整式的乘除全章复习指导8
- 格式:doc
- 大小:112.00 KB
- 文档页数:5
整式的乘除(重点、难点、考点复习总结)1.知识系统总结2.重点难点易错点归纳(1)几种幂的运算法则的推广及逆用例1:(1)已知52x=4,5y=3,求(53x)2; 54x+2y-2练习:1. 已知a x=2,a y=3, a z=4求a3x+2y-z(2)46×0.256= (-8)2013×0.1252014 =(2)同底数幂的乘除法:底数互为相反数时如何换底能使计算简便判断是否同底:判断底数是否互为相反数:看成省略加号的和,每一项都相反结果就互为相反数换底常用的两种变形:例2:(1)-x7÷(-x)5·(-x)2 (2)(2a-b)7·(-b+2a)5÷(b-2a)8(3)区分积的乘方与幂的乘方例3:计算(1)(x3)2 (2) (-x3)2 (3)(-2x3)2(4)-(2x3)2(4)比较法:逆用幂的乘方的运算性质求字母的值(或者解复杂的、字母含指数的方程)例4:(1)如果2×8n×16n=28n ,求n的值(2)如果(9n)2=316,求n的值(3)3x=,求x的值(4)(-2)x= -,求x的值(5)利用乘方比较数的大小指数比较法:833,1625, 3219底数比较法:355,444,533乘方比较法:a2=5,b3=12,a>0,b>0,比较a,b的大小比较840与6320的大小(6)分类讨论思想例6:是否存在有理数a,使(│a│-3)a =1成立,若存在,求出a的值,若不存在,请说明理由整式的乘法(1)计算法则明确单项式乘以单项式、单项式乘以多项式、多项式乘以多项式的计算法则,尤其注意符号的问题,结果一定要是最简形式。
单项式乘以多项式、多项式乘以多项式最终都是要转化为单项式乘以单项式,通过省略加号的和巧妙简化符号问题。
【例1】计算:(1)(-3x2y)(-xz4)(-2y3zt) (2)-5x n y n+2(3x n+2y-2x n y n-1+y n) (3)(-x+2)(x3-x2)练一练:先化简再求值:[xy(x2-3y)+3xy2](-2xy)+x3y2(2x-y),其中x=-0.25,y=4(2)利用整式的乘法求字母的值①指数类问题:②系数类问题:【例2】已知-2x3m+1y2n与7x m-6y-3-n的积与x4y是同【例3】在x2+ax+b与2x2-3x-1的积中,x3项项,求m与n的值的系数为—5,x2项的系数为-6,求a,b的值(3)新定义题【例4】现规定一种新运算:a*b=ab+a-b,其中a,b为有理数,则(a*b)+[(b-a)*b]=练一练:现规定一种新运算:a※b=ab+a-b,其中a,b为有理数,计算:[(m+n)※n]+[(n-m)※n] 课后提升:1.(-0.7×104)×(0.4×103)×(-10)=2.若(2x-3)(5-2x)=ax2+bx+c,则a= ,b=3.若(-2x+a)(x-1)的结果不含x的一次项,则a=4.计算:(1)(-5x-6y+z)(3x-6y) (2)-2xy(x2-3y2)- 4xy(2x2+y2)平方差公式(1)公式:(a+b)(a-b)=a2-b2注意:公式中的a,b既可以是具体的数字,也可以是单项式或多项式,只要不是单独的数字或字母,写成平方的差时都要加括号公式的验证:根据面积的不同表达方式是验证整式乘法公式常用的方法(2)平方差公式的不同变化形式【例1】计算下列各式:(1)(-5x+2y)(-2y-5x)= (2)(2a-1)(2a+1)(4a2+1)=(3)20132-2012×2014 =练一练:1、(2y-x-3z)(-x-2y-3z)=2、99×101×10001=3、 3×(22+1)×(24+1)×(28+1)×…×(232+1)+1=(3)平方差公式的逆用【例2】∣x+y-3∣+(x-y+5)2=0,求3x2-3y2的值练一练:已知实数a,b满足a+b=2,a-b=5,求(a+b)3(a-b)3的值.课后提升:1.已知下列式子:①(x-y)(-x-y);②(-x+y)(x-y);③(-x-y)(x+y);④(x-y)(y-x).其中能利用平方差公式计算的是2.(-a-3)( )=9-a23.如果a2-2k=(a-0.5)(a+0.5),那么k=4.为了美化城市,经统一规划,将一正方形的南北方向增加3米,东西方向缩短3米,将改造后的长方形草坪面积与原来的正方形草坪面积相比()A.增加6平方米B.增加9平方米C.减少9平方米D.保持不变5.解方程:(3x+4)(3x-4)=9(x-2)26.计算:(2+1)×(22+1)×(24+1)×…×(22014+1)完全平方公式(1)公式:(a±b)2=a2±2ab +b2首平方,尾平方,2倍乘积放中央,同号加,异号减注意:公式中的a,b既可以是具体的数字,也可以是单项式或多项式【例1】计算下列各式:(2x-5y)2 = (-mn+1)2 =(-t2-2)2=(2)完全平方公式的推广应用①直接推广②间接推广【例2】计算(a-2b+3c)2【例3】已知x+y+z=10,xy+xz+yz=8,求x2+y2+z2的值(3)利用完全平方公式求字母的值【例4】两数和的平方的结果是x2+(a-1)x+25,则a的值是()A.-9B.1C.9或-11D.-9或11(4)利用完全平方公式进行简化计算【例5】计算:(1)1992 (2)3.012(5)完全平方公式的变形应用【例6】(1)已知m+n=7,mn=10,求8m2+8n2的值(2)已知(x+y)2=16,(x-y)2=4,求xy的值课后提升:1.下列展开结果是2mn-m2-n2的式子是()A.(m+n)2B.(-m+n)2C.-(m-n)2D.-(m+n)22.(x+2y-z)2=3.若∣x+y-7∣+(xy-6)2=0,则3x2+3y2=4.若代数式x2+3x+2可以表示为 (x-1)2+a(x-1)+b的形式,则a+b的值是5.计算:(2x-y)2(2x+y)2整式的除法(1)计算法则整式乘法的逆运算,可以互相验证。
第八章 整式乘除与因式分解【知识点1】幂的运算1.同底数幂的乘法法则:n m n m a a a +=∙(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。
注意底数可以是多项式或单项式。
如:532)()()(b a b a b a +=+∙+同底数幂的乘法法则可以逆用:即nm nm p a a a a ∙==+ 如:⎪⎩⎪⎨⎧⋅=⋅=⋅==+++434352526617x x x x x x x x x x 可以根据已知条件,对原来的指数进行适当地“分解”。
2.幂的乘方法则:mn n m a a =)((n m ,都是正整数) 幂的乘方,底数不变,指数相乘。
如:10253)3(=-幂的乘方法则可以逆用:即m n n m mn p a a a a )()(=== 如:23326)4()4(4== 3.积的乘方法则:nn b a ab =)((n 是正整数)。
积的乘方,等于各因数乘方的积。
如:(523)2z y x -=5101555253532)()()2(z y x z y x -=∙∙∙- 积的乘方法则可以逆用:即 ()()⎪⎪⎩⎪⎪⎨⎧-=⎩⎨⎧-=-=⎥⎦⎤⎢⎣⎡-⋅=⎪⎭⎫ ⎝⎛-⋅===⋅=⎪⎭⎫ ⎝⎛⋅=.,111)1(1;,11)1(1,a b n n a a a a a b a a a a ab b a nnn n nn nnn nn 为奇数,为偶数,常见:4.同底数幂的除法法则:nm nmaaa-=÷(n m a ,,0≠都是正整数,且)n m >同底数幂相除,底数不变,指数相减。
如:3334)()()(b a ab ab ab ==÷ 同底数幂的除法法则可以逆用:即nmnm pa aaa ÷==-如:已知3,537==x x ,则353537374=÷=÷==-x x xx5.零指数幂: 10=a ,即任何不等于零的数的零次方等于1。
一 整式的乘除一、同底数幂的乘法1.同底数幂的乘法法则同底数幂相乘,底数不变,指数相加。
即:mnm na a a +⋅=(m ,n 都是正整数)。
这个公式的特点是:左边是两个或两个以上的同底数幂相乘,右边是一个幂,指数相加。
注意:(1)同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数.(2) 在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算.公式拓展:p n m a a a ⋅⋅= 。
【典型例题】例1:计算:(1)821010⨯; (2)23x x ⋅-(-)(); (3)32)(x x -⋅例2:计算:(1))()()(32b a a b b a +⋅+⋅+ (2)23x 2y y x -⋅()(2-)(3))()()(25y x x y y x -⋅-⋅- (4)n 2n 1n a a a a ++⋅⋅⋅总结()()(),n nn a n a a n ⎧⎪-=⎨-⎪⎩为偶数,为奇数 ()()()()()n nnb a n a b b a n ⎧-⎪-=⎨--⎪⎩为偶数为奇数例3、计算:31213)(2x x x x x x n n n ⋅+⋅--⋅-+ 4236)()()()(a a a a -⋅-⋅-⋅-例4:已知x 22m +=,用含m 的代数式表示x 2。
【变式练习】(1) –x2·(-x3) (2) –a·(-a)2·a3(3) –b2·(-b)2·(-b)3(4) x·(-x2)·(-x)2·(-x3)·(-x)3(5) 1+-•n n x x x (6)x 4-m ·x 4+m·(-x)(7) x 6·(-x)5-(-x)8·(-x)3(8) -a3·(-a)4·(-a)52 逆用同底数幂的法则逆用法则为:n m nm a a a •=+(m 、n 都是正整数)【典型例题】1.(1)已知x m=3,x n=5,求x m+n。
《整式的乘除》全章复习与巩固—知识讲解(基础)【学习目标】1. 理解正整数幂的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;2. 会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算;3. 掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算;4. 理解因式分解的意义,并感受分解因式与整式乘法是相反方向的运算,掌握提公因式法和公式法(直接运用公式不超过两次)这两种分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解.【知识网络】【要点梳理】要点一、幂的运算1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加.2.幂的乘方:(m n ,为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方:(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0, m n ,为正整数,并且m n >). 同底数幂相除,底数不变,指数相减. 5.零指数幂:()010.a a =≠即任何不等于零的数的零次方等于1.要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.要点二、整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:()()()2x a x b x a b x ab ++=+++.4.单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点三、乘法公式1.平方差公式: 两个数的和与这两个数的差的积,等于这两个数的平方差.22()()a b a b a b +-=-要点诠释:在这里,a b ,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.()2222a b a ab b +=++;2222)(b ab a b a +-=- 要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.要点四、因式分解把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解的方法主要有: 提公因式法, 公式法等.要点诠释:落实好方法的综合运用:首先提取公因式,然后考虑用公式;两项平方或立方,三项考虑完全平方;四项以上想分组,分组分得要合适;几种方法反复试,最后须是连乘式;因式分解要彻底,一次一次又一次.【典型例题】类型一、幂的运算1、计算下列各题:(1)2334(310)(10)⨯⨯- (2)2332[3()][2()]m n m n +-+(3)26243(2)(3)xy x y -+- (4)63223(2)(3)[(2)]a a a ---+- 【思路点拨】按顺序进行计算,先算积的乘方,再算幂的乘方,最后算同底数的幂相乘.【答案与解析】解:(1)2334(310)(10)⨯⨯-323343(10)(10)=⨯⨯18192710 2.710=⨯=⨯. (2)2332[3()][2()]m n m n +-+36263()(2)()m n m n =⋅+⋅-⋅+ 661227()4()108()m n m n m n =+⋅+=+.(3)26243(2)(3)xy x y -+- 6661233612(1)2(1)3x y x y =-⋅⋅+-⋅612612612642737x y x y x y =-=.(4)63223(2)(3)[(2)]a a a ---+-6662232366(1)2(1)3()(1)(2)a a a =-⋅--⋅⋅+-⋅6666649649a a a a =--=-.【总结升华】在进行幂的运算时,应注意符号问题,尤其要注意系数为-1时“-”号、括号里的“-”号及其与括号外的“-”号的区别.举一反三: 【变式】当41=a ,b =4时,求代数式32233)21()(ab b a -+-的值. 【答案】 解:333223363636611771()()45628884a b ab a b a b a b ⎛⎫-+-=-==⨯⨯= ⎪⎝⎭. 类型二、整式的乘除法运算2、(2016春•保山期末)计算:(2a ﹣b )2﹣(8a 3b ﹣4a 2b 2)÷2ab .【思路点拨】先计算完全平方式和多项式除以单项式,再去括号、合并同类项即可得.【答案与解析】解:原式=4a 2﹣4ab +b 2﹣(4a 2﹣2ab )=4a 2﹣4ab +b 2﹣4a 2+2ab=b 2﹣2ab .【总结升华】本题主要考查完全平方式和整式的除法,熟记完全平方公式和多项式除以单项式的法则是关键.3、已知312326834m n ax y x y x y ÷=,求(2)n m n a +-的值.【思路点拨】利用除法与乘法的互逆关系,通过计算比较系数和相同字母的指数得到m n a 、、的值即可代入求值.【答案与解析】解:由已知312326834m n ax y x y x y ÷=,得31268329284312m n n ax y x y x y x y +=⋅=,即12a =,39m =,2812n +=,解得12a =,3m =,2n =.所以22(2)(23212)(4)16n m n a +-=⨯+-=-=.【总结升华】也可以直接做除法,然后比较系数和相同字母的指数得到m n a 、、的值. 举一反三:【变式】(1)已知1227327m m -÷=,求m 的值.(2)已知1020a =,1105b =,求293a b ÷的值. (3)已知23m =,24n =,求322m n -的值. 【答案】解:(1)由题意,知312(3)327m m -÷=.∴ 3(1)2333m m --=.∴ 3323m m --=,解得6m =.(2)由已知1020a =,得22(10)20a =,即210400a =.由已知1105b =,得211025b =. ∴ 221101040025a b ÷=÷,即2241010a b -=.∴ 224a b -= ∴ 22222493333381a b a b a b -÷=÷===. (3)由已知23m =,得3227m =.由已知24n =,得2216n =. ∴ 32322722216m n m n -=÷=. 类型三、乘法公式4、对任意整数n ,整式(31)(31)(3)(3)n n n n +---+是否是10的倍数?为什么?【答案与解析】解:∵(31)(31)(3)(3)n n n n +---+22222(3)1(3)919n n n n =---=--+22101010(1)n n =-=-,210(1)n -是10的倍数,∴ 原式是10的倍数.【总结升华】要判断整式(31)(31)(3)(3)n n n n +---+是否是10的倍数,应用平方差公式化简后,看是否有因数10.举一反三:【变式】解下列方程(组):22(2)(4)()()32x y x y x y x y ⎧+-+=+-⎨-=-⎩【答案】解: 原方程组化简得2332x y x y -=⎧⎨-=-⎩,解得135x y =⎧⎨=⎩.5、已知3a b +=,4ab =-,求: (1)22a b +;(2)33a b +【思路点拨】在公式()2222a b a ab b +=++中能找到22,,a b ab a b ++的关系. 【答案与解析】解:(1) 222222a b a ab b ab +=++- ()22a b ab =+-∵3a b +=,4ab =-,∴()22232417a b +=-⨯-=(2)333223a b a a b a b b +=+-+ ()()()2a a b b a b a b =+-+-()()22a b a ab b =+-+()()2[3]a b a b ab =++-∵3a b +=,4ab =-,∴()332333463a b ⎡⎤+=-⨯-=⎣⎦. 【总结升华】在无法直接利用公式的情况下,我们采取“配凑法”进行,通过配凑向公式过渡,架起了已知与未知之间桥梁,顺利到达“彼岸”.在解题时,善于观察,捕捉习题特点,联想公式特征,便易于点燃思维的火花,找到最佳思路.类型四、因式分解6、 分解因式:(1)2(1)(1)a b a -+- (2)22(33)(35)1x x x x +++++.【思路点拨】若将括号完全展开,所含的项太多,很难找到恰当的因式分解的方法,通过观察发现:将相同的部分23x x +作为一个整体,展开后再进行分解就容易了.【答案与解析】解:(1)222(1)(1)(1)(1)(1)(1)(1)(1)(1)a b a a b a a b a b b -+-=---=--=-+-.(2)22(33)(35)1x x x x +++++22[(3)3][(3)5]1x x x x =+++++ 222(3)8(3)16x x x x =++++22(34)x x =++.【总结升华】在因式分解中要注意整体思想的应用,对于式子较复杂的题目不要轻易去括号.举一反三:【变式】(2015春•禅城区校级期末)分解因式:(1)(a 2+b 2)2﹣4a 2b 2(2)(x 2﹣2xy+y 2)+(﹣2x+2y )+1.【答案】解:(1)(a2+b2)2﹣4a2b2=(a2+b2+2ab)(a2+b2﹣2ab)=(a+b)2(a﹣b)2;(2)(x2﹣2xy+y2)+(﹣2x+2y)+1 =(x﹣y)2﹣2(x﹣y)+1=(x﹣y﹣1)2.。
整式的乘除知识点及题型复习整式的乘除是初中数学中的重要内容,它不仅是后续学习分式、二次根式等知识的基础,也在实际生活中有着广泛的应用。
接下来,我们将对整式的乘除相关知识点及常见题型进行详细的复习。
一、整式乘法的知识点1、同底数幂的乘法同底数幂相乘,底数不变,指数相加。
即:$a^m×a^n =a^{m+n}$($m$、$n$都是正整数)例如:$2^3×2^4 = 2^{3+4} = 2^7$2、幂的乘方幂的乘方,底数不变,指数相乘。
即:$(a^m)^n = a^{mn}$($m$、$n$都是正整数)例如:$(2^3)^4 = 2^{3×4} = 2^{12}$3、积的乘方积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
即:$(ab)^n = a^n b^n$($n$为正整数)例如:$(2×3)^4 = 2^4×3^4$4、单项式乘以单项式单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
例如:$3x^2y×(-2xy^3) = 3×(-2)×(x^2×x)×(y×y^3) =-6x^3y^4$5、单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
例如:$2x(3x^2 5x + 1) = 2x×3x^2 2x×5x + 2x×1 = 6x^3 10x^2 + 2x$6、多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
例如:$(x + 2)(x 3) = x×x + x×(-3) + 2×x + 2×(-3) =x^2 3x + 2x 6 = x^2 x 6$二、整式除法的知识点1、同底数幂的除法同底数幂相除,底数不变,指数相减。
第一章 整式的运算回顾与思考【学习目标】巩固整式运算公式,能熟练运用整式的运算公式,并形成知识网络。
【学习过程】一.知识点梳理一.预习检测(写过程,写在旁边)1、25x x ⋅= , 2y y y y y ⋅+⋅⋅= .2、合并同类项:2223xy xy -= .3、33282n⨯=, 则=n .4、5a b +=, 5ab =. 则22a b += .5、()()3232x x -+= .6、如果2249x mxy y -+是一个完全平方式, 则m 的值为 .7、52a a a ÷÷= ,43(2)(3)x x ÷= . 8、()2a b ++ ()2a b =-.9、222217ab a c ⎛⎫⋅-= ⎪⎝⎭.10、32(612)(3)x x x x -+÷-= .11、 边长分别为a 和2a 的两个正方形按如图(I)的样式摆放,则图中阴影部分的面积为 .12、用科学计数法来表示:0.0000000007018= 用小数来表示,51.23110-⨯=13、用乘法公式进行计算 2201320142012-⨯ 22202404201201-⨯+222222()()a b a b +-- 123(a 2b)()33a b -+二.典型例题例1:已知(x+y)2=1, (x-y)2=49,求x 2+y 2与xy 的值.新 课 标 第 一 网例2:2222a b a b 14ab a b +++=已知,求、的值例3:化简求值:(1)23)1)(1()2(2=-+-+a a a a ,其中 .(2)2211(32)(32)(32)9(),m n 22m n m n m n m n -++--+=-=其中,例4:已知(a 2+pa +8)与(a 2-3a +q)的乘积中不含a 3和a 2项,求p 、q 的值例5:已知:△ABC 的三边长分别为a .b .c ,且a .b .c 满足等式2222)()(3c b a c b a ++=++,试说明该三角形是等边三角形.例6.已知21,y x +=求代数式22(1)(4y y x +--)的值。
整式的乘除全章复习指导
一、知识网络
⎧⎫⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎡⎤→⎨⎬⎣⎦⎪⎪⎪⎪⎡⎤⎧→⎨⎣⎦⎪⎪⎨⎪⎪⎪⎩⎩⎭⎪⎪⎧⎪⎨⎪⎩⎩
因式分解幂的运算性质单项式乘法单项式与多项式相乘多项式乘法整式乘法平方差公式乘法公式完全平方公式单项式除法整式除法多项式除以单项式 二、知识梳理
1、幂的运算性质
(1)同底数幂相乘,底数不变,指数相加,即 n m n m a
a a +=⋅ (2)幂的乘方,底数不变,指数相乘,即()mn n m a a =
(3)积的乘方,等于每个因式分别乘方,即()n n n b a ab =
(4)同底数幂相除,底数不变,指数相减,即 n m n m a a a -=÷(m >n,a ≠0)
2、整式的乘法
(1)单项式与单项式相乘,利用乘法交换律和结合律,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,一起作为积的因式.单项式与单项式相乘的乘法法则在运用时要注意以下几点:
○
1.积的系数等于各因式系数的积,先确定符号,再计算绝对值.这时容易出现的错误是,将系数相乘与指数相加混淆,如2a 3·3a 2=6a 5,而不要认为是6a 6或5a 5.
○
2.相同字母的幂相乘,运用同底数幂的乘法运算性质. ○
3.只在一个单项式里含有的字母,要连同它的指数作为积的一个因式. ○
4.单项式乘法法则对于三个以上的单项式相乘同样适用. ○
5.单项式乘以单项式,结果仍是一个单项式. (2)单项式与多项式相乘,就是根据乘法分配律用单项式去乘多项式的每一项,转化为单项式与单项式的乘法,然后再把所得的积相加.其实,单项式与多项式相乘,就是利用乘法分配律转化为单项式与单项式相乘,这样新知识就转化成了我们学过的知识. 单项式与多项式相乘时注意以下几点:
○
1.积是一个多项式,其项数与多项式的项数相同. ○2.运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.
(3)多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把
所得的积相加. 实际上,多项式与多项式相乘,可以把其中的一个多项式看成一个整体,再运用单项式与多项式相乘的方法进行运算.
3、乘法公式
平方差公式:(a+b)(a-b)=a 2-b 2 .
完全平方公式:(a+b)2=a 2+2ab+b 2 ,(a-b)2=a 2-2ab+b 2.
4、整式的除法
整式的除法是以同底数幂的除法为基础的,主要涉及单项式除以单项式,多项式除以单项式两种情况。
其运算法则是:
(1)单项式相除,把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式。
(2)多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
5、因式分解
因式分解是把一个多项式分解成几个整式乘积的形式,它和整式乘法互为逆运算,在初中代数中占有重要的地位和作用,在其它学科中也有广泛应用,学习本章知识时,应注意以下几点:
(1). 因式分解的对象是多项式;
(2). 因式分解的结果一定是整式乘积的形式;
(3). 因式分解的一般步骤是:首先看有无公因式可提,其次看能否直接利用乘法公式;分解因式,必须进行到每一个因式都不能再分解为止;
(4). 公式中的字母可以表示单项式,也可以表示多项式;
(5). 结果如有相同因式,应写成幂的形式;
(6). 题目中没有指定数的范围,一般指在有理数范围内分解;
三、考点例析
1、 概念辨析型
例1、下列计算正确的是:【 】
A 3412a a a ⋅=
B 632a a a ÷=
C ()235a a =
D ()3
263a b a b -=- 【解析】本题主要考查幂的运算法则在解题中的应用。
选项A 是同底数幂的乘法,根据法则底数不变指数相加,应是a 7,所以A 不对。
选项B 是同底数幂的除法,根据法则底数不变指数相减,应是a 3,所以B 不对。
选项C 是幂的乘方,根据法则底数不变指数相乘,应是a 6,所以C 不对。
选项D 是积的乘方,根据法则先把每一个因式分别乘方,再把所得的幂相乘,()()()33
3223631a b a b a b -=-=-,答案是正确的。
所以选D 。
【点拨】解决此类题的关键是区分几种不同的运算性质。
2、 基本运算型
例2、先化简,再求值:()()()()23332a b a b b a a ⎡⎤-++-÷⎣⎦
,其中a=-3,b=10 【解析】本题是综合性化简求值题,根据式子的特点,先用两种乘法公式计算括号内的,在进行除法运算,最后代数求值。
化简:
()()()()()()()()()
2222223332332322623a b a b b a a a b b b a a a a ba a a b
⎡⎤-++-÷⎣⎦
⎡⎤=-+-⋅⋅+÷⎣⎦
=-÷=- 当a=-3,b=10时,原式=-3-3×10=-33
【点拨】整式的综合运算是重点知识,一般要按照运算顺序进行,先化简后求值。
避免不化简就代入的现象。
3、 逆向应用型
例3、计算:()2007200680.125⋅-
【解析】本例按顺序计算相当繁杂,若逆用积的乘方的运算性质,问题就迎刃而解。
()()
()()()()()
2007
2006200620062006200680.12580.1250.12580.1250.12510.1250.125
⋅-=⋅-⋅-=⋅-⋅-⎡⎤⎣⎦
=-⋅-=- 【点拨】本章的许多公式都能逆用,往往能起到事半功倍的效果。
4、 综合应用型
例4、已知a 、b 、c 是⊿ABC 的三边,且2220a b c ab bc ca ++---=,问⊿ABC 是什么三角形?说明你的理由。
【解析】用配
2222222222222220
2222220
(2)(220
()()()0
a b c ab bc ca a b c ab bc ca a ab b b bc c c ca a a b b c c a ++---=∴++---=∴-++-++-+=∴-+-+-=)() 由非负数的性质可知,222()0,()0,()0a b b c c a ∴-=-=-=,∴a=b=c
∴⊿ABC 是等边三角形。
【点拨】本体综合应用了等式的性质、非负数的性质、完全平方公式(配方法)和必要的几何知识,综合性比较强。
解此类题要善于联想,由等于零的式子联想到非负数性质,由22,,a b ab +就要联想到完全平方公式。
5、 实际应用型
例5、一种被污染的液体每升含有2.4×1013个有害细菌,为了试验某种杀菌剂的效果,科学家们进行了实验,发现1滴杀菌剂可以杀死4×1010个此种细菌,要将1升液体中的有害细菌全部杀死,需要这种杀菌剂多少毫升?(注:15滴=1毫升)
【解析】按单项式除法法则进行计算:(2.4×1013)÷(4×1010)=0.6×103=600(滴) ∵15滴=1毫升,∴600÷15=40(毫升)
答:需要这种杀菌剂40毫升。
【点拨】数学在科学实验中也有着广泛应用,提高用数学的意识,用数学分析周围的事物。
6、 规律探索型
例6、在公式()a a a +=++1212
2中,当a 分别取1,2,3,……,n 时,可得下列n 个等式: ()()()()111211
212221
3132311212222222
2+=+⨯++=+⨯++=+⨯++=++……
n n n
将这n 个等式的左右两边分别相加,可推导出求和公式:
123++++=…n __________(用含n 的代数式表示)
【解析】观察已知等式可知,后一个等式的右边第一项等于前一个等式的左边,将已知等式左右两边分别相加,得:
()n n n +=+⨯+⨯++⨯+112122222… 移项,整理得:()12312
1++++=+…n n n 【点拨】此类题中在考察学生的探究能力,解决此类问题的关键是从特殊情况发现规律,用含有字母的的关系式表示其中的规律。
7、 数形结合型
例7、阅读材料并解答问题:我们已经知道,完全平方公式可以用平面几何图形的面积来表示,实际上还有一些等式也可以用这种形式表示,例如:
()()22322a b a b a ab b ++=++
就可以用图1或图2等图表示。
(1)请写出图3中所表示的代数恒等式____________;
(2)试画出一个几何图形,使它的面积能表示:
()()a b a b a ab b ++=++34322
(3)请仿照上述方法另写一个含有a ,b 的代数恒等式,并画出与之对应的几何图形。
【解析】
(1)()()2222522a b b a a b ab ++=++
(2)如图4
(3)开放性很强,答案不唯一。
如:()2
22244a b a ab b +=++。
图形如图5。
【点拨】数形结合是一种很重要的数学思想,用图形面积来解释代数恒等式是近年来中考常见题型,解题的关键是结合图形理解代数式的几何意义。
四、专家门诊。