和角度的四则运算法则进行求解即可;(2)根据角度的四则运算法则求解即可;(3)根据同类项的定义,先求出m 、n 的值,然后代值计算即可.【详解】解:(1)α∠与β∠互余,且3518α'∠=︒,∴90=903518=5442βα'∠=︒-︒-︒'︒∠;故答案为:5442'︒;(2)18082325=972755''''''︒-︒︒;故答案为:972755'''︒;(3)∵27m n a b -+与443a b -是同类项,∴2474m n -=⎧⎨+=⎩, ∴63m n =⎧⎨=-⎩, ∴()633m n +=+-=.故答案为:3.【点睛】本题主要考查了求一个角的余角,角度的四则运算,同类项的定义,代数式求值,解一元一次方程,熟知相关知识是解题的关键.3、35【分析】根据补角的性质,可得∠BOD =110°,再由OC 是∠DOB 的平分线,可得1552COD BOC BOD ∠=∠=∠=︒ ,又由OD ⊥OE ,可得到∠BOE =20°,即可求解. 【详解】解:∵∠AOD=70°,∠AOD+∠BOD=180°,∴∠BOD=110°,∵OC是∠DOB的平分线,∴1552COD BOC BOD∠=∠=∠=︒,∵OD⊥OE,∴∠DOE=90°,∴∠BOE=∠BOD-∠DOE=20°,∴∠COE=∠BOC-∠BOE=35°.故答案为:35【点睛】本题主要考查了补角的性质,角平分线的定义,角的和与差,熟练掌握补角的性质,角平分线的定义,角的和与差运算是解题的关键.4、109【分析】两角互为补角,和为180°,那么计算180°-∠1可求补角.【详解】解:设所求角为∠α,∵∠α+∠1=180°,∠1=71,∴∠α=180°-71=109°.故答案为:109【点睛】此题考查的是角的性质,两角互余和为90°,互补和为180°.5、45︒【分析】设这个角为,x ︒ 则这个角的补角为:()180,x -︒ 这个角的余角为:()90,x -︒ 根据等量关系一个角的补角是这个角的余角的3倍,列方程()180390x x -=-,解方程可得.【详解】解:设这个角为,x ︒ 则这个角的补角为:()180,x -︒ 这个角的余角为:()90,x -︒()180390x x ∴-=-,1802703x x ∴-=- ,290x ∴=,45x ∴=,答:这个角为45︒.故答案为:45︒.【点睛】本题考查的是余角与补角的含义,一元一次方程的应用,掌握以上知识是解题的关键.三、解答题1、(1)AOC ∠,BOD ∠,DOE ∠;(2)30°【分析】(1)根据邻补角的定义确定出∠AOC 和∠BOD ,再根据角平分线的定义可得∠AOF =∠EOF ,根据垂直的定义可得∠COF =∠DOF =90°,然后根据等角的余角相等求出∠DOE =∠AOC ,从而最后得解;(2)根据角平分线的定义求出∠AOF ,再根据余角的定义求出∠AOC ,然后根据对顶角相等解答.【详解】解:(1)因为直线AB ,CD 相交于点O ,所以AOC ∠和BOD ∠与AOD ∠互补.因为OF 平分AOE ∠,所以AOF EOF ∠=∠.因为90FOD ∠=︒,所以18090COF FOD ∠=︒-∠=︒.因为90AOC COF AOF EOF ∠=∠-∠=︒-∠,90DOE FOD EOF EOF ∠=∠-∠=︒-∠,所以AOC DOE ∠=∠,所以与AOD ∠互补的角有AOC ∠,BOD ∠,DOE ∠.(2)因为OF 平分AOE ∠,所以111206022AOF AOE ∠=∠=⨯︒=︒,由(1)知,90COF ∠=︒,所以906030AOC COF AOF ∠=∠-∠=︒-︒=︒,由(1)知,AOC ∠和BOD ∠与AOD ∠互补,所以30BOD AOC ∠=∠=︒(同角的补角相等).【点睛】本题考查了余角和补角,对顶角相等的性质,角平分线的定义,难点在于(1)根据等角的余角相等确定出与∠AOD 互补的第三个角.2、(1)∠AOC 的对顶角是∠BOD ,∠EOB 的对顶角是∠AOF ,.∠AOC 的邻补角是∠AOD ,∠BOC ;(2)共有6对对顶角,它们分别是∠AOC 与∠BOD ,∠AOE 与∠BOF ,∠AOF 与∠BOE ,∠AOD 与∠BOC ,∠EOD 与∠COF ,∠EOC 与∠FOD【分析】根据对顶角的定义:两个角有一个公共点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角叫做对顶角;邻补角的定义:两个角有一条公共边,它们的另一边互为反向延长线,具有这种位置关系的两个角叫做邻补角,进行求解即可.【详解】解:(1)由题意得:∠AOC 的对顶角是∠BOD ,∠EOB的对顶角是∠AOF.∠AOC的邻补角是∠AOD,∠BOC.(2)图中共有6对对顶角,它们分别是∠AOC与∠BOD,∠AOE与∠BOF,∠AOF与∠BOE,∠AOD与∠BOC,∠EOD与∠COF,∠EOC与∠FOD.【点睛】本题主要考查了对顶角和邻补角的定义,熟知定义是解题的关键.3、12∠ABC;角平分线的定义;12∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补【分析】由平行线的性质可得到∠BAC+∠ACD=180°,再结合角平分线的定义可求得∠1+∠2=90°,可得出结论,据此填空即可.【详解】证明:∵BE平分∠ABC(已知),∴∠2=12∠ABC(角平分线的定义),同理∠1=12∠BCD,∴∠1+∠2=12(∠ABC+∠BCD),又∵AB∥CD(已知)∴∠ABC+∠BCD=180°(两直线平行,同旁内角互补),∴∠1+∠2=90°.故答案为:12∠ABC;角平分线的定义;12∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补.【点睛】本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质是解题的关键.4、【感知】ECD;ECD;内错角相等,两直线平行;【探究】见解析;【应用】40°【分析】感知:读懂每一步证明过程及证明的依据,即可完成解答;探究:利用角平分线的性质得∠2=∠DCE,由平行线性质可得∠DCE=∠1,等量代换即可解决;应用:利用角平分线的性质得∠ABE=∠CBE,由平行线性质可得∠CBE=∠E,等量代换得∠E=∠ABE,由∠∠=即可求得∠ABC的度数,从而可求得∠E的度数.ABC BAE:4:5【详解】感知∵CE平分ACD∠(已知),∴2=ECD(角平分线的定义),∵12∠=∠(已知),∴1∠=∠ECD(等量代换),∴AB CD∥(内错角相等,两直线平行).故答案为:ECD;ECD;内错角相等,两直线平行探究∵CE平分ACD∠,∴2ECD∠=∠,∵AB CD∥,∴l ECD∠=∠,∵12∠=∠.应用∵BE 平分∠DBC , ∴12ABE CBE ABC ∠=∠=∠,∵AE ∥BC ,∴∠CBE =∠E ,∠BAE +∠ABC =180゜,∴∠E =∠ABE ,∵:4:5ABC BAE ∠∠=,∴∠ABC =80゜∴40ABE ∠=︒∴40E ∠=︒【点睛】本题考查平行线的判定与性质,角平分线的性质,掌握平行线的性质与判定是关键. 5、22︒【分析】根据90EOC ∠=︒、34COF ∠=︒可得56EOF ∠=︒,OF 是∠AOE 的角平分线,可得56AOF EOF ∠=∠=︒,所以22AOC AOF COF ∠=∠-∠=︒,再根据对顶角相等,即可求解.【详解】解:∵90EOC ∠=︒、34COF ∠=︒,∴56EOF ∠=︒,∵OF 是∠AOE 的角平分线,∴56AOF EOF ∠=∠=︒,∴22AOC AOF COF ∠=∠-∠=︒,∴22BOD AOC ∠=∠=︒,【点睛】此题考查了角平分线的有关计算,解题的关键是掌握角平分线的定义以及角之间的和差关系.。
北师大版七年级下册数学第二章相交线与平行线测试题(附答案)北师大版七年级下册数学第二章相交线与平行线测试题(附答案)一、单选题1.如图,已知直线l1∥l2,将一块直角三角板ABC按如图所示方式放置,若∠1=39°,则∠2等于()A。
39° B。
45° C。
50° D。
51°2.如图.直线a∥b,直线L与a、b分别交于点A,B,过点A作AC⊥b于点C.若∠1=50°,则∠2的度数为()A。
130° B。
50° C。
40° D。
25°3.如图,三点共线A、B、C,D、E、F三点共线,且AD∥CF,BE∥CD,下列结论错误的是()A。
∠ABE=∠XXX∠ABE=∠CDEC。
∠ABE=∠XXX∠ABE=∠BDF4.如图,平行线AB∥CD,EF⊥CD,垂足为G,图中∠AGE=()A。
90° B。
45° C。
30° D。
60°5.如图,互余的角有()A。
1个 B。
2个 C。
3个 D。
4个6.如图,AB∥CD,EF∥GH,则下列等式正确的是()A。
∠AEF=∠GHF B。
∠AEF=∠HGFC。
∠XXX∠GHF D。
∠XXX∠HGF7.已知同一平面内的三条直线AB,CD,EF,AB∥CD,CD∥EF,则下列结论错误的是()A。
AB∥EF B。
AB∥CD C。
EF∥CD D。
AB∥EF8.如果a<b,且a+b=5c,如果c<a,b<c,比a与b 的和的3倍少2,那么a与b的位置关系是()A。
a<b B。
a>b C。
a=b D.无法确定9.如图,已知AB∥CD,AE=2cm,EC=3cm,则图中互相平行的线段是()A。
AB//CD B。
AE//DC C。
BE//CD D。
AB//EC10.如图,AB∥CD,点E在直线AD上,且∠AEC=34°,则∠BED的大小为()A。
北师大版七年级下册数学第二章平行线与相交线练习题一、选择题1、如图,直线a、b、c、d,已知c⊥a,c⊥b,直线b、c、d交于一点,若⊥1=500,则⊥2等于【】A.600B.500C.400D.3002、如图,AB⊥BC,BC⊥CD,⊥EBC=⊥BCF,那么,⊥ABE与⊥DCF的位置与大小关系是()A.是同位角且相等B.不是同位角但相等;C.是同位角但不等D.不是同位角也不等3、如果两个角的一边在同一直线上,另一边互相平行,那么这两个角只能()A.相等B.互补C.相等或互补D.相等且互补4、下列说法中,为平行线特征的是()⊥两条直线平行,同旁内角互补; ⊥同位角相等, 两条直线平行;⊥内错角相等, 两条直线平行; ⊥垂直于同一条直线的两条直线平行.A.⊥B.⊥⊥C.⊥D.⊥和⊥5、如图,AB⊥CD⊥EF,若⊥ABC=50°,⊥CEF=150°,则⊥BCE=()A.60°B.50°C.30°D.20°6、如图,如果AB⊥CD,则角α、β、γ之间的关系为()A.α+β+γ=360°B.α-β+γ=180°C.α+β-γ=180°D.α+β+γ=180°7、如图,由A到B 的方向是()A.南偏东30°B.南偏东60°C.北偏西30°D.北偏西60°8、如图,由AC⊥ED,可知相等的角有()A.6对B.5对C.4对D.3对9、如图,直线AB、CD交于O,EO⊥AB于O,⊥1与⊥2的关系是()更多功能介绍A.互余B.对顶角C.互补D.相等10、若⊥1和⊥2互余,⊥1与⊥3互补,⊥3=120°,则⊥1与⊥2的度数分别为() A.50°、40°B.60°、30°C.50°、130°D.60°、120°11、下列语句正确的是()A.一个角小于它的补角B.相等的角是对顶角C.同位角互补,两直线平行D.同旁内角互补,两直线平行12、图中与⊥1是内错角的角的个数是()A.2个B.3个C.4个D.5个13、如图,直线AB和CD相交于点O,⊥AOD和⊥BOC的和为202°,那么⊥AOC的度数为()A.89°B.101°C.79°D.110°14、如图,⊥1和⊥2是对顶角的图形的个数有()A.1个B.2个C.3个D.0个15、如图,直线a、b被直线c所截,现给出下列四个条件:⊥⊥1=⊥5,⊥⊥1=⊥7,⊥⊥2+⊥3=180°,⊥⊥4=⊥7,其中能判定a⊥b的条件的序号是()A.⊥⊥B.⊥⊥C.⊥⊥D.⊥⊥二、填空题16、如图,⊥ACD=⊥BCD,DE⊥BC交AC于E,若⊥ACB=60°,⊥B=74°,则⊥EDC=___°,⊥CDB=____°。
北师大版七年级数学下册第二章《相交线与平行线》同步练习题(含答案)一、选择题1、如图,将一张长方形纸条折叠,如果∠2比∠1大6°,则∠2的度数为( ) A .108°B .114°C .118°D .122°2、如图,将一块长方形纸条折成如图的形状,若已知∠1=α,则∠2的度数为( ) A .90°-αB .90°+αC .90°-α2D .90°+α23、如图,在长方形纸片ABCD 中,在AD 边上取一点E ,沿BE 折叠,使点C ,D 分别落在点C 1,D 1处,且点A 刚好落在C 1D 1上.若∠ABC 1=45°,则∠BED =( ) A .112.5°B .135°C .125°D .100.5°4、如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB ,CD ,若CD ∥BE ,∠1=40°,则∠2的度数是( ) A .90°B .100°C .105°D .110°5、如图,已知AB ∥DE ,∠1=30°,∠2=35°,则∠BCE 的度数为( ) A .70°B .65°C .35°D .5°6、如图,直线AB ∥CD ,AE ⊥CE 于点E.若∠EAB =120°,则∠ECD 的度数是( ) A .120°B .100°C .150°D .160°二、填空题7、如图,将长方形ABCD沿EF折叠,点D落在AB边上的H点处,点C落在点G处.若∠AEH =30°,则∠EFC等于______.8、如图a是长方形纸带,∠DEF=15°,将纸带沿EF折叠成图b,则∠AEG=______.度,再沿BF折叠成图c.则图中的∠CFE=______度.9、已知:如图,AB∥EF,∠ABC=75°,∠CDF=135°,则∠BCD=______度.10、如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=______.11、如图,AB∥CD,∠BED=110°,BF平分∠ABE,DF平分∠CDE,则∠BFD=______.12、如图是我们生活中经常接触的小刀,刀片的外壳是一个直角梯形,刀片上、下是平行的,转动刀片时会形成∠1和∠2,则∠1+∠2=______.三、解答题13、如图,在Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=60°.点D 在边OA上,将图中的△COD绕点O按每秒10°的速度沿顺时针方向旋转一周,当旋转了多少秒时,边CD恰好与边AB平行?14、问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.小明的思路是:过P作PE∥AB,通过平行线性质来求∠APC.(1)按小明的思路,易求得∠APC的度数为______度;(2)问题迁移:如图2,AB∥CD,点P在射线OM上运动,记∠PAB=α,∠PCD=β,当点P 在B,D两点之间运动时,问∠APC与α,β之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P在B,D两点外侧运动时(点P与点O,B,D三点不重合),请直接写出∠APC与α,β之间的数量关系.15、已知AM∥CN,点B为平面内一点,AB⊥BC于点B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,∠BAD与∠C有何数量关系,并说明理由;(3)如图3,在(2)问的条件下,点E,F在DM上,连接BE,BF,CF,BF平分∠DBC,BE平分∠ABD.若∠FCB+∠NCF=180°,∠BFC=5∠DBE,求∠EBC的度数.参考答案一、选择题1、如图,将一张长方形纸条折叠,如果∠2比∠1大6°,则∠2的度数为(D) A .108°B .114°C .118°D .122°2、如图,将一块长方形纸条折成如图的形状,若已知∠1=α,则∠2的度数为(C) A .90°-αB .90°+αC .90°-α2D .90°+α23、如图,在长方形纸片ABCD 中,在AD 边上取一点E ,沿BE 折叠,使点C ,D 分别落在点C 1,D 1处,且点A 刚好落在C 1D 1上.若∠ABC 1=45°,则∠BED =(A) A .112.5°B .135°C .125°D .100.5°4、如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB ,CD ,若CD ∥BE ,∠1=40°,则∠2的度数是(B) A .90°B .100°C .105°D .110°5、如图,已知AB ∥DE ,∠1=30°,∠2=35°,则∠BCE 的度数为(B) A .70°B .65°C .35°D .5°6、如图,直线AB ∥CD ,AE ⊥CE 于点E.若∠EAB =120°,则∠ECD 的度数是(C) A .120°B .100°C .150°D .160°二、填空题7、如图,将长方形ABCD沿EF折叠,点D落在AB边上的H点处,点C落在点G处.若∠AEH =30°,则∠EFC等于105°.8、如图a是长方形纸带,∠DEF=15°,将纸带沿EF折叠成图b,则∠AEG=150度,再沿BF折叠成图c.则图中的∠CFE=135度.9、已知:如图,AB∥EF,∠ABC=75°,∠CDF=135°,则∠BCD=30度.10、如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=140°.11、如图,AB∥CD,∠BED=110°,BF平分∠ABE,DF平分∠CDE,则∠BFD=125°.12、如图是我们生活中经常接触的小刀,刀片的外壳是一个直角梯形,刀片上、下是平行的,转动刀片时会形成∠1和∠2,则∠1+∠2=90°.三、解答题13、如图,在Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=60°.点D 在边OA上,将图中的△COD绕点O按每秒10°的速度沿顺时针方向旋转一周,当旋转了多少秒时,边CD恰好与边AB平行?解:分两种情况:当两三角形在点O的同侧时,如图1,设CD与OB相交于点E.∵AB∥CD,∴∠CEO=∠B=40°.∵∠C=60°,∴∠OOE=180°-60°-40°-80°.∴∠DOE=∠COD-∠COE=10°.∴旋转角∠AOD=∠AOB+∠DOE=90°+10°=100°.∵每秒旋转10°,∴旋转的时间为100÷10=10(秒).当两三角形在点O的异侧时,如图2,延长BO与CD相交于点E.∵AB∥CD,∴∠CEO=∠B=40°.∵∠C=60°,∴∠COE=180°-60°-40°=80°.∴旋转角为360°-∠COE=360°-80°=280°.∵每秒旋转10°,∴旋转的时间为280÷10=28(秒).综上所述,当旋转了10秒或28秒时,边CD恰好与边AB平行.14、问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.小明的思路是:过P作PE∥AB,通过平行线性质来求∠APC.(1)按小明的思路,易求得∠APC的度数为110度;(2)问题迁移:如图2,AB∥CD,点P在射线OM上运动,记∠PAB=α,∠PCD=β,当点P 在B,D两点之间运动时,问∠APC与α,β之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P在B,D两点外侧运动时(点P与点O,B,D三点不重合),请直接写出∠APC与α,β之间的数量关系.图1 图2解:∠APC=α+β.理由:过点P作PE∥AB交AC于点E,∵AB∥CD,∴AB∥PE∥CD.∴α=∠APE,β=∠CPE.∴∠APC=∠APE+∠CPE=α+β.(3)如图3,当P在BD延长线上时,∠CPA=α-β;如图4,当P在DB延长线上时,∠CPA=β-α.图3 图415、已知AM∥CN,点B为平面内一点,AB⊥BC于点B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,∠BAD与∠C有何数量关系,并说明理由;(3)如图3,在(2)问的条件下,点E,F在DM上,连接BE,BF,CF,BF平分∠DBC,BE平分∠ABD.若∠FCB+∠NCF=180°,∠BFC=5∠DBE,求∠EBC的度数.解:(1)∠A+∠C=90°(2)过点B作BG∥DM,∵BD⊥AM,∴∠ABD+∠BAD=90°,DB⊥BG,即∠ABD+∠ABG=90°.又∵AB⊥BC,∴∠CBG+∠ABG=90°.∴∠ABD=∠CBG.∵AM∥CN,BG∥AM,∴CN∥BG.∴∠C=∠CBG.∴∠ABD=∠C.∴∠C+∠BAD=90°.(3)过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG.∴∠ABF=∠GBF.设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC =5∠DBE=5α,∴∠AFC=5α+β.∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=5α+β.在△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+5α+(5α+β)=180°.①由AB⊥BC,可得β+β+2α=90°.②由①②联立方程组,解得α=9°.∴∠ABE=9°.∴∠EBC=∠ABE+∠ABC=9°+90°=99°.。
七年级数学下册第二章《相交线与平行线》单元检测练习命题人:家长签名:班级:______________ 姓名:________________ 座位号:________ 总分一. 选择题(每小题3分,共10小题,答案写在表格内,否则答案无效)题号 1 2 3 4 5 6 7 8 9 10 答案1.已知∠α=35°,那么∠α的余角等于( )A.35°B.55°C.65°D.145°2.下面四个图形中,∠1与∠2是对顶角的图形()A.B.C.D.3.下列四幅图中,∠1和∠2是同位角的是()A.⑴⑵B.⑶⑷C.⑴⑵⑶D.⑵⑶⑷4.下列说法:①在同一平面内,不相交的两条线段叫做平行线;②过一点,有且只有一条直线平行于已知直线;③两条平行直线被第三条直线所截,同位角相等;④同旁内角相等,两直线平行.正确的个数有()个.A.1 B.2 C.3 D.45.如图,已知直线a∥b,直线c与a,b相交,∠1=110°,则∠2的度数为( )(第5题图)(第6题图)A.60°B.70°C.80°D.110°6.如图,直线AB、CD相交于点E,DF∥AB.若∠AEC=100°,则∠D等于()A.70°B.80°C.90°D.100°7.如图所示,直线l 1,l 2被直线l 所截形成八个角.由下列哪一个选项中的条件可判定l 1∥l 2 ( )(第7题图) (第8题图) A .∠2+∠4=180° B .∠3+∠8=180° C .∠5+∠6=180° D .∠7+∠8=180° 8.如图,AB∥CD,则图中∠1、∠2、∠3关系一定成立的是 ( )A .∠1+∠2+∠3=180°B .∠1+∠2+∠3=360°C .∠1+∠3=2∠2D .∠1+∠3=∠29.如图,A B∥CD,∠1=58°,FG 平分∠EFD,则∠FGB 的度数等于( )(第9题图) (第10题图) A .122°B .151°C .116°D .97°10.如图,已知//AB CD .直线EF 分别交,AB CD 于点,,E F EG 平分BEF ∠.若1 50∠=︒.则2∠的度数为( ) A .50︒B .65︒C .60︒D .70︒二.填空题(每小题4分,共7小题)11.一个角的度数为20°,则它的补角的度数为_____________12.如图,图①是装修工人装修的一部分,图②是一活动角工具(∠1的度数可大可小),利用活动角工具,装修工人能检测出a 与b 是否平行,其中的依据是_______________________________________________________13.如图,已知AB∥CD,∠1=130°,则∠2=_____________14.如图,直线a∥b,直线c与直线a、b分别相交于A、B两点,若∠1=60°,则∠2=_______(第14题图)(第15题图)15.如图,直线a,b与直线c,d相交,若∠1=∠2,∠3=70°,则∠4的度数是16.如图,∠1=80°,∠2=100°,∠3=76°,则∠4的度数是___________(第16题图)(第17题图)17.如图,直线a,b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°;⑤∠6=∠8,其中能判断a∥b的是_______________________________ (填序号)三.解答题(18-20每题6分,21-23每题8分,24-25每题10分)18.如图,∠1=∠2,DE⊥BC,AB⊥BC,试说明:∠A=∠3.解:因为DE⊥BC,AB⊥BC(已知),所以∠DEC=∠ABC=90°(____________________________________),所以DE∥AB(____________________________________________),所以∠2=________ (____________________________________),∠1=________ (____________________________________).因为∠1=∠2(已知),所以∠A=∠3(等量代换).19.如图,已知AC∥DF,直线AF分别与直线BD、CE相交于点G,H,∠1=∠2.求证:∠C=∠D解:∵∠1=∠2(已知)∠1=∠DGH(),∴∠2=_______(等量代换)∴_______∥_______(同位角相等,两直线平行)∴∠C=_______(两直线平行,同位角相等)又∵AC∥DF()∴∠D=∠ABG ()∴∠C=∠D ()20.已知:如图:∠1=∠2,∠3+∠4= 180°;确定直线a,c的位置关系,并说明理由;解:a c;理由:∵∠1=∠2(),∴ a // ( );∵ ∠3+∠4= 180°(),∴ c // ( );∵ a // , c // ,∴ // ( );21.如图,E 点为DF 上的点,B 为AC 上的点,12∠=∠,C D ∠=∠,求证:DF∥AC.证明:∵ 12∠=∠(已知),∠1=∠3,∠2=∠4( ),∴∠3=∠4(等量代换).∴ // ( );∴∠C=∠ABD( )∵∠C=∠D( )∴∠D=__________( )∴AC∥DF ( )22.已知:如图,DE∥BC,∠ADE=64°,BE 平分∠DBC,求∠DEB 的度数.23.如图,直线EF∥GH,点A 在EF 上,AC 交GH 于点B ,若∠FAC=72°,∠ACD=58°,点D 在GH 上,求∠BDC 的度数.24.按要求作图(不写作法,但要保留作图痕迹)已知点P、Q分别在∠AOB的边OA,OB上(如图所示)①作直线PQ;②过点P作OB的垂线;③过点Q作OA的平行线.25.已知:如图,直线a∥b,直线c与直线a、b分别相交于C、D两点,直线d与直线a、b分别相交于A、B两点.(1)如图1,当点P在线段AB上(不与A、B两点重合)运动时,∠1、∠2、∠3之间有怎样的大小关系?请说明理由;(2)如图2,当点P在线段AB的延长线上运动时,∠1、∠2、∠3之间的大小关系为________;(3)如图3,当点P在线段BA的延长线上运动时,∠1、∠2、∠3之间的大小关系为________.七年级数学下册第二章《相交线与平行线》单元检测练习参考答案一. 选择题(每小题3分,共10小题)二.填空题(每小题4分,共7小题)11. 160°12. 同位角相等,两直线平行. 13. 50°14.60° 15.110°16. 76°17. ①③④⑤三.解答题(共8小题)18. 垂直的定义同位角相等,两直线平行∠3两直线平行,内错角相等∠A两直线平行,同位角相等19. 对顶角相等,∠DGH,BD∥CE ,∠ABG,已知,两直线平行,内错角相等,等量代换,20. 解:a // c;理由:∵∠1=∠2(已知),∴ a // b ( 内错角相等,两直线平行);∵ ∠3+∠4= 180°(已知),∴ c // b ( 同旁内角互补,两直线平行);∵ a // b ,c // b ,∴ a // c ( 平行于同一条直线的两条直线平行);21. 对顶角相等;DB;CE;内错角相等,两直线平行;两直线平行,同位角相等;已知;等量代换;内错角相等,两直线平行.22.解:因为DE∥BC,所以∠DBC=∠ADE=64°.因为BE平分∠DBC,所以∠CBE=12∠DBC=12×64°=32°.因为DE∥BC,所以∠DEB=∠CBE=32°.23.解:∵EF∥GH,∴∠ABD+∠FAC=180°,∴∠ABD=180°﹣72°=108°,∵∠ABD=∠ACD+∠BDC,∴∠BDC=∠ABD﹣∠ACD=108°﹣58°=50°.24.解:如图所示:25. (1)解:如图1,过点P作PE∥a,则∠1=∠CPE.∵a∥b,PE∥a,∴PE∥b,∴∠2=∠DPE,∴∠3=∠1+∠2;(2)解:如图2,过点P作PE∥b,则∠2=∠EPD,∵直线a∥b,∴a∥PE,∴∠1=∠3+∠EPD,即∠1=∠2+∠3.故答案为∠1=∠2+∠3;(3)解:如图3,设直线AC与DP交于点F,∵∠PFA是△PC F的外角,∴∠PFA=∠1+∠3,∵a∥b,∴∠2=∠PFA,即∠2=∠1+∠3.故答案为∠2=∠1+∠3.。
北师大新版七年级下学期第2章相交线与平行线单元测试卷一.选择题(共10小题)1.平面内两两相交的8条直线,其交点个数最少为m个,最多为n个,则m+n等于()A.16B.18C.29D.282.下列说法中:①因为对顶角相等,所以相等的两个角是对顶角;②在平面内,不相交的两条直线叫做平行线;③过一点有且只有一条直线与已知直线垂直.正确的是()A.0个B.1个C.2个D.3个3.已知直线AB,CB,l在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则符合题意的图形可以是()A.B.C.D.4.如图,河道l的一侧有A、B两个村庄,现要铺设一条引水管道把河水引向A、B两村,下列四种方案中最节省材料的是()A.B.C.D.5.如图,∠ACB=90°,CD⊥AB,垂足为D,则点B到直线CD的距离是指()A.线段BC的长度B.线段CD的长度C.线段AD的长度D.线段BD的长度6.下列说法正确的是()A.若两条直线被第三条直线所截,则同旁内角互补B.相等的角是对顶角C.有一条公共边并且和为180°的两个角互为邻补角D.若三条直线两两相交,则共有6对对顶角7.下列说法正确的有()①两点之间的所有连线中,线段最短;②相等的角叫对顶角;③过一点有且只有一条直线与已知直线平行;④过一点有且只有一条直线与已知直线垂直;⑤两点之间的距离是两点间的线段;⑥在同一平面内的两直线位置关系只有两种:平行或相交.A.1个B.2个C.3个D.4个8.在下列图形中,由∠1=∠2一定能得到AB∥CD的是()A.B.C.D.9.如图,ABCD为一长条形纸带,AB∥CD,将ABCD沿EF折叠,A、D两点分别与A′、D′对应,若∠1=2∠2,则∠AEF的度数为()A.60°B.65°C.72°D.75°10.下列作图语句正确的是()A.连接AD,并且平分∠BAC B.延长射线ABC.作∠AOB的平分线OC D.过点A作AB∥CD∥EF二.填空题(共15小题)11.平面内有四条不同的直线两两相交,若最多有m个交点,最少有n个交点,那么(﹣n)m=.12.平面内有n条直线,任意两条直线都相交,则最多有个交点.13.如图,直线AB,CD相交于点O,若∠AOC+∠BOD=100°,则∠AOD等于度.14.如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE.∠AOC=∠COB,则∠BOF=°.15.直线AB与射线OC相交于点O,OC⊥OD于O,若∠AOC=60°,则∠BOD=度.16.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠CON=2∠COM,则∠BOD的度数为.17.如图,体育课上老师测量跳远成绩是这样操作的:用一块直角三角板的一边附在踏跳板上,另一边与拉直的皮尺重合,并且使皮尺经过被测试同学的落点,这样做的理由是.18.如图,点A,B,C,D,E在直线l上,点P在直线l外,PC⊥l于点C,在线段P A,PB,PC,PD,PE中,最短的一条线段是,理由是19.如图,CD⊥AB,点E、F在AB上,且CE=10cm,CD=8cm,CF=12cm,则点C到AB的距离是.20.如图,点B到直线DC的距离是指线段的长度.21.两条直线被第三条直线所截,∠2是∠3的同旁内角,∠1是∠3的内错角,若∠2=4∠3,∠3=2∠1,则∠1的度数是.22.如图,∠2的同旁内角是.23.平面上不重合的四条直线,可能产生交点的个数为个.24.下列说法中:①棱柱的上、下底面的形状相同;②若AB=BC,则点B为线段AC的中点;③相等的两个角一定是对顶角;④在同一平面内,不相交的两条直线叫做平行线;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短.正确的有.(只填序号)25.如图,已知直线EF⊥MN垂足为F,且∠1=140°,则当∠2等于时,AB∥CD.参考答案与试题解析一.选择题(共10小题)1.平面内两两相交的8条直线,其交点个数最少为m个,最多为n个,则m+n等于()A.16B.18C.29D.28【分析】由题意可得8条直线相交于一点时交点最少,任意两直线相交都产生一个交点时交点最多,由此可得出m,n的值,从而得出答案.【解答】解:根据题意可得:8条直线相交于一点时交点最少,此时交点为1个,即m =1;任意两直线相交都产生一个交点时交点最多,∵任意三条直线不过同一点,∴此时交点为:8×(8﹣1)÷2=28,即n=28;则m+n=29.故选:C.2.下列说法中:①因为对顶角相等,所以相等的两个角是对顶角;②在平面内,不相交的两条直线叫做平行线;③过一点有且只有一条直线与已知直线垂直.正确的是()A.0个B.1个C.2个D.3个【分析】①对顶角相等,反过来不成立;①不正确;②平行线的定义;②正确;③在同一平面内,命题才成立.【解答】解:①不正确;相等的角不一定是对顶角;②正确;这是平行线的定义;③不正确;必须是在同一平面内;故选:B.3.已知直线AB,CB,l在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则符合题意的图形可以是()A.B.C.D.【分析】根据题意画出图形即可.【解答】解:根据题意可得图形,故选:C.4.如图,河道l的一侧有A、B两个村庄,现要铺设一条引水管道把河水引向A、B两村,下列四种方案中最节省材料的是()A.B.C.D.【分析】垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.【解答】解:依据垂线段最短,以及两点之间,线段最短,可得最节省材料的是:故选:B.5.如图,∠ACB=90°,CD⊥AB,垂足为D,则点B到直线CD的距离是指()A.线段BC的长度B.线段CD的长度C.线段AD的长度D.线段BD的长度【分析】直线外一点到直线的垂线段的长度,叫做点到直线的距离,根据点到直线的距离的定义解答即可.【解答】解:∵BD⊥CD于D,∴点B到直线CD的距离是指线段BD的长度.故选:D.6.下列说法正确的是()A.若两条直线被第三条直线所截,则同旁内角互补B.相等的角是对顶角C.有一条公共边并且和为180°的两个角互为邻补角D.若三条直线两两相交,则共有6对对顶角【分析】根据平行线的性质、对顶角的定义和性质、邻补角的定义判断.【解答】解:A、应该是“若两条平行直线被第三条直线所截,则同旁内角互补”,故错误;B、相等的角不一定都是对顶角,如两直线平行,其中的同位角相等但不是对顶角,故错误;C、如果这两个角在公共边的同侧,则不是邻补角,故错误;D、正确.故选:D.7.下列说法正确的有()①两点之间的所有连线中,线段最短;②相等的角叫对顶角;③过一点有且只有一条直线与已知直线平行;④过一点有且只有一条直线与已知直线垂直;⑤两点之间的距离是两点间的线段;⑥在同一平面内的两直线位置关系只有两种:平行或相交.A.1个B.2个C.3个D.4个【分析】①根据两点之间线段最短判断.②对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.③根据平行公理进行判断.④根据垂线的性质进行判断.⑤距离是指的长度.⑥根据在同一平面内,两条不重合的直线的位置关系.【解答】解:①两点之间的所有连线中,线段最短,故①正确.②相等的角不一定是对顶角,故②错误.③经过直线外一点有且只有一条直线与已知直线平行,故③错误.④同一平面内,过一点有且只有一条直线与已知直线垂直,故④错误.⑤两点之间的距离是两点间的线段的长度,故⑤错误.⑥在同一平面内,两直线的位置关系只有两种:相交和平行,故⑥正确.综上所述,正确的结论有2个.故选:B.8.在下列图形中,由∠1=∠2一定能得到AB∥CD的是()A.B.C.D.【分析】根据同位角相等两直线平行判断即可.【解答】解:如下图,∵∠1=∠2,∴AB∥CD,故选:A.9.如图,ABCD为一长条形纸带,AB∥CD,将ABCD沿EF折叠,A、D两点分别与A′、D′对应,若∠1=2∠2,则∠AEF的度数为()A.60°B.65°C.72°D.75°【分析】由题意∠1=2∠2,设∠2=x,易证∠AEF=∠1=∠FEA′=2x,构建方程即可解决问题.【解答】解:由翻折的性质可知:∠AEF=∠FEA′,∵AB∥CD,∴∠AEF=∠1,∵∠1=2∠2,设∠2=x,则∠AEF=∠1=∠FEA′=2x,∴5x=180°,∴x=36°,∴∠AEF=2x=72°,故选:C.10.下列作图语句正确的是()A.连接AD,并且平分∠BAC B.延长射线ABC.作∠AOB的平分线OC D.过点A作AB∥CD∥EF【分析】根据基本作图的方法,逐项分析,从而得出正确的结论.【解答】解:A.连接AD,不能同时使平分∠BAC,此作图错误;B.只能反向延长射线AB,此作图错误;C.作∠AOB的平分线OC,此作图正确;D.过点A作AB∥CD或AB∥EF,此作图错误;故选:C.二.填空题(共15小题)11.平面内有四条不同的直线两两相交,若最多有m个交点,最少有n个交点,那么(﹣n)m=1.【分析】根据每三条不交于同一点,可得m,根据都交于同一点,可得n,根据乘方的意义,可得答案.【解答】解:每三条不交于同一点,得m==6,都交于同一点,得n=1,(﹣1)6=1,故答案为:1.12.平面内有n条直线,任意两条直线都相交,则最多有个交点.【分析】分别求出2条、3条、4条、5条、6条直线相交时最多的交点个数,找出规律即可解答.【解答】解:2条直线相交最多有1个交点;3条直线相交最多有1+2个交点;4条直线相交最多有1+2+3个交点;5条直线相交最多有1+2+3+4个交点;6条直线相交最多有1+2+3+4+5个交点;…n条直线相交最多有1+2+3+4+5+…+(n﹣1)=个交点.故答案为:.13.如图,直线AB,CD相交于点O,若∠AOC+∠BOD=100°,则∠AOD等于130度.【分析】由对顶角的性质和∠AOC+∠BOD=100°,易求出∠AOC的度数,∠AOC与∠AOD是邻补角,可求出∠AOD的度数.【解答】解:∵∠AOC与∠BOD是对顶角,∴∠AOC=∠BOD,又∵∠AOC+∠BOD=100°,∴∠AOC=50°.∵∠AOC+∠AOD=180°,∴∠AOD=180°﹣∠AOC=180°﹣50°=130°.故答案为:130.14.如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE.∠AOC=∠COB,则∠BOF=30°.【分析】根据对顶角相等求得∠BOD的度数,然后根据角的平分线的定义求得∠EOD的度数,则∠COE即可求得,再根据角平分线的定义求得∠EOF,最后根据∠BOF=∠EOF﹣∠BOF求解.【解答】解:∵∠AOC=∠COB,∠AOB=180°,∴∠AOC=180°×=80°,∴∠BOD=∠AOC=80°,又∵OE平分∠BOD,∴∠DOE=∠BOD=×80°=40°.∴∠COE=180°﹣∠DOE=180°﹣40°=140°,∵OF平分∠COE,∴∠EOF=∠COE=×140°=70°,∴∠BOF=∠EOF﹣∠BOF=70°﹣40°=30°.故答案是:30.15.直线AB与射线OC相交于点O,OC⊥OD于O,若∠AOC=60°,则∠BOD=30或150度.【分析】根据题意画出图形,由OC⊥OD,∠AOC=60°,利用垂直的定义易得∠AOD,再利用补角的定义可得结果.【解答】解:根据题意画图如下,情况一:如图1,∵OC⊥OD,∠AOC=60°,∴∠AOD=∠COD﹣∠AOC=90﹣60°=30°,∴∠COD=180°﹣∠AOD=180°﹣30°=150°;情况二:如图2,∵OC⊥OD,∠AOC=60°,∴∠AOD=∠COD+∠AOC=90°+60°=150°,∴∠COD=180°﹣∠AOD=180°﹣150°=30°,故答案为:150或30.16.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠CON=2∠COM,则∠BOD的度数为60°.【分析】根据垂直得出∠NOM=90°,根据角平分线定义得出∠AOM=∠COM,再利用∠CON=2∠COM,即可得出答案.【解答】解:∵ON⊥OM,∴∠NOM=90°,∵∠CON=2∠COM,∴设∠COM=x,则∠CON=2x,故x+2x=90°,解得:x=30°,∵射线OM平分∠AOC,∴∠AOM=∠COM=30°,∴∠AOC=∠BOD=2∠COM=60°,故答案为:60°.17.如图,体育课上老师测量跳远成绩是这样操作的:用一块直角三角板的一边附在踏跳板上,另一边与拉直的皮尺重合,并且使皮尺经过被测试同学的落点,这样做的理由是垂线段最短.【分析】根据垂线段的性质,可得答案.【解答】解:用一块直角三角板的一边附在踏跳板上,另一边与拉直的皮尺重合,并且使皮尺经过被测试同学的落点,这样做的理由是垂线段最短,故答案为:垂线段最短.18.如图,点A,B,C,D,E在直线l上,点P在直线l外,PC⊥l于点C,在线段P A,PB,PC,PD,PE中,最短的一条线段是PC,理由是垂线段最短【分析】点到直线的距离是指该点到直线的垂线段的长,根据定义即可选出答案.【解答】解:根据点到直线的距离的定义得出线段PC的长是点P到直线l的距离,从直线外一点到这条直线所作的垂线段最短.故答案是:PC;垂线段最短.19.如图,CD⊥AB,点E、F在AB上,且CE=10cm,CD=8cm,CF=12cm,则点C到AB的距离是8cm.【分析】根据点到直线的距离是垂线段的长度,可得答案.【解答】解:∵CD⊥AB,点E、F在AB上,CD=8cm,∴点C到AB的距离是CD=8cm,故答案为:8cm.20.如图,点B到直线DC的距离是指线段BC的长度.【分析】直接利用直线外一点到直线的垂线段的长度,叫做点到直线的距离,进而得出答案.【解答】解:点B到直线DC的距离是指线段BC的长度.故答案为:BC.21.两条直线被第三条直线所截,∠2是∠3的同旁内角,∠1是∠3的内错角,若∠2=4∠3,∠3=2∠1,则∠1的度数是20°.【分析】设∠1=x°,则∠3=2x°,∠2=8x°,根据邻补角互补可得方程,求解即可.【解答】解:如图,设∠1=x°,则∠3=2x°,∠2=4∠3=8x°,∵∠1+∠2=180°,∴x°+8x°=180,解得:x=20°,∴∠1=20°.故答案为:20°.22.如图,∠2的同旁内角是∠4.【分析】根据同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角进行分析即可.【解答】解:∠2的同旁内角是∠4,故答案为:∠4.23.平面上不重合的四条直线,可能产生交点的个数为0,1,3,4,5,6个.【分析】从平行线的角度考虑,先考虑四条直线都平行,再考虑三条、两条直至都不平行,作出草图即可看出.【解答】解:(1)当四条直线平行时,无交点;(2)当三条平行,另一条与这三条不平行时,有三个交点;(3)当两两直线平行时,有4个交点;(4)当有两条直线平行,而另两条不平行时,有5个交点;(5)当四条直线同交于一点时,只有一个交点;(6)当四条直线两两相交,且不过同一点时,有6个交点;(7)当有两条直线平行,而另两条不平行并且交点在平行线上时,有3个交点.故答案为:0,1,3,4,5,6.24.下列说法中:①棱柱的上、下底面的形状相同;②若AB=BC,则点B为线段AC的中点;③相等的两个角一定是对顶角;④在同一平面内,不相交的两条直线叫做平行线;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短.正确的有①④⑤.(只填序号)【分析】分别根据棱柱的特征以及对顶角和垂线段的性质得出答案即可.【解答】解:①棱柱的上、下底面的形状相同,正确;②若AB=BC,则点B为线段AC的中点,A,B,C不一定在一条直线上,故错误;③相等的两个角一定是对顶角,角的顶点不一定在一个位置,故此选项错误;④在同一平面内,不相交的两条直线叫做平行线,正确;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短,正确.故答案为:①④⑤.25.如图,已知直线EF⊥MN垂足为F,且∠1=140°,则当∠2等于50°时,AB∥CD.【分析】利用两直线AB∥CD,推知同位角∠3=∠4;然后根据平角的定义、垂直的性质以及等量代换求得∠2=50°,据此作出正确的解答.【解答】解:∵AB∥CD,∴∠3=∠4(两直线平行,同位角相等);又∵∠1+∠3=180°(平角的定义),∠1=140°(已知),∴∠3=∠4=40°;∵EF⊥MN,∴∠2+∠4=90°,∴∠2=50°;故答案为:50°。
一、判断下列命题是否正确
1.两条永不相交的直线叫做平行线.()
2.直线外一点与直线上各点连结的所有线中,垂线段最短.()
3.同一平面内的直线a、b、c,如果a⊥b,b⊥c,那么a⊥c.()
4.从直线外一点到这条直线的垂线段,叫做点到直线的距离.()
5.顶点相对的角叫做对顶点.()
6.有一条公共边的角叫邻补角.()
7.内错角一定相等.()
8.不相交的两条直线叫平线.()
二、填空题
1.如图2-71,已知直线AB,CD相交于O,OE⊥AB,∠1=25°,则∠2=_____度,∠3=_____度,∠4=______度.
2.如图2-72,AB、CD交于O点,
(1)如果∠AOD=3∠BOD,那么∠BOD=______度,∠COB=______度.
(2)如果∠AOC=2x°,∠BOC=(x+y+9)°,∠BOD=(y+4)°,则∠AOD的度数为______.
3.如图2-73,AC⊥BC,CD⊥AB,B点到AC的距离是______,A点到BC的距离是______,C点到AB的距离是______.
4.如图 2-74,AB∥DC,则______=______;AD∥BC,则______=______.
5.如图2-75,已知AB∥CD,∠1=∠2,∠E=50°,则∠F=_______°.
6.把命题“对顶角相等”写成“如果……,那么……”的形式______.
三、选择题
1.下列语句正确的是 [ ]
A.有一条而且只有一条直线和已知直线垂直
B.直线AB∥CD,那么AB与直线EF也一定平行
C.一条直线垂直于两条平行线中的一条,必垂直于另一条
D.C是线段AB外一点,C点到线段AB的距离一定小于C点到A、B两点的距离2.已知:OA⊥OC,∠AOB:∠AOC=2:3,则∠BOC的度数为 [ ] A.30° B.60° C.150° D.30°或150°
3.如图2-76,内错角有:[ ]
A.10对 B.8对 C.6对 D.4对
4.如图2-77,已知∠1=∠2,若要使∠3=∠4,则需 [ D ] A.∠1=∠3 B.∠2=∠3
C.∠1=∠4 D.AB∥CD
5.下列语句中正确的是 [ C ]
A.两个角互为补角,则一定有一个角是锐角,另一个角是钝角
B.两条平行线被第三条直线所截,同旁内角相等
C.过一点有且只有一条直线与这条直线平行
D.两个角互为补角,和两个角所在位置没有关系
6.如图2-78,OP∥QR∥ST,则下列各式中正确的是 [ D ] A.∠1+∠2+∠3=180°
B.∠1+∠2-∠3=90°
C.∠1-∠2+∠3=90°
D.∠2+∠3-∠1=180°
7.如图2-79,AB∥DE,那么∠BCD于 [ ]
A.∠2-∠1
B.∠1+∠2
C.180°+∠1-∠2
D.180°+∠2-2∠1
8.如图2-80,AB∥CD,AD∥BC,则下列各式中正确的是 [ ] A.∠1+∠2>∠3
B.∠1+∠2=∠3
C.∠1+∠2<∠3
D.∠1+∠2与∠3大小无关
四、填空,并在括号内填注理由
1.已知:如图,DE∥GF,BC∥DE,EF∥DC,DC∥AB(图2-81)
求证:∠B=∠F.
证明:∵DE∥GF(已知)
∴∠F+∠E=180°(两~~~同旁~~~ )
∵EF∥DC(已知)
∴∠E+∠D=180°(两~`~同旁~~~~~~~~ )
∴∠F=∠D(等量代换)
又∵BC∥DE,(已知)
∴∠D+∠C=180°(两~~~同旁~~~~~~ )
∵DC∥AB(已知)
∴∠B+∠C=180°(两~同旁~~ )
∴∠B=∠D(等量代换)
∴∠F=∠B(等量代换)
2.已知:如图2-82,DE∥BC,∠ADE=∠EFC,
求证:∠1=∠2
证明:∵ DE∥BC(已知)
∴∠ADE=__ABC____(两~~~~~同位~~~~~ )
∵∠ADE=∠EFC(已知)
∴__∠ADE ___=_∠ABC ___(等量代换)
∴DB∥EF(同位~~~~~~两~~~~~~~~~)
∴∠1=∠2(两~~~~~~~~内错~~~~ )
五、计算下列各题
1.已知:如图 2-83,AD∥BC,∠D=100°,AC平分∠BCD,求∠DAC的度数.(4月20日做到这里)
2.已知:如图2-84,∠AEH=130°,∠EFD=50°,∠SMB=120°.
求∠DNG的度数.
60度
3.已知:如图 2-85,CD∥AB,OE平分∠AOD,OF⊥OE,∠D=50°,
求∠BOF度数.
25度
4.已知:如图2-86,AB//CD,∠1=∠A,∠2=∠C,B、E、D在一条直线上.求∠AEC的度数.
不会做
六、证明题:
1.已知;如图 2-87, DF//AC,∠C=∠D,
求证:∠AMB=∠ENF(4月21日早上做到这里)不会做
2.已知:如图2-88,E、A、F在一条直线上,且EF//BC,求证:∠B+∠C+∠BAC=180°
3.已知:如图2-89, DC//AB,∠ABD+∠A=90°.
求证:AD⊥DB
答案
更多试卷下载请访问:/。