E6力学+第五章+作业参考答案(整理+BY+TANG+Gui-he)
- 格式:pdf
- 大小:132.60 KB
- 文档页数:5
第五章 角动量习题解答5.1.1 我国发射的第一颗人造地球卫星近地点高度d 近=439km,远地点高度d 远=2384km,地球半径R 地=6370km,求卫星在近地点和远地点的速度之比。
解:卫星在绕地球转动过程中,只受地球引力(有心力)的作用,力心即为地心,引力对地心的力矩为零,所以卫星对地心的角动量守恒m 月v 近(d 近+R 地)=m 月v 远(d 远+R 地)v 近/v 远=(d 远+R 地)/(d 近+R 地)=(2384+6370)/(439+6370)≈1.295.1.2 一个质量为m 的质点沿着j t b i t a r ˆsin ˆcos ωω+=的空间曲线运动,其中a 、b 及ω皆为常数。
求此质点所受的对原点的力矩。
解: 0)ˆsin ˆcos (ˆsin ˆcos /ˆcos ˆsin /222222=⨯-=⨯=-==-=+-=--==+-==r r m F r rm a m F r j t b i t a j t b i t a dt v d a j t b i t a dt r d v ωτωωωωωωωωωωωωω5.1.3 一个具有单位质量的质点在力场j t i t t F ˆ)612(ˆ)43(2-+-= 中运动,其中t 是时间。
该质点在t=0时位于原点,且速度为零。
求t=2时该质点所受的对原点的力矩。
解:据质点动量定理的微分形式,)1()(===m v d v m d dt Fdt j t i t t v d ]ˆ)612(ˆ)43[(2-+-=∴kk k k ij k j i j j i i j i j i F r j i j i F ji j i r j t t i t t r dt t t j dt t t i r d dtj t t i t t dt v r d jt t i t t v dt t j dt t t i v d r t t t t v ˆ40)ˆ(44ˆ18)2(ˆˆˆ,ˆˆˆ,0ˆˆˆˆ)ˆ18ˆ4()ˆ4ˆ()2()2()2(ˆ18ˆ4ˆ)6212(ˆ)2423()2(ˆ4ˆˆ)2322(ˆ)22()2(ˆ)32(ˆ)()(ˆ6)2(ˆ]ˆ)(6ˆ)2[(ˆ)(6ˆ)2()612(ˆ)43(ˆ343423423332441233324410002232232230020-=-⨯+⨯-=∴-=⨯=⨯=⨯=⨯+⨯+-=⨯=+=-⨯+⨯-⨯=+-=⨯-⨯+⨯-⨯=-+-=-+-=-+-==-+-=-+-=⎰⎰⎰⎰⎰⎰ττ5.1.4地球质量为6.0×1024kg ,地球与太阳相距149×106km ,视地球为质点,它绕太阳做圆周运动,求地球对于圆轨道中心的角动量。
第五章思考题5.1虚功原理中的“虚功”二字作何解释?用虚功原理理解平衡问题,有何优点和缺点?5.2 为什么在拉格朗日方程中,a θ不包含约束反作用力?又广义坐标与广义力的含义如何?我们根据什么关系由一个量的量纲定出另一个量的量纲?5.3广义动量a p 和广义速度a q &是不是只相差一个乘数m ?为什么a p 比aq &更富有意义? 5.4既然aq T &∂∂是广义动量,那么根据动量定理,⎪⎪⎭⎫ ⎝⎛∂∂αq T dt d &是否应等于广义力a θ?为什么在拉格朗日方程()14.3.5式中多出了a q T ∂∂项?你能说出它的物理意义和所代表的物理量吗?5.5为什么在拉格朗日方程只适用于完整系?如为不完整系,能否由式()13.3.5得出式()14.3.5?5.6平衡位置附近的小振动的性质,由什么来决定?为什么22s 个常数只有2s 个是独立的?5.7什么叫简正坐标?怎样去找?它的数目和力学体系的自由度之间有何关系又每一简正坐标将作怎样的运动?5.8多自由度力学体系如果还有阻尼力,那么它们在平衡位置附近的运动和无阻尼时有何不同?能否列出它们的微分方程?5.9 dL 和L d 有何区别?a q L ∂∂和aq L ∂∂有何区别? 5.10哈密顿正则方程能适用于不完整系吗?为什么?能适用于非保守系吗?为什么?5.11哈密顿函数在什么情况下是整数?在什么情况下是总能量?试祥加讨论,有无是总能量而不为常数的情况?5.12何谓泊松括号与泊松定理?泊松定理在实际上的功用如何?5.13哈密顿原理是用什么方法运动规律的?为什么变分符号δ可置于积分号内也可移到积分号外?又全变分符号∆能否这样?5.14正则变换的目的及功用何在?又正则变换的关键何在?5.15哈密顿-雅可比理论的目的何在?试简述次理论解题时所应用的步骤.5.16正则方程()15.5.5与()10.10.5及()11.10.5之间关系如何?我们能否用一正则变换由前者得出后者?5.17在研究机械运动的力学中,刘维定理能否发挥作用?何故?5.18分析力学学完后,请把本章中的方程和原理与牛顿运动定律相比较,并加以评价.第五章思考题解答5.1 答:作.用于质点上的力在任意虚位移中做的功即为虚功,而虚位移是假想的、符合约束的、无限小的.即时位置变更,故虚功也是假想的、符合约束的、无限小的.且与过程无关的功,它与真实的功完全是两回事.从∑⋅=ii i r F W ρρδδ可知:虚功与选用的坐标系无关,这正是虚功与过程无关的反映;虚功对各虚位移中的功是线性迭加,虚功对应于虚位移的一次变分.在虚功的计算中应注意:在任意虚过程中假定隔离保持不变,这是虚位移无限小性的结果.虚功原理给出受约束质点系的平衡条件,比静力学给出的刚体平衡条件有更普遍的意义;再者,考虑到非惯性系中惯性力的虚功,利用虚功原理还可解决动力学问题,这是刚体力学的平衡条件无法比拟的;另外,利用虚功原理解理想约束下的质点系的平衡问题时,由于约束反力自动消去,可简便地球的平衡条件;最后又有广义坐标和广义力的引入得到广义虚位移原理,使之在非纯力学体系也能应用,增加了其普适性及使用过程中的灵活性.由于虚功方程中不含约束反力.故不能求出约束反力,这是虚功原理的缺点.但利用虚功原理并不是不能求出约束反力,一般如下两种方法:当刚体受到的主动力为已知时,解除某约束或某一方向的约束代之以约束反力;再者,利用拉格朗日方程未定乘数法,景观比较麻烦,但能同时求出平衡条件和约束反力.5.2 答 因拉格朗日方程是从虚功原理推出的,而徐公原理只适用于具有理想约束的力学体系虚功方程中不含约束反力,故拉格朗日方程也只适用于具有理想约束下的力学体系,αθ不含约束力;再者拉格朗日方程是从力学体系动能改变的观点讨论体系的运动,而约束反作用力不能改变体系的动能,故αθ不含约束反作用力,最后,几何约束下的力学体系其广义坐标数等于体系的自由度数,而几何约束限制力学体系的自由运动,使其自由度减小,这表明约束反作用力不对应有独立的广义坐标,故αθ不含约束反作用力.这里讨论的是完整系的拉格朗日方程,对受有几何约束的力学体系既非完整系,则必须借助拉格朗日未定乘数法对拉格朗日方程进行修正.广义坐标市确定质点或质点系完整的独立坐标,它不一定是长度,可以是角度或其他物理量,如面积、体积、电极化强度、磁化强度等.显然广义坐标不一定是长度的量纲.在完整约束下,广义坐标数等于力学体系的自由度数;广义力明威力实际上不一定有力的量纲可以是力也可以是力矩或其他物理量,如压强、场强等等,广义力还可以理解为;若让广义力对应的广义坐标作单位值的改变,且其余广义坐标不变,则广义力的数值等于外力的功由W q r F s i ni i δδθδααα==⋅∑∑==11ρρ知,ααδθq 有功的量纲,据此关系已知其中一个量的量纲则可得到另一个量的量纲.若αq 是长度,则αθ一定是力,若αθ是力矩,则αq 一定是角度,若αq 是体积,则αθ一定是压强等.5.3 答 αp 与αq &不一定只相差一个常数m ,这要由问题的性质、坐标系的选取形式及广义坐标的选用而定。
eBook工程力学习题详细解答教师用书(第5章)2011-10-1范 钦 珊 教 育 教 学 工 作 室FAN Qin-Shan ,s Education & Teaching Studio习题5-1 习题5-2 习题5-3 习题5-4 习题5-5 习题5-6工程力学习题详细解答之五第5章 杆件的内力分析与内力图5-1 试用截面法计算图示杆件各段的轴力,并画轴力图。
5-2 圆轴上安有5个皮带轮,其中轮2为主动轮,由此输入功率80 kW ;1、3、4、5均为从动轮,它们输出功率分别为25 kW 、15 kW 、30 kW 、10 kW ,若圆轴设计成等截面的,为使设计更合理地利用材料,各轮位置可以互相调整。
1. 请判断下列布置中哪一种最好?(A) 图示位置最合理;(B) 2轮与5轮互换位置后最合理; (C) 1轮与3轮互换位置后最合理; (D) 2轮与3轮互换位置后最合理。
2. 画出带轮合理布置时轴的功率分布图。
30kN 20kN10kN20kN10kN 5kNBAD CB A DC BACBA C(a)(b)(c)(d)F NF ACBF N xDACB102030ACF N x210ADCF N -10习题5-1图解: 1. D2. 带轮合理布置时轴的扭矩图如图(b )所示。
5-3 一端固定另一端自由的圆轴承受4个外力偶作用,如图所示。
各力偶的力偶矩数值均示于图中。
试画出圆轴的扭矩图。
固定固定(kN.m)习题5-3图P x (kW)2540(b)习题5-2图5-4 试求图示各梁中指定截面上的剪力、弯矩值。
(a)题解:取1-1截面左段为研究对象,1-1截面处的剪力和弯矩按正方向假设:22222211qa qa qa a qa M M qaF Q =−=⎟⎠⎞⎜⎝⎛⋅−=−= 取2-2截面左段为研究对象,2-2截面处的剪力和弯矩按正方向假设:222222222qa qa qa a qa M M qaqa qa F Q =−=⎟⎠⎞⎜⎝⎛⋅−=−=−−= (b)题解:取1-1截面右段为研究对象,1-1截面处的剪力和弯矩按正方向假设:21P 12322qa a qa a qa M qa qa qa qa F F Q −=⋅−⋅−==+=+= 取2-2截面右段为研究对象,2-2截面处的剪力和弯矩按正方向假设:2222222qa qa a qa a qa M qaF Q −=+⋅−⋅−== (c)题解:(1)考虑整体平衡,可解A 、C 支座约束力0m kN 5.4124m kN 4,0)(=⋅××−×+⋅=∑C i A F F M得 kN 25.1=C F0kN 12,0=×−+=∑C A iyF F F得 kN 75.0=A F(2)取1-1截面左段为研究对象,1-1截面处的剪力和弯矩按正方向假设:BB5kN1 m34AAB(b)(a)(c)(d)习题5-4图0,01=−=∑Q A iyF F F得 kN 75.01=Q F02,0)(11=+×−=∑M F F MQ i A得 m kN 5.11⋅=M(3) 取2-2截面左段为研究对象,2-2截面处的剪力和弯矩按正方向假设:0,02=−=∑Q A iyF F F得 kN 75.02=Q F0m kN 42,0)(22=+⋅+×−=∑M F F M Q i A得 m kN 5.22⋅−=M(4) 取3-3截面右段为研究对象,3-3截面处的剪力和弯矩按正方向假设:0kN 12,03=×−+=∑C Q iyF F F得 kN 75.03=Q F0m kN 1221,0)(23=⋅××−−=∑M F M i C得 m kN 13⋅−=M (5) 取4-4截面右段为研究对象,4-4截面处的剪力和弯矩按正方向假设:0kN 12,04=×−=∑Q iyF F得 kN 24=Q F0m kN 1221,0)(24=⋅××−−=∑M F Mi C得 m kN 14⋅−=M (d)题解:(1)考虑整体平衡,可解A 、B 支座约束力03m kN 2m kN 15,0)(=×+⋅+⋅×−=∑B i A F F M 得 kN 1=B F0kN 5,0=+−=∑B A iyF F F得 kN 4=A F(2)取1-1截面左段为研究对象,1-1截面处的剪力和弯矩按正方向假设:0,01=−=∑Q A iyF F F得 kN 41=Q F01,0)(11=+×−=∑M FF M Ai得 m kN 41⋅=M(3) 取2-2截面左段为研究对象,2-2截面处的剪力和弯矩按正方向假设:0kN 5,02=−−=∑Q A iyF F F得 kN 12−=Q F01,0)(22=+×−=∑M F F M A i得 m kN 42⋅=M(4) 取3-3截面右段为研究对象,3-3截面处的剪力和弯矩按正方向假设:0,03=+=∑B Q iyF F F得 kN 13−=Q F1m kN 2,0)(33=×+⋅+−=∑B iF M F M得 m kN 33⋅=M(5) 取4-4截面右段为研究对象,4-4截面处的剪力和弯矩按正方向假设:0,04=+=∑B Q iyF F F得 kN 14−=Q F1,0)(44=×+−=∑B i F M F M得 m kN 14⋅=M5-5 试写出以下各梁的剪力方程、弯矩方程。
第五章拉伸和压缩一、填空题1.轴向拉伸或压缩的受力特点是作用于杆件两端的外力__大小相等___和__方向相反___,作用线与__杆件轴线重合_。
其变形特点是杆件沿_轴线方向伸长或缩短__。
其构件特点是_等截面直杆_。
2.图5-1所示各杆件中受拉伸的杆件有_AB、BC、AD、DC_,受压缩的杆件有_BE、BD__。
图5-13.内力是外力作用引起的,不同的__外力__引起不同的内力,轴向拉、压变形时的内力称为_轴力__。
剪切变形时的内力称为__剪力__,扭转变形时的内力称为__扭矩__,弯曲变形时的内力称为__剪力与弯矩__。
4.构件在外力作用下,_单位面积上_的内力称为应力。
轴向拉、压时,由于应力与横截面__垂直_,故称为__正应力__;计算公式σ=F N/A_;单位是__N/㎡__或___Pa__。
1MPa=__106_N/m2=_1__N/mm2。
5.杆件受拉、压时的应力,在截面上是__均匀__分布的。
6.正应力的正负号规定与__轴力__相同,__拉伸_时的应力为__拉应力__,符号为正。
__压缩_时的应力为__压应力_,符号位负。
7.为了消除杆件长度的影响,通常以_绝对变形_除以原长得到单位长度上的变形量,称为__相对变形_,又称为线应变,用符号ε表示,其表达式是ε=ΔL/L。
8.实验证明:在杆件轴力不超过某一限度时,杆的绝对变形与_轴力__和__杆长__成正比,而与__横截面面积__成反比。
9.胡克定律的两种数学表达式为σ=Eε和ΔL=F N Lo/EA。
E称为材料的_弹性模量__。
它是衡量材料抵抗_弹性变形_能力的一个指标。
10.实验时通常用__低碳钢__代表塑性材料,用__灰铸铁__代表脆性材料。
11.应力变化不大,应变显著增大,从而产生明显的___塑性变形___的现象,称为__屈服___。
12.衡量材料强度的两个重要指标是__屈服极限___和__抗拉强度__。
13.采用___退火___的热处理方法可以消除冷作硬化现象。
5-1试找出下列结构中的零力杆(在零力杆上打上“0”记号)5-2 已知平面桁架的几何尺寸和载荷情况如题5-2图所示,用节点法计算桁架各杆的内力。
解:(a)、零力杆:74,76,65,68,43分析节点4,得P N -=45分析节点5,得 2- 1P N P N ==552,(b)、零力杆:26,61,63,48,83,85,37,71分析节点7:P N -=75 分析节点5:5254P N =1221233234434554N N N N N N N N =======(c)、支座反力:均为0分析节点1: P N P N 2,31512-== 分析节点2: P N P N 2,32523== 分析节点3: P N 235-= 分析节点4: 04543==N N (d)、零力杆:12,15,52,83,43,49支座反力:P R P R P R y x y 3.1,8.0,3.2223=-==分析节点5: P N 8.056-=分析节点6: P N P N -=-=6267,8.0 分析节点9: P N P N 6.0,26.09893=-= 分析节点8: P N 6.087=分析节点3: P N P N 1.1,27.13237=-= 分析节点7: P N 23.072-=5-3 用分解成平面桁架的方法求如题5-3图所示空间桁架各杆的内力。
解:零力杆:26,48,34,24,28122152316213337317383N P a N P P cN P N P N P N P NP ==-=-=-===-3 5-4 已知平面桁架的几何尺寸和受载情况如题5-4图所示。
求图中用粗线所示的杆件①,②,③的内力。
解:(a)、零力杆如图所示1340,3P M N ==∑由得 3210,M N P ==-∑由得310,3y F N P ==∑由得 (b)、2140,2M N P ==∑由得230,x F N P ==-∑由得250,y F N ==∑由得(c)、支座反力:均为0,结构简化为:PN F P N F PN M x y 31,032,032,03213====-==∑∑∑得由得由得由5-5 求如题5-5图所示平面桁架的内力。
第三章作业答案3-6 力系中,=100 N,=300 N,F=200 N,各力作用线的位置如图3-6 所示。
试将力系向原点O 简化。
图3-63-11 水平圆盘的半径为r,外缘C 处作用有已知力F。
力F 位于铅垂平面内,且与C 处圆盘切线夹角为60°,其他尺寸如图3-11a 所示。
求力F 对x,y,z 轴之矩。
图3-11解(1)方法1,如图3-11b 所示,由已知得(2)方法23-14 图3-14a 所示空间桁架由杆1,2,3,4,5 和6 构成。
在节点A 上作用1 个力F,此力在矩形ABDC 平面内,且与铅直线成45°角。
ΔEAK =ΔFBM。
等腰三角形EAK,FBM和NDB 在顶点A,B 和D 处均为直角,又EC=CK=FD=DM。
若F=10 kN,求各杆的内力。
图3-14解(1) 节点 A 为研究对象,受力及坐标如图3-14b 所示(2)节点B 为研究对象,受力如图3-14b 所示3-19 图3-19a 所示6 杆支撑1 水平板,在板角处受铅直力F 作用。
设板和杆自重不计,求各杆的内力。
图3-19解截开6 根杆,取有板的部分为研究对象,受力如图3-19b 所示。
3-22 杆系由球铰连接,位于正方体的边和对角线上,如图3-22a 所示。
在节点D 沿对角线LD 方向作用力。
在节点C 沿CH 边铅直向下作用F。
如球铰B,L 和H 是固定的,杆重不计,求各杆的内力。
图3-22解(1)节点D 为研究对象,受力如图3-22b 所示(2)节点C 为研究对象,受力如图3-22b 所示3-25 工字钢截面尺寸如图3-25a 所示,求此截面的几何中心。
图3-25解把图形的对称轴作轴x,如图3-25b 所示,图形的形心C 在对称轴x 上,即第五章作业答案5-3 如图5-3 所示,半圆形凸轮以等速= 0.01m/s沿水平方向向左运动,而使活塞杆AB 沿铅直方向运动。
当运动开始时,活塞杆A 端在凸轮的最高点上。
结构力学 第五章习题 参考答案2005级 TANG Gui-he (整理)5-1 试用结点法计算图示桁架各杆的内力。
5-2 试用结点法计算图示桁架各杆的内力。
解:由整体平衡条件可解得支座反力 F A =1.5F F B =1.5F 取结点A 为隔离体,如图,用数解法可解得 F A C =-2.12F F A B =1.5F 同理,依次取结点B 、C 、 D 、E 为隔离体,并由对称性可得各杆的内力如图。
4 * 8m60k N60k N6M 2MA B C D E FG H 解:由 M H =0 可得支座F a y=75kN.由 F Y=0 得 F h y=45kN 取 A 结点为隔离体,利用数解法可得 F N AB=-100kN. F NAC=125kN. 再取 C 点为隔离体,利用投影法和力平衡 可得 F N BC=-50,F NCE=103.1kN.同理依次取 B , D , E , G , F 可得各杆内力(如图所标)AC-60k N -90k N -100k N 45k N75k N125k N 75k N 42.4k N61.8k N 103.1k N -60k N -50k N -30k N55-4试判断图示桁架中的零杆。
解:图中红色的杆件为零杆在杆中标有 为零杆其中用到K 型和T 型结构判断原理5-5试用截面法计算图示桁架中指定杆件的内力。
2解:(1)求出支座竖向反力为2.5F (↑),(2)作截面I -I ,由∑M A=0得: 2.5F ×15-10F -5F +6F N 1=0 → F N 1=-3.75F (3)由∑M B=0得: 2.5F ×10-F ×5-F N 2×6=0 → F N 2=3.33F (4)利用勾股定理求出A B 杆长7.8F N 4x =5F N 4/3.84 由∑M C=0得: 2.5F ×10-5F +F N 1×6+6×5F N 4/7.8=0 → F N 4=0.65F (5)取结点B 为分析对象,由∑F Y=0得: F N 4×6/7.8+F N 3=0 → F N 3=-0.5F5-6试用截面法计算图示桁架中指定杆件的内力。
结构力学 第五章习题 参考答案
2005级 TANG Gui-he (整理)
5-1 试用结点法计算图示桁架各杆的内力。
5-2 试用结点法计算图示桁架各杆的内力。
解:由整体平衡条件可解得支座反力
F A =1.5F F B =1.5F
取结点A 为隔离体,如图,用数解法可解得 F AC =-2.12F F AB =1.5F
同理,依次取结点B、C、 D、E 为隔离体,并由对称性可得各杆的内力如图。
4 * 8m
60kN
60kN
6M
2M
A
B C
D
E
F G
H
解:由 M H =0可得支座
F a y
=75kN.由
F Y
=0 得
F h y
=45kN 取 A
结点为隔离体,利用数解法可得
F N AB
=-100kN. F NAC
=125kN. 再取 C 点为隔离体,利用投影法和力平衡可得 F N BC =-50,F NCE
=103.1kN.
同理依次取 B ,D , E , G ,
F 可得各杆内力(如图所标)
A
C
-60kN
-90kN
-100kN
45kN
75kN
125kN
75kN
42.4kN
61.8kN
103.1kN
-60kN
-50kN -30kN
5
5-4试判断图示桁架中的零杆。
解:图中红色的杆件为零杆
其中用到K 型和T 型结构判断原理
5-5试用截面法计算图示桁架中指定杆件的内力。
解:(1)求出支座竖向反力为2.5F(↑), (2)作截面I-I,由∑M A =0得:
2.5F×15-10F-5F+6F N1=0 → F N1=-
3.75F
(3)由∑M B =0得:
2.5F×10-F×5-F N2×6=0 → F N2=
3.33F (4)利用勾股定理求出AB 杆长7.8
F N4x =5F N4/3.84 由∑M C =0得:
2.5F×10-5F+F N1×6+6×5F N4/7.8=0 → F N4=0.65F (5)取结点B 为分析对象,
由∑F Y =0得:
F N4×6/7.8+F N3=0 → F N3=-0.5F
5-6试用截面法计算图示桁架中指定杆件的内力。
D
40KN 40KN
解:根据题意可得,支座反力如上图所示。
然后作截面I
—I ,截面II —II 。
(1) 取截面I —I 左部分为隔离体。
根据∑M G =0
F Na =(40kN×4m+40kN×8m-90kN×8m)/4m =-60kN 同理可得:由于∑M E =0
N4x
F N4
B
解得 F Nb =37.3kN
延长线段HG,相交于直线CD 与D 由平衡条件得: ∑MD=0 解得 F Nc =37.7kN
(2)取截面II—II 左边部分为隔离体研究 则由∑MD=0
解得: F Nd =-66.7kN 。
5-7试用简便方法求图示桁架中指定杆件的内力。
解:1、先标出零杆,如图中红色杆
2、由M a =0和M b =0求出支座反力F a =F b =7/2F
3、取截面1-1(图中黄色线)左端,M d =0 , F N1×2d+F a ×4d-F(d+2d+3d)=0,得
F N1= -4F (压)
4、取截面2-2(图中绿色线)左端,CE=2d ×sin450=1.414d,
由M c =0,F N1×2d-Fa ×2d- F N2×1.414d+Fd=0, 得 F N2=1.414F(拉) 5、取截面2-2(图中绿色线)左端,由M d =0得:
F N1×2d-F a ×4d-F N3×1.414d+F F N1 (2d+3d)=0, 得 Fn3= -.702F(
压)
6、以F 节点为隔离体
由F y =0, 得F N4= -1.414F ×sin450=-F (压)
5-8试用简便方法求图示桁架中指定杆件的内力。
D
解:(1)求Na F
0 6/30D
Na M
F d F d =××=∑630Na F d F d ×+×=
/2Na F =⇒
(2)求Nb F 以C 节点为隔离体
22Nb Nay F F F =−=
5-9试用简便方法求图示桁架中指定杆件的内力。
解:如图,取截面1-1的上部为研究对象,由∑Fx=0可得:
FNb =√2F
再取2-2截面的左上部分为隔离体,由∑M0=0 可得: FN b×√2+2FNa=0 ∴FNa=-F
Continued …………。