【精编】数学新导学笔记选修22人教A全国通用版讲义:第二章推理与证明章末复习
- 格式:docx
- 大小:218.19 KB
- 文档页数:15
人教版高中数学选修2-2知识点梳理重点题型(常考知识点)巩固练习《推理与证明》全章复习与巩固【学习目标】1. 了解合情推理的含义,能利用归纳推理和类比推理等进行简单的推理;掌握演绎推理的基本模式;体会它们的重要性,并能运用它们进行一些简单的推理;2. 了解合情推理和演绎推理之间的联系和差异;3. 了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程和特点;4. 了解间接证明的一种基本方法:反证法;了解反证法的思考过程、特点;5. 了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.【知识网络】【要点梳理】要点一:有关推理概念归纳推理:又称归纳法,是从特殊到一般、部分到整体的推理.根据归纳对象是否完备,分为完全归纳法和不完全归纳法.完全归纳法是根据某类事物中的每一个对象或每一个子类的情况作出的关于该类事物的一般性结论的推理;不完全归纳法是根据某类事物中的一部分对象具有某种特征而作出该类事物都具有这一特征的一般性结论的推理.由于仅列举了归纳对象中的一小部分,因此得出的结论与前提未必有必然的联系,故其结论未必正确,必须经过理论的证明和实践的检验.类比推理:又称类比法,是由特殊到特殊的推理.这是由两系统的已知属性,通过比较、联想而发现未知属性的“开拓型”“发散型”思维方式.和归纳推理一样,能由已知推测未知,推理的结论也不一定为真,有待进一步证明,通常情况下,类比的相似性越多,类比得出的结论就越可靠.演绎推理:又称演绎法.是从一般到特殊的推理,是数学证明中的基本推理形式.演绎推理的结论完全蕴涵于前提之中.它是“封闭型”的思维方法,只要前提真实,逻辑形式正确,则结论必然真实,但由它一般不能取得突破性进展.故合情推理与演绎推理各有侧重,相辅相成.合情推理有助于发现新事物、新结论、新规律,演绎推理保证结论的可靠性,去伪存真.要点诠释:演绎推理更注重推理的形式规则,常见的有假言推理、关系推理、三段论推理.三段论推理:其一般形式为:大前提:所有M 都是P ;小前提:S 是M ;结论:S 是P .要点二:有关证明方法综合法综合法是利用已知条件和某些数学定义、公理、定理等经过一系列的推理论证,最后推导出所要证明的结论成立的证明方法,是数学推理证明中的主要方法.即从已知条件出发,经过逐步的逻辑推理,最后达到待征结论或需求问题.如果要证明的命题是p q ⇒,那么证明步骤用符号表示为p (已知)123p p p ⇒⇒⇒⇒…q ⇒.分析法分析法就是从待征结论出发,一步一步探索下去,寻求结论成立的充分条件,最后达到题设的已知条件或已被证明的事实.用分析法证明的逻辑关系:q (结论)n p ⇐⇐…321p p p p ⇐⇐⇐⇐(已知). 间接证法间接证法不是从正面确定论题的真实性,而是证明它的反论题为假或改证它的等价命题为真,间接达到目的.反证法就是间接证法的一种.反证法证题步骤为:(1)假设命题的结论不成立,即假设结论的反面成立.(2)从这个假设出发,经过推理论证得出矛盾.(3)由矛盾判断假设不成立.从而肯定命题的结论成立.反证法导出矛盾常见的有以下几种情况:①导出非p 为真,即与原命题的条件矛盾.②导出q 为真,即与假设“非q 为真”矛盾.③导出一个与定义、公理、定理等矛盾的命题.数学归纳法数学归纳法是证明一个与正整数n 有关的命题时,常采用的一种方法,它是一种完全归纳法,其步骤为:第一步:证明n 取第一个值0n 时命题成立.第二步:假设n =k(k ≥0n ,k ∈N +)时命题成立,证明n =k+1时命题成立.第三步:下结论,命题对从0n 开始的所有自然数n 都成立.要点诠释:(1)用数学归纳法证明与自然数n 有关的命题时,如果证明恒等式或不等式应特别注意项及项数的变化规律;证明几何命题时,要特别注意从n =k 到n =k+1的几何图形中几何元素的变化规律;证明整除性命题时,要特别注意凑配项的变形技巧;证明与奇、偶数有关的命题要注意过渡时的特点,如一个命题对所有奇数n 成立,应假设n =2k -1时命题成立,推证n =2k+1时命题成立或假设n =k (k 为奇数)时命题成立,推证n =k+2时命题成立.(2)“归纳一猜想—证明”的论题,要特别关注项的构成规律,作出合理的猜想后再证明.【典型例题】类型一:合情推理与演绎推理例1. 若数列{}n a 是等比数列,且0n a >,则有数列n b =n ∈N +)也为等比数列,类比上述性质,相应地:若数列{}n c 是等差数列,则有n d =________也是等差数列. 【思路点拨】类比猜想可得12n n c c c d n+++=…也成等差数列. 【解析】若设等差数列{}n c 的公差为x , 则12n n c c c d n +++=…1(1)2n n nc x n -+=1(1)2x c n =+-. 可见{}n d 是一个以1c 为首项,2x 为公差的等差数列,故猜想是正确的. 【总结升华】类比猜想是以两个对象之间某已知的相同或相似之处为根据,从而推出对象之间未知的相似之点的推理方法,这个根据是不充分的,因而类比推理的结论有时正确,有时不正确,其结论都需要证明.举一反三:【变式1】在平面几何中,△ABC 的内角平分线CE 分AB 所成线段的比为AE AC EB CB=,把这个结论类比到空间:在三棱锥A —BCD 中(如图所示),面DEC 平分二面角A —CD —B 且与AB 相交于E ,则得到的类比的结论是________.【答案】ACD BCDS AE EB S ∆∆= 【变式2】观察2()2x x '=,43()4x x '=,(cos )sin x x '=-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记g (x )为()f x 的导函数,则g (-x )=( )A .()f xB .()f x -C .()g xD .()g x -【答案】 D【解析】 由所给函数及其导数知,偶函数的导函数为奇函数.因此当()f x 是偶函数时,其导函数应为奇函数,故g (-x )=-g (x ).例2. 在数列{}n a 中,12a =,1431n n a a n +=-+,n ∈N +.(1)证明数列{}n a n -是等比数列;(2)求数列{}n a 的前n 项和n S ;(3)证明不等式1n S +≤4n S ,对任意n ∈N +皆成立.【解析】 (1)由题设1431n n a a n +=-+得1(1)4()n n a n a n +-+=-,n ∈N +.又111a -=,所以数列{}n a n -是首项为1,且公比为4的等比数列.(2)由(1)可知14n n a n --=,于是数列{}n a 的通项公式为14n n a n -=+.所以数列{}n a 的前n 项和41(1)32n n n n S -+=+. (3)对任意的n ∈N +,1141(1)(2)41(1)443232n n n n n n n n S S ++⎡⎤-++-+-=+-+⎢⎥⎣⎦21(34)2n n =-+-≤0. 所以不等式1n S +≤4n S ,对任意n ∈N +皆成立.【总结升华】本题属于递推数列问题,是高考考查的热点.解题的关键是转化为等差、等比数列. 举一反三:【变式1】纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位是 ( )A .南B .北C .西D .下【答案】 B【解析】将所给图形还原为正方体,如图所示,最上面为△,最左面为东,最里面为上,将正方体旋转后让东面指向东,让“上”面向上可知“△”的方位为北.【变式2】(2016 广州一模)以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角性”.该表由若干数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数为( )A.201520172⨯B. 201420172⨯C.201520162⨯D. 201420162⨯【答案】由题意,数表的每一行都是等差数列,且第一行公差为1,第二行公差为2,第三行公差为4,···,第2015行公差为20142 , 故第1行的第一个数为:122-⨯ ,第2行的第一个数为:032⨯ ,第3行的第一个数为:142⨯,…第n 行的第一个数为:2(1)2n n -+⨯, 第2016行只有M ,则20142014(12016)220172M =+⋅=⨯类型二:直接证明与间接证明例3. 设a ,b ,c 均为大于1的正数,且ab =10.求证:log log 4lg a b c c c +≥.【解析】证法一(综合法):因为ab =10, 所以lg lg log log 4lg 4lg lg lg a b c c c c c c a b+-=+- 11lg lg 4lg lg lg 4lg lg lg lg lg a b a b c c a b a b ⎛⎫+-=+-= ⎪⎝⎭14lg lg lg lg lg a b c a b-= 2(lg lg )4lg lg lg lg lg a b a b c a b+-= 2(lg lg )lg lg lg a b c a b-=. 又因为a ,b ,c 均为大于1的正数,所以lg a ,lg b ,lg c 均大于0,故2(lg lg )lg 0lg lg a b c a b-≥.即log log 4lg a b c c c +≥.证法二(分析法):由于1a >,b >1.故要证明log log 4lg a b c c c +≥ 只要证明lg lg 0lg lg c c a b+≥,即log log 4lg a b c c c +≥. 又1c >,所以只要证明114lg lg a b +≥,即lg lg 4lg lg c b a b +≥. 因为10ab =,所以lg lg 1a b +=, 故只要证明14lg lg a b ≥. ①由于a >1,b >1,所以lg 0a >,lg b >0. 所以2lg lg 10lg lg 24a b a b +⎛⎫<≤= ⎪⎝⎭,即14lg lg a b ≥. 当且仅当lg lg a b =时等号成立,即①式成立,所以原不等式成立.举一反三:【变式】设a ,b ∈R 且a ≠b ,a+b =2,则必有( ) A .1≤ab ≤222a b + B .2212a b ab +<< C .2212a b ab +<< D .2212a b +< 【答案】B【解析】∵ a+b =2.∴ b =2-a ,2224a b ab ++=,∴ 22(2)2(21)1ab a a a a a a =-=-=--++ 2(1)11a =--+≤. ∵ a ≠b ≠1.∴ ab <1.∵ 222222()0222a b a a b b a b ab +-+--==>, ∴ 2212a b +>.∵ 22222122a b a b ++--=422102ab ab --==->, ∴ 2212a b +>, 综上可得2212a b ab +>>. 例4. 设函数()f x 对定义域内任意实数都有()0f x ≠,且()()()f x y f x f y +=成立. 求证:对定义域内任意x ,都有()0f x >.【思路点拨】直接证明有些困难,考虑用反证法.【解析】假设满足题设条件的任意x ,()0f x >不成立,即存在某个0x ,有0()f x ≤0. ∵ ()0f x ≠,∴ 0()0f x <. 又知2000000()022222x x x x x f x f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+==> ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 这与假设0()0f x <矛盾,假设不成立.故对任意的x 都有()0f x >.【总结升华】此题证明过程中,“对任意x ,都有()0f x >”的否命题是:“存在x 0,使0()f x ≤0”,而不是“对所有的x ,都有()f x ≤0”,因此在应用反证法时正确写出结论的否定形式是很重要的. 举一反三:【变式】函数41()2x x f x +=的图象( ) A .关于原点对称 B .关于直线y =x 对称C .关于x 轴对称D .关于y 轴对称【答案】 D【解析】 对于选项A ,点512⎛⎫⎪⎝⎭,在()f x 上, 但点512⎛⎫-- ⎪⎝⎭,不在()f x 上;对于选项B ,点(0,2)在()f x 上,但点(2,0)不在,(z )上;对于选项C ,函数的图象不能关于x 轴对称;对于选项D ,∵ 4114()()22x x x x f x f x --++-===. ∴ 函数的图象关于y 轴对称.类型三:数学归纳法例5. 等比数列{a n }的前n 项和为S n ,已知对任意的n ∈N *,点(n ,S n )均在函数y =b x +r (b >0且b ≠1,b ,r 均为常数)的图象上.(1)求r 的值;(2)当b =2时,记b n =2(log 2a n +1)(n ∈N *),证明:对任意的n ∈N *,不等式1212111n nb b b b b b +++⋅⋅⋅> 【解析】(1)由题意:S n =b n +r ,当n ≥2时,S n -1=b n -1+r . 所以a n =S n -S n -1=b n -1(b -1), 由于b >0且b ≠1,所以n ≥2时,{a n }是以b 为公比的等比数列.又a 1=b +r ,a 2=b (b -1),21a b a =,即(1)b b b b r-=+,解得r =-1. (2)当b =2时,由(1)知a n =2n -1,因此b n =2n (n ∈N *),所证不等式为214121242n n+++⋅⋅⋅>①当n =1时,左式=32. 左式>右式,所以结论成立,②假设n =k (k ∈N *)时结论成立,即214121242k k +++⋅⋅⋅>, 则当n =k +1时,21412123232422(1)2(1)k k k k k k +++++⋅⋅⋅⋅>=++, 要证当n =k +1时结论成立,>,即证232k+>由均值不等式23(1)(2)22k k k++++=>>所以当n=k+1时,结论成立.由①②可知,n∈N*时,不等式1212111nnbb bb b b+++⋅⋅⋅>【总结升华】本题属中等难度题,求解关键是要掌握数学归纳法.举一反三:【变式1】已知*111()()1231f n n Nn n n=+++∈++-,则f(k+1)=f(k)+______________________. 【答案】1111331321k k k k++-+++【变式2】试比较2n+2与n2的大小(n∈N*),并用数学归纳法证明你的结论.【答案】当n=1时,21+2=4>n2=1,当n=2时,22+2=6>n2=4,当n=3时,23+2=10>n2=9,由n=4时,24+2=18>n2=16,由此可以猜想,2n+2>n2(n∈N*)成立.下面用数学归纳法证明:(1)当n=1时,左边=21+2=4,右边=1,所以左边>右边,所以原不等式成立.当n=2时,左边=22+2=6,右边=22=4,所以左边>右边;当n=3时,左边=23+2=10,右边=32=9,所以左边>右边.(2)假设n=k(k≥3且k∈N*)时,不等式成立,即2k+2>k2.那么当n=k+1时,2k+1+2=2·2k+2=2(2k+2)-2>2·k2-2.精品文档 用心整理资料来源于网络 仅供免费交流使用 又因:2k 2-2-(k +1)2=k 2-2k -3=(k -3)(k +1)≥0, 即2k 2-2≥(k +1)2,故2k +1+2>(k +1)2成立. 根据(1)和(2),原不等式对于任何n ∈N *都成立.【变式3】(2016 南通一模)已知函数f 0(x )=x (sin x+cos x ),设f n (x )是f n+1(x )的导数,n ∈N*。
推理与证明知识回顾对于数学的学习,应具备“能力”,其中本章的“推理与证明”就是一种重要的“逻辑思维”能力.通过本章的复习,培养推理、论证能力,以增强对问题的敏锐的观察,深刻的理解、领悟能力.一、推理部分1.知识结构框图:2.合情推理:____与____统称为合情推理.①归纳推理:______________.②类比推理:______________定义特点:归纳推理是由特殊到一般、由具体到抽象的推理;而类比推理是由特殊到特殊的推理;两者都能由已知推测、猜想未知,从而推出结论.但是结论的可靠性有待证明.③推理过程:从具体问题出发→______→归纳类比→______.3.演绎推理:_______________.①定义特点:演绎推理是由一般到特殊的推理;②学习要点:演绎推理是数学中证明的基本推理形式;推理模式:“三段论”:ⅰ大前提:_______________;ⅱ小前提:_______________;ⅲ结论:_______________.集合简述:ⅰ大前提:且x具有性质P;ⅱ小前提:且;ⅲ结论:y也具有性质P;4.合情推理与演绎推理的关系:①合情推理中的归纳推理是由特殊到一般的推理,演绎推理是由一般到特殊的推理;②它们又是相辅相成的,前者是后者的前提,后者论证前者的可靠性;二、证明部分1.知识结构框图2.综合法与分析法①综合法:_______________②分析法:_______________.学习要点:在解决问题时,经常把综合法与分析法合起来使用;使用分析法寻找成立的条件,再用综合法写出证明过程.③反证法:_______________.学习要点:反证法的关键是在正确的推理下得出矛盾,这个矛盾可以是与______,______或______等矛盾.3.数学归纳法一般地,证明一个与正整数n有关的命题的步骤如下:(1)(归纳奠基)_______________;(2)(归纳递推)_______________.其证明的方法叫做数学归纳法.学习要点:理解第一步是推理的基础,第二步是推理的依据,两者缺一不可.特别地,在证明第二步时命题成立,一定要用上归纳假设时命题成立;另外在证明第二步时首先要有明确的目标式,即确定证题方向;数学归纳法常和合情推理综合应用,特别常以归纳推理为前提.三、考查要求“合情推理”是一种重要的归纳、猜想的推理,它是发现问题和继续推理的基础.逻辑思维能力主要体现为对演绎推理的考查.试卷中考查演绎推理的试题的比例比较大,命题时既考虑使用选择题、填空题的形式进行考查,又考虑如何使用解答题(以证明题的形式)突出进行考查,立体几何是考查演绎推理的最好素材.数学归纳法很少单独考查,由于数列是和自然数有关的,因此,经常和数列一起考查,常与归纳猜想相结合进行综合考查.推理与证明复习指导对于数学的学习,应具备“能力”,其中本章的“推理与证明”就是一种重要的“逻辑思维”能力形式.通过本章的复习,要有着扎实的推理、论证能力,以增强对问题的敏锐的观察,深刻的理解、领悟能力一.推理部分1.知识结构:演绎推理推理归纳和情推理类比2.和情推理:归纳推理与类比推理统称为和情推理.①归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或有个别事实概括出一般结论的推理,称为归纳推理.②类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理.③定义特点;归纳推理是由特殊到一般、由部分到整体的推理;而类比推理是由特殊到特殊的推理;都能由已知推测、猜想未知,从而推理结论.但是结论的可靠性有待证明.例如:已知,可以,,于是推出:对入任何,都有;而这个结论是错误的,显然有当时,.因此,归纳法得到的结论有待证明.例如:“在平面内与同一条直线垂直的两条直线平行”;类比线与线得到:“在空间与同一条直线垂直的两条直线平行“;显然此结论是错误的”.类比线与面得到:在空间与同一个平面垂直的两个平面平行;显然此结论是错误的.④推理过程:从具体问题出发观察、分析、比较、联想归纳、类比猜想.3.演绎推理:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理(逻辑推理).①定义特点:演绎推理是由一般到特殊的推理;②数学应用:演绎推理是数学中证明的基本推理形式;推理模式:“三段论”:ⅰ大前提:已知的一般原理(是);ⅱ小前提:所研究的特殊情况(是);ⅲ结论:由一般原理对特殊情况作出判断(是);集合简述:ⅰ大前提:且具有性质;ⅱ小前提:且;ⅲ结论:也具有性质;例题1.若定义在区间D上的函数对于D上的个值,总满足,称函数为D 上的凸函数;现已知在上是凸函数,则中,的最大值是.解答:由(大前提)因为在上是凸函数(小前提)得(结论)即因此,的最大值是注:此题是一典型的演绎推理“三段论”题型4.和情推理与演绎推理的关系:①和情推理是由特殊到一般的推理,演绎推理是由一般到特殊的推理;②它们又是相辅相成的,前者是后者的前提,后者论证前者的可靠性;例2.设,(其中且)(1)5=2+3请你推测能否用来表示;(2)如果(1)中获得了一个结论,请你推测能否将其推广.解答:(1)由=+=又=因此,=(2)由=即=于是推测=证明:因为:,(大前提)所以=,=,=,(小前提及结论)所以=+==解题评注:此题是一典型的由特殊到一般的推理,构造=是此题的一大难点,要经过观察、分析、比较、联想而得到;从而归纳推出一般结论=.二.证明部分1.知识结构数学归纳法综合法证明直接证法分析法间接证法反证法2.综合法与分析法①综合法;利用已知条件和某些数学定义、公理、定理等出发,经过一系列推理论证,推导出所要证明的结论成立.②分析法:从要证明的结论出发逐步寻求使它成立的充分条件,直至把要证明的结论归结为判别一个明显成立的条件为止.③综合应用:在解决问题时,经常把综合法与分析法和起来使用;使用分析法寻找成立的条件,再用综合法写出证明过程.例3.已知:,求证:证明:因为所以又由已知,因此,成立.由于以上分析步步等价,因此步步可逆.故结论成立.解题评注:(1)以上解答采用恒等变形,其实质从上往下属于分析法,反之属于综合法.(2)这里表示了,( )是结论成立的充要条件,当然找到了结论成立的充分条件就可以了.例4.求证抛物线,以过焦点的弦为直径的圆必与相切.证明:(如图)作AA/、BB/垂直准线,取AB的中点M,作MM/垂直准线.要证明以AB为直径的圆与准线相切只需证|MM/|=|AB|[om]由抛物线的定义:|AA/|=|AF|,|BB/|=|BF|所以|AB|=|AA/|+|BB/|因此只需证|MM/|=(|AA/|+|BB/|)根据梯形的中位线定理可知上式是成立的.所以以过焦点的弦为直径的圆必与相切.以上解法同学们不难以综合法作出解答.解题评注:分析法是从结论出发寻找证题思路的一种重要的思维方法,特别是题设和结论相结合,即综合法与分析法相结合,可使很多较为复杂的问题得到解决.3.数学归纳法一般地,证明一个与正整数n有关的命题的步骤如下:(1)(归纳奠基)证明当n取第一个值n0时命题成立;(2)(归纳递推)假设n=(时命题成立,证明当时命题也成立。
高中数学第二章推理与证明2.3数学归纳法讲义新人教A 版选修221.数学归纳法的内容如下:一个□01与正整数有关的命题,如果(1)□02当n 取第一个值n 0(例如n 0=1或n 0=2等)时结论正确,(2)□03假设当n =k (k ∈N *,且k ≥n 0)时结论正确,能够证明当n =k +1时结论也正确,那么可以断定□04这个命题对n ∈N *且n ≥n 0的所有正整数都成立. 2.数学归纳法的步骤中,第一步的作用是□05递推的基础,第二步的作用是□06递推的依据. 3.数学归纳法实质上是□07演绎推理法的一种,它是一种□08严格的证明方法,它只能□09证明结论,不能发现结论,并且只能证明□10与正整数相关的命题. 4.常把归纳法和数学归纳法结合起来,形成□11归纳—猜想—证明的思想方法,既可以□12发现结论,又能□13给出严格的证明,组成一套完整的数学研究的思想方法. 5.用数学归纳法证明命题时,两步□14缺一不可,并且在第二步的推理证明中必须用□15归纳假设,否则不是数学归纳法.对数学归纳法本质的理解数学归纳法可能与同学们以前所接触的证明方法差别很大,为了达到“知其然,知其所以然”的效果,可对比以下问题理解数学归纳法的实质.(1)有n 个骨牌排成如图所示的一排,现推倒第一张骨牌,会有什么现象?(2)要使骨牌全部倒下,骨牌的摆放有什么要求?(骨牌的间距不大于骨牌的高度) (3)这样做的原因是什么?这样摆放可以达到什么样的效果?(前一张骨牌倒下,适当的间距导致后一张骨牌也倒下)(4)如果推倒的不是第一张骨牌,而是其他位置上的某一张骨牌,能使所有的骨牌倒下吗?(5)能够成功地推倒排成一排的骨牌的条件是什么?(通过观察和思考,可以得到的结论是:①第一张骨牌被推倒;②若某一张骨牌倒下,则其后面的一张骨牌必定倒下)第一张骨牌被推倒――→利用②第二张骨牌被推倒――→利用②第三张骨牌被推倒――→利用②…运用类比的方法,我们不难将推倒骨牌的原理进行迁移、升华,进而得到数学归纳法证明的步骤:(1)当n =1时,结论成立;(2)假设当n =k 时结论成立,证明n =k +1时结论也必定成立. 当n =1时结论成立――→利用2当n =2时结论成立――→利用2当n =3时结论成立――→利用2…1.判一判(正确的打“√”,错误的打“×”)(1)与正整数n 有关的数学命题的证明只能用数学归纳法.( ) (2)数学归纳法的第一步n 0的初始值一定为1.( ) (3)数学归纳法的两个步骤缺一不可.( ) 答案 (1)× (2)× (3)√ 2.做一做(1)已知f (n )=1n +1n +1+1n +2+…+1n 2,则f (n )共有________项,f (2)=________.(2)定义一种运算“*”,对于正整数n ,满足以下运算性质:①1] . (3)设S k =1k +1+1k +2+1k +3+ (12),则S k +1=________(用含S k 的代数式表示). 答案 (1)n 2-n +1 12+13+14 (2)2×3n -1(3)S k +12k +1-12k +2探究1 用数学归纳法证明等式问题 例1 已知n ∈N *,用数学归纳法证明:1-12+13-14+...+12n -1-12n =1n +1+1n +2+ (12). [证明] ①当n =1时,左边=1-12=12,右边=12,命题成立.②假设当n =k (k ∈N *,k ≥1)时命题成立,即 1-12+13-14+…+12k -1-12k =1k +1+1k +2+…+12k . 那么当n =k +1时,左边=1-12+13-14+…+12k -1-12k +12k +1-12k +2=1k +1+1k +2+…+12k +12k +1-12k +2=1k +2+1k +3+…+12k +12k +1+1k +1-12k +2=1k +2+1k +3+…+12k +12k +1+12k +2=右边.故当n =k +1时,命题也成立.综上可知,命题对一切非零自然数都成立. 拓展提升用数学归纳法证明与正整数有关的等式问题时,关键在于“先看项”,弄清等式两边的构成规律,等式的两边各有多少项,项的多少与n 的取值是否有关,由n =k 到n =k +1时,等式两边会增加多少项.【跟踪训练1】 用数学归纳法证明:⎝ ⎛⎭⎪⎫1-14⎝ ⎛⎭⎪⎫1-19·⎝ ⎛⎭⎪⎫1-116…⎝ ⎛⎭⎪⎫1-1n 2=n +12n (n ≥2,n∈N *).证明 ①当n =2时,左边=1-14=34,右边=2+12×2=34,∴左边=右边.∴当n =2时,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立,即⎝ ⎛⎭⎪⎫1-14⎝ ⎛⎭⎪⎫1-19…⎝ ⎛⎭⎪⎫1-1k 2=k +12k,那么,当n =k +1时,⎝ ⎛⎭⎪⎫1-14⎝ ⎛⎭⎪⎫1-19…⎝ ⎛⎭⎪⎫1-1k 2⎣⎢⎡⎦⎥⎤1-1k +12=k +12k ⎣⎢⎡⎦⎥⎤1-1k +12=k +12k·k k +2k +12=k +22k +1=k +1+12k +1,即当n =k +1时,等式也成立.根据①②可知,等式对任意n ≥2,n ∈N *都成立. 探究2 用数学归纳法证明不等式问题 例2 证明不等式1+12+13+ (1)<2n (n ∈N *). [证明] ①当n =1时,左边=1,右边=2. 左边<右边,不等式成立.②假设当n =k (k ∈N *)时,不等式成立, 即1+12+13+…+1k<2k . 则当n =k +1时, 1+12+13+…+1k +1k +1<2k +1k +1=2k k +1+1k +1<k 2+k +12+1k +1=2k +1k +1=2k +1. ∴当n =k +1时,不等式成立.由①②可知,原不等式对任意n ∈N *都成立. 拓展提升用数学归纳法证明不等式往往比证明恒等式难度更大些,方法更灵活些,用数学归纳法证明的第二步,即已知f (k )>g (k ),求证f (k +1)>g (k +1)时应注意灵活运用证明不等式的一般方法(比较法、分析法、综合法).具体证明过程中要注意以下两点:(1)先凑假设,作等价变换;(2)瞄准当n =k +1时的递推目标,有目的地放缩、分析直到凑出结论.【跟踪训练2】 用数学归纳法证明1+n 2≤1+12+13+…+12n ≤12+n (n ∈N *).证明 ①当n =1时,1+12≤1+121≤12+1∴32≤1+12≤32,命题成立.②假设当n =k (k ∈N *)时命题成立,即1+k 2≤1+12+13+…+12k ≤12+k ,则当n =k +1时,1+12+13+…+12k +12k +1+12k +2+…+12k +2k ≥1+k 2+12k +1+12k +2+…+12k +2k>1+k 2+12k +2k +12k +2k +…+12k +2k=1+k 2+2k ·12k +1=1+k +12.又1+12+13+…+12k +12k +1+12k +2+…+12k +2k≤12+k +12k +1+12k +2+…+12k +2k <12+k +12k +12k +…+12k =12+k +2k·12k =12+(k +1), 即n =k +1时,命题成立.由①和②可知,命题对所有n ∈N *都成立. 探究3 用数学归纳法证明整除性问题 例3 用数学归纳法证明42n +1+3n +2能被13整除,其中n ∈N *. [证明] 证法一:①当n =1时,42×1+1+31+2=91能被13整除,故结论成立. ②假设当n =k (k ≥1,且k ∈N *)时,42k +1+3k +2能被13整除,则当n =k +1时, 42(k +1)+1+3k +3=42k +1·42+3k +2·3-42k +1·3+42k +1·3=42k +1·13+3(42k +1+3k +2),因为42k +1·13能被13整除,42k +1+3k +2能被13整除,所以42k +1·13+3(42k +1+3k +2)能被13整除.所以当n =k +1时命题也成立, 由①②知,当n ∈N *时,42n +1+3n +2能被13整除.证法二:①当n =1时,42×1+1+31+2=91能被13整除,故结论成立.②假设当n =k (k ≥1,且k ∈N *)时,即42k +1+3k +2能被13整除,则当n =k +1时,[42(k +1)+1+3k +3]-(42k +1+3k +2) =(42k +1·42+3k +2·3)-(42k +1+3k +2)=42k +1·13+2(42k +1+3k +2).因为42k +1·13能被13整除,42k +1+3k +2能被13整除,所以[42(k +1)+1+3k +3]-(42k +1+3k +2)能被13整除,所以42(k +1)+1+3k +3能被13整除.所以当n=k+1时命题也成立.由①②知,当n∈N*时,42n+1+3n+2能被13整除.拓展提升在推证n=k+1时,为了凑出归纳假设,采用了“增减项”技巧,所以证明整除性问题的关键是“凑项”,采用增项、减项、拆项和因式分解等手段,凑出n=k时的情形,从而利用归纳假设使问题得证.【跟踪训练3】用数学归纳法证明:62n-1+1能被7整除,其中n∈N*.证明①当n=1时,62-1+1=7能被7整除.②假设当n=k(k∈N*)时,62k-1+1能被7整除.那么当n=k+1时,62(k+1)-1+1=62k-1+2+1=36(62k-1+1)-35.∵62k-1+1能被7整除,35也能被7整除,∴当n=k+1时,62(k+1)-1+1能被7整除.由①②知命题成立.1.数列中的归纳—猜想—证明,是对学生观察、分析、归纳论证能力的综合考查,是近几年理科高考的热点之一.解此类问题,需要从特殊入手,通过观察、分析、归纳、猜想,探索一般规律.2.数学归纳法是一种只适用于与自然数有关的命题的证明方法,它们的表述严格而且规范,两个步骤缺一不可.第一步是递推的基础,第二步是递推的依据,第二步中,归纳假设起着“已知条件”的作用,在第二步的证明中一定要运用它,否则就不是数学归纳法.第二步的关键是“一凑假设,二凑结论”.3.在用数学归纳法证明问题的过程中,还要注意从k→k+1时命题中的项与项数的变化,防止对项数估算错误.1.用数学归纳法证明3n≥n3(n≥3,n∈N*),第一步验证( )A.n=1 B.n=2 C.n=3 D.n=4答案 C解析由题知,n的最小值为3,所以第一步验证n=3是否成立.2.对于不等式n2+n<n+1(n∈N*),某同学应用数学归纳法的证明过程如下:(1)当n =1时,12+1<1+1,不等式成立. (2)假设当n =k (k ∈N *)时,不等式成立, 即 k 2+k <k +1, 则当n =k +1时,k +12+k +1=k 2+3k +2<k 2+3k +2+k +2=k +22=(k +1)+1,∴当n =k +1时,不等式成立. 则上述证法( ) A .过程全部正确 B .n =1验得不正确 C .归纳假设不正确D .从n =k 到n =k +1的推理不正确 答案 D解析 从n =k 到n =k +1的推理过程中未用到(2)中假设,所以不正确,故选D. 3.用数学归纳法证明12+22+…+(n -1)2+n 2+(n -1)2+…+22+12=n 2n 2+13(n ∈N *)时,由n =k 的假设到证明n =k +1时,等式左边应添加的式子是________.答案 (k +1)2+k 2解析 当n =k 时,左边=12+22+…+(k -1)2+k 2+(k -1)2+…+22+12. 当n =k +1时,左边=12+22+…+k 2+(k +1)2+k 2+(k -1)2+…+22+12, 所以左边添加的式子为(k +1)2+k 2. 4.用数学归纳法证明:(n +1)(n +2)…(n +n )=2n ×1×3×…×(2n -1)(n ∈N *)时,从“n =k 到n =k +1”时,左边应增乘的代数式为________.答案 2(2k +1)解析 当n =k (k ∈N *)时,左边=(k +1)(k +2)…(k +k ),当n =k +1时,左边=(k +1+1)(k +1+2)…(k +1+k -1)(k +1+k )(k +1+k +1), 则左边应增乘的式子是2k +12k +2k +1=2(2k +1),故答案为2(2k +1).5.用数学归纳法证明:13+23+…+n 3=14n 2(n +1)2(n ∈N *).证明 ①当n =1时,左边=13=1, 右边=14×12×(1+1)2=1,等式成立.②假设当n =k (k ∈N *)时,等式成立,。
章末复习学习目标 1.整合本章知识要点.2.进一步理解合情推理与演绎推理的概念、思维形式、应用等.3.进一步熟练掌握直接证明与间接证明.4.理解数学归纳法,并会用数学归纳法证明问题.1.合情推理(1)归纳推理:由部分到整体、由个别到一般的推理.(2)类比推理:由特殊到特殊的推理.(3)合情推理:归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.2.演绎推理(1)演绎推理:由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.3.直接证明和间接证明(1)直接证明的两类基本方法是综合法和分析法:①综合法是从已知条件推出结论的证明方法;②分析法是从结论追溯到条件的证明方法.(2)间接证明的一种方法是反证法,是从结论反面成立出发,推出矛盾的方法.4.数学归纳法数学归纳法主要用于解决与正整数有关的数学命题.证明时,它的两个步骤缺一不可,它的第一步(归纳奠基)是证当n=n0时结论成立;第二步(归纳递推)是假设当n=k时结论成立,推得当n=k+1时结论也成立.1.归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.(×)2.“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.(√)3.综合法是直接证明,分析法是间接证明.(×)4.反证法是指将结论和条件同时否定,推出矛盾.(×)类型一 合情推理与演绎推理 例1 (1)观察下列等式:⎝⎛⎭⎫sin π3-2+⎝⎛⎭⎫sin 2π3-2=43×1×2; ⎝⎛⎭⎫sin π5-2+⎝⎛⎭⎫sin 2π5-2+⎝⎛⎭⎫sin 3π5-2+⎝⎛⎭⎫sin 4π5-2 =43×2×3; ⎝⎛⎭⎫sin π7-2+⎝⎛⎭⎫sin 2π7-2+⎝⎛⎭⎫sin 3π7-2+…+⎝⎛⎭⎫sin 6π7-2=43×3×4; ⎝⎛⎭⎫sin π9-2+⎝⎛⎭⎫sin 2π9-2+⎝⎛⎭⎫sin 3π9-2+…+⎝⎛⎭⎫sin 8π9-2=43×4×5; …… 照此规律,⎝⎛⎭⎫sin π2n +1-2+⎝⎛⎭⎫sin 2π2n +1-2+⎝⎛⎭⎫sin 3π2n +1-2+…+⎝⎛⎭⎫sin 2n π2n +1-2=________. 考点 归纳推理的应用题点 归纳推理在数对(组)中的应用 答案 43n (n +1)解析 第一个等式中1=3-12,2=3+12;第二个等式中,2=5-12,3=5+12;第三个等式中,3=7-12,4=7+12.由此可推得第n 个等式等于43×2n +1-12×2n +1+12=43n (n +1).(2)根据图(1)的面积关系:S △P A ′B ′S △P AB =P A ′P A ·PB ′PB ,可猜想图(2)有体积关系:V 三棱锥P -A ′B ′C ′V 三棱锥P -ABC=________.考点 类此推理的应用题点 平面几何与立体几何之间的类比 答案P A ′P A ·PB ′PB ·PC ′PC解析 题干两图中,与△P AB ,△P A ′B ′相对应的是三棱锥P -ABC ,P -A ′B ′C ′;与△P A ′B ′两边P A ′,PB ′相对应的是三棱锥P -A ′B ′C ′的三条侧棱P A ′,PB ′,PC ′.与△P AB 的两条边P A ,PB 相对应的是三棱锥P -ABC 的三条侧棱P A ,PB ,PC .由此,类比题图(1)的面积关系,得到题图(2)的体积关系为V 三棱锥P -A ′B ′C ′V 三棱锥P -ABC=P A ′P A ·PB ′PB ·PC ′PC .(3)有三张卡片,分别写有1和2,1和3,2和3.甲、乙、丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.考点 演绎推理的综合应用 题点 演绎推理在其他方面的应用 答案 1和3解析 由题意可知丙不拿2和3.若丙拿1和2,则乙拿2和3,甲拿1和3,满足题意; 若丙拿1和3,则乙拿2和3,甲拿1和2,不满足题意. 故甲的卡片上的数字是1和3.反思与感悟 (1)用归纳推理可从具体事例中发现一般规律,但应注意,仅根据一系列有限的特殊事例,所得出的一般结论不一定可靠,其结论的正确与否,还要经过严格的理论证明. (2)进行类比推理时,要尽量从本质上思考,不要被表面现象所迷惑,否则,只抓住一点表面的相似甚至假象就去类比,就会犯机械类比的错误.(3)演绎推理是由一般到特殊的推理,其结论不会超出前提所界定的范围,所以其前提和结论之间的联系是必然的.因此,在演绎推理中,只要前提及推理正确,结论必然正确. 跟踪训练1 (1)如图是由火柴棒拼成的图形,第n 个图形由n 个正方形组成.通过观察可以发现:第4个图形中有________根火柴棒;第n 个图形中有________根火柴棒. 考点 归纳推理的应用 题点 归纳推理在图形中的应用 答案 13 3n +1解析 设第n 个图形中火柴棒的根数为a n ,可知a 4=13. 通过观察得到递推关系式a n -a n -1=3(n ≥2,n ∈N *), 所以a n =3n +1.(2)若数列{a n }为等差数列,S n 为其前n 项和,则有性质“若S m =S n (m ,n ∈N *且m ≠n ),则S m +n =0.”类比上述性质,相应地,当数列{b n }为等比数列时,写出一个正确的性质:________________. 考点 类比推理的应用题点 等差数列与等比数列之间的类比答案 数列{b n }为等比数列,T m 表示其前m 项的积,若T m =T n (m ,n ∈N *,m ≠n ),则T m +n =1解析 由等差数列的运算性质类比推理到等比数列的运算性质时, 加减运算类比推理为乘除运算. 累加类比为累乘,由此,等差数列{a n }的性质类比到等比数列{b n }中为: 数列{b n }为等比数列,T m 表示其前m 项的积, 若T m =T n (m ,n ∈N *,m ≠n ), 则T m +n =1.类型二 综合法与分析法例2 试用分析法和综合法分别推证下列命题:已知α∈(0,π),求证:2sin 2α≤sin α1-cos α.考点 分析法和综合法的综合应用 题点 分析法和综合法的综合应用 证明 方法一 分析法 要证2sin 2α≤sin α1-cos α成立,只需证4sin αcos α≤sin α1-cos α,∵α∈(0,π),∴sin α>0, 只需证4cos α≤11-cos α,∵1-cos α>0, ∴4cos α(1-cos α)≤1,可变形为4cos 2α-4cos α+1≥0, 只需证(2cos α-1)2≥0,显然成立. 方法二 综合法 ∵11-cos α+4(1-cos α)≥4,当且仅当cos α=12,即α=π3时取等号,∴4cos α≤11-cos α.∵α∈(0,π),∴sin α>0, ∴4sin αcos α≤sin α1-cos α,∴2sin 2α≤sin α1-cos α.反思与感悟 分析法和综合法是两种思路相反的推理方法:分析法是倒溯,综合法是顺推,二者各有优缺点.分析法容易探路,且探路与表述合一,缺点是表述易错;综合法条件清晰,易于表述,因此对于难题常把二者交互运用,互补优缺,形成分析综合法,其逻辑基础是充分条件与必要条件.跟踪训练2 设a ,b 是两个正实数,且a ≠b ,求证:a 3+b 3>a 2b +ab 2. 考点 分析法及应用 题点 分析法解决不等式问题证明 要证a 3+b 3>a 2b +ab 2成立,即需证 (a +b )(a 2-ab +b 2)>ab (a +b )成立, 即需证a 2-ab +b 2>ab 成立. 只需证a 2-2ab +b 2>0成立, 即需证(a -b )2>0成立.而由已知条件可知,a ≠b ,所以a -b ≠0, 所以(a -b )2>0显然成立. 即a 3+b 3>a 2b +ab 2. 类型三 反证法例3 若x ,y 都是正实数,且x +y >2,求证:1+x y <2与1+yx <2中至少有一个成立.考点 反证法及应用 题点 反证法的应用证明 假设1+x y <2和1+yx <2都不成立,则有1+x y ≥2和1+yx ≥2同时成立.因为x >0且y >0,所以1+x ≥2y 且1+y ≥2x ,两式相加,得2+x +y ≥2x +2y ,所以x +y ≤2. 这与已知x +y >2矛盾. 故1+x y <2与1+y x<2中至少有一个成立.反思与感悟 反证法常用于直接证明困难或以否定形式出现的命题;涉及“都是……”“都不是……”“至少……”“至多……”等形式的命题时,也常用反证法. 跟踪训练3 已知:ac ≥2(b +d ).求证:方程x 2+ax +b =0与方程x 2+cx +d =0中至少有一个方程有实数根. 考点 反证法及应用 题点 反证法的应用证明 假设两方程都没有实数根,则Δ1=a 2-4b <0与Δ2=c 2-4d <0,有a 2+c 2<4(b +d ),而a 2+c 2≥2ac ,从而有4(b +d )>2ac ,即ac <2(b +d ),与已知矛盾,故原命题成立. 类型四 数学归纳法例4 已知在数列{a n }中,a 1=-23,其前n 项和S n 满足a n =S n +1S n +2(n ≥2),计算S 1,S 2,S 3,S 4,猜想S n 的表达式,并用数学归纳法加以证明. 考点 数学归纳法证明数列问题 题点 数学归纳法证明数列通项问题 解 当n ≥2时,a n =S n -S n -1=S n +1S n +2.∴S n =-1S n -1+2(n ≥2).则有S 1=a 1=-23,S 2=-1S 1+2=-34,S 3=-1S 2+2=-45,S 4=-1S 3+2=-56,由此猜想:S n =-n +1n +2(n ∈N *).下面用数学归纳法证明:(1)当n =1时,S 1=-23=a 1,猜想成立.(2)假设当n =k (k ≥1,k ∈N *)时猜想成立, 即S k =-k +1k +2成立,那么当n =k +1时,S k +1=-1S k +2=-1-k +1k +2+2 =-k +2k +3=-(k +1)+1(k +1)+2.即当n =k +1时猜想成立.由(1)(2)可知,对任意正整数n ,猜想均成立.反思与感悟 (1)用数学归纳法证明等式问题是数学归纳法的常见题型,其关键点在于“先看项”,弄清等式两边的构成规律,等式两边各有多少项,初始n 0是多少.(2)由n =k 到n =k +1时,除等式两边变化的项外还要利用当n =k 时的式子,即利用假设,正确写出归纳证明的步骤,从而使问题得以证明. 跟踪训练4 观察下列四个等式: 第一个式子 1=1 第二个式子 2+3+4=9 第三个式子 3+4+5+6+7=25 第四个式子 4+5+6+7+8+9+10=49 (1)按照此规律,写出第五个等式;(2)请你做出一般性的猜想,并用数学归纳法证明. 考点 利用数学归纳法证明等式 题点 等式中的归纳、猜想、证明 解 (1)第5个等式:5+6+7+…+13=81. (2)猜想第n 个等式为n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2. 下面用数学归纳法证明.①当n =1时,左边=1,右边=(2-1)2=1, 猜想成立.②假设当n =k (k ≥1,k ∈N *)时,猜想成立, 即有k +(k +1)+(k +2)+…+(3k -2)=(2k -1)2. 那么当n =k +1时,左边=(k +1)+(k +2)+…+(3k -2)+(3k -1)+3k +(3k +1) =k +(k +1)+(k +2)+…+(3k -2)+(2k -1)+3k +(3k +1) =(2k -1)2+(2k -1)+3k +(3k +1) =4k 2-4k +1+8k =(2k +1)2 =[2(k +1)-1]2. 右边=[2(k +1)-1]2,即当n =k +1时,猜想也成立. 根据①②知,猜想对任意n ∈N *都成立.1.数列5,9,17,33,x ,…中的x 等于( ) A .47 B .65 C .63D .128考点 归纳推理的应用题点 归纳推理在数对(组)中的应用 答案 B解析 5=22+1,9=23+1,17=24+1,33=25+1, 归纳可得:x =26+1=65.2.在平面直角坐标系中,方程x a +yb =1表示x ,y 轴上的截距分别为a ,b 的直线,类比到空间直角坐标系中,在x ,y ,z 轴上截距分别为a ,b ,c (abc ≠0)的平面方程为( ) A.x a +y b +zc=1 B.x ab +y bc +zca =1 C.xy ab +yz bc +zxca=1 D .ax +by +cz =1考点 类比推理的应用题点 平面几何与立体几何之间的类比 答案 A解析 ∵在平面直角坐标系中,方程x a +yb =1表示的图形是一条直线,具有特定性质:“在x轴,y 轴上的截距分别为a ,b ”.类比到空间直角坐标系中,在x ,y ,z 轴上截距分别为a ,b ,c (abc ≠0)的平面方程为x a +y b +zc =1.故选A.3.若a >0,b >0,则有( ) A.b 2a >2b -a B.b 2a <2b -a C.b 2a ≥2b -a D.b 2a≤2b -a 考点 综合法及应用题点 利用综合法解决不等式问题 答案 C解析 因为b 2a -(2b -a )=b 2-2ab +a 2a =(b -a )2a ≥0,所以b 2a≥2b -a .4.用反证法证明命题:“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 3+ax +b =0没有实根B .方程x 3+ax +b =0至多有一个实数C .方程x 3+ax +b =0至多有两个实根D .方程x 3+ax +b =0恰好有两个实根 考点 反证法及应用 题点 如何正确进行反设 答案 A解析 方程x 3+ax +b =0至少有一个实根的反面是方程x 3+ax +b =0没有实根,故选A. 5.用数学归纳法证明:12×4+14×6+16×8+…+12n (2n +2)=n 4(n +1)(n ∈N *). 考点 用数学归纳法证明等式 题点 利用数学归纳法证明等式解 (1)当n =1时,左边=12×1×(2×1+2)=18,右边=14×(1+1)=18.左边=右边,所以等式成立.(2)假设当n =k (k ≥1,k ∈N *)时等式成立, 即有12×4+14×6+16×8+…+12k (2k +2)=k 4(k +1),则当n =k +1时,12×4+14×6+16×8+…+12k (2k +2)+12(k +1)[2(k +1)+2] =k 4(k +1)+14(k +1)(k +2)=k (k +2)+14(k +1)(k +2)=(k +1)24(k +1)(k +2) =k +14(k +2)=k +14[(k +1)+1].所以当n =k +1时,等式也成立,由(1)(2)可知,对于一切n ∈N *,等式都成立.1.归纳和类比都是合情推理,前者是由特殊到一般,部分到整体的推理,后者是由特殊到特殊的推理,但二者都能由已知推测未知,都能用于猜想,推理的结论不一定为真,有待进一步证明.2.演绎推理与合情推理不同,是由一般到特殊的推理,是数学中证明的基本推理形式.也是公理化体系所采用的推理形式,另一方面,合情推理与演绎推理又是相辅相成的,前者是后者的前提,后者论证前者的可靠性.3.直接证明和间接证明是数学证明的两类基本证明方法.直接证明的两类基本方法是综合法和分析法:综合法是从已知条件推导出结论的证明方法;分析法是由结论追溯到条件的证明方法,在解决数学问题时,常把它们结合起来使用,间接证法的一种方法是反证法,反证法是从结论反面成立出发,推出矛盾的证明方法.4.数学归纳法主要用于解决与正整数有关的数学问题.证明时,它的两个步骤缺一不可.它的第一步(归纳奠基)当n =n 0时,结论成立.第二步(归纳递推)假设当n =k 时,结论成立,推得当n =k +1时,结论也成立.数学归纳法是在可靠的基础上,利用命题自身具有的传递性,运用有限的步骤(两步)证明出无限的命题成立.一、选择题1.证明命题:“f (x )=e x +1e x 在(0,+∞)上是增函数”.现给出的证法如下:因为f (x )=e x +1e x ,所以f ′(x )=e x -1e x .因为x >0,所以e x >1,0<1e x <1.所以e x -1e x >0,即f ′(x )>0.所以f (x )在(0,+∞)上是增函数,使用的证明方法是( ) A .综合法 B .分析法 C .反证法 D .以上都不是考点 综合法及应用题点 利用综合法解决函数问题 答案 A解析 这是从已知条件出发利用已知的定理证得结论的,是综合法,故选A. 2.若a <b <0,则下列不等式中成立的是( ) A.1a <1b B .a +1b >b +1aC .b +1a >a +1bD.b a <b +1a +1考点 分析法及应用题点分析法解决不等式问题答案 C解析取a=-2,b=-1,验证可知C正确.3.我们把1,4,9,16,25,…这些数称为“正方形点数”,这是因为这些数量的点可以排成一个正方形,如图所示,则第n个正方形点数是()A.n(n-1) B.n(n+1)C.(n+1)2D.n2考点归纳推理的应用题点归纳推理在图形中的应用答案 D解析由题意可知第n个正方形点数为n2.4.在数列1,2,2,3,3,3,4,4,4,4,…中,第25项为()A.25 B.7C.6 D.8考点归纳推理的应用题点归纳推理在数对(组)中的应用答案 B解析由所给的数列规律知,第25项为7.5.已知{b n}为等比数列,b5=2,则b1b2b3…b9=29.若{a n}为等差数列,a5=2,则{a n}的类似结论为()A.a1a2a3…a9=29B.a1+a2+…+a9=29C.a1a2…a9=2×9 D.a1+a2+…+a9=2×9考点类比推理的应用题点等差数列与等比数列之间的类比答案 D解析由等差数列的性质a1+a9=a2+a8=…=2a5可知D正确.6.用数学归纳法证明“2n>n2+1对于n≥n0的自然数n都成立”时,第一步证明中的起始值n0应取()A.2 B.3C.5 D.6考点数学归纳法定义及原理题点数学归纳法第一步:归纳奠基答案 C解析当n取1,2,3,4时,2n>n2+1不成立,当n=5时,25=32>52+1=26,即第一个能使2n>n2+1成立的n值为5,故选C.7.已知a+b+c=0,则ab+bc+ca的值()A.大于0 B.小于0C.不小于0 D.不大于0考点综合法及应用题点综合法的应用答案 D解析因为(a+b+c)2=a2+b2+c2+2(ab+bc+ca)=0,又因为a2+b2+c2≥0,所以2(ab+bc+ca)≤0,即ab+bc+ca≤0.8.某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段,下表为10名学生的预赛成绩,其中有三个数据模糊.在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则()A.2号学生进入30秒跳绳决赛B.5号学生进入30秒跳绳决赛C.8号学生进入30秒跳绳决赛D.9号学生进入30秒跳绳决赛考点演绎推理的综合应用题点演绎推理在其他方面的应用答案 B解析进入立定跳远决赛的有8人,根据成绩应是1号至8号.若a>63,则同时进入两决赛的不是6人,不符合题意;若61≤a≤63,则同时进入两决赛的有1,2,3,5,6,7号,符合题意;若a=60,则同时进入两决赛的不是6人,不符合题意;若a ≤59,则同时进入两决赛的有1,3,4,5,6,7号,符合题意. 综上可知,5号进入30秒跳绳决赛. 二、填空题9.已知正三角形内切圆的半径是高的13,把这个结论推广到空间正四面体,类似的结论是____________________. 考点 类比推理的应用题点 平面几何与立体几何之间的类比 答案 正四面体的内切球的半径是高的14解析 原问题的解法为等面积法,即正三角形的面积S =12ah 1=3×12ar ⇒r =13h 1(其中a 是正三角形的边长,h 1是高,r 是内切圆半径).类比,用等体积法,V =13Sh 2=4×13R ·S ⇒R =14h 2(其中S 为底面正三角形的面积,h 2是高,R是内切球的半径). 10.已知2+23=223,3+38=338,4+415=4415,…,6+a b=6ab,a ,b 均为正实数,由以上规律可推测出a ,b 的值,则a +b =________. 考点 归纳推理的应用题点 归纳推理在数对(组)中的应用 答案 41解析 由题意归纳推理得6+a b=6ab,b =62-1=35,a =6. ∴a +b =6+35=41.11.完成反证法证题的全过程.题目:设a 1,a 2,…,a 7是由数字1,2,…,7任意排成的一个数列,求证:乘积p =(a 1-1)(a 2-2)…(a 7-7)为偶数.证明:假设p 为奇数,则________均为奇数.① 因为7个奇数之和为奇数,故有(a 1-1)+(a 2-2)+…+(a 7-7)为________.② 而(a 1-1)+(a 2-2)+…+(a 7-7)=(a 1+a 2+…+a 7)-(1+2+…+7)=________.③ ②与③矛盾,故p 为偶数. 考点 反证法及应用 题点 反证法的应用答案 a 1-1,a 2-2,…,a 7-7 奇数 0解析 由假设p 为奇数可知,(a 1-1),(a 2-2),…,(a 7-7)均为奇数,故(a 1-1)+(a 2-2)+…+(a 7-7)=(a 1+a 2+…+a 7)-(1+2+…+7)=0为奇数,这与0为偶数相矛盾. 三、解答题12.用综合法或分析法证明:(1)如果a ,b >0,则lg a +b 2≥lg a +lg b 2;(2)6+10>23+2.考点 分析法和综合法的综合应用 题点 分析法和综合法的综合应用 证明 (1)当a ,b >0时,有a +b2≥ab , ∴lg a +b2≥lg ab ,∴lg a +b 2≥12lg(ab )=lg a +lg b 2.(2)要证6+10>23+2, 只需证(6+10)2>(23+2)2, 即260>248,这是显然成立的, ∴原不等式成立.13.求证:不论x ,y 取何非零实数,等式1x +1y =1x +y 总不成立.考点 反证法及应用 题点 反证法的应用证明 假设存在非零实数x ,y 使得等式1x +1y =1x +y 成立.于是有y (x +y )+x (x +y )=xy , 即x 2+y 2+xy =0, 即⎝⎛⎭⎫x +y 22+34y 2=0. 由y ≠0,得34y 2>0.又⎝⎛⎭⎫x +y22≥0, 所以⎝⎛⎭⎫x +y 22+34y 2>0. 与x 2+y 2+xy =0矛盾,故原命题成立.四、探究与拓展14.设S ,V 分别表示表面积和体积,如△ABC 的面积用S △ABC 表示,三棱锥O -ABC 的体积用V O -ABC 表示,对于命题:如果O 是线段AB 上一点,则|OB →|·OA →+|OA →|·OB →=0.将它类比到平面的情形时,应该有:若O 是△ABC 内一点,有S △OBC ·OA →+S △OCA ·OB →+S △OBA ·OC →=0.将它类比到空间的情形时,应该有:若O 是三棱锥A -BCD 内一点,则有__________. 考点 类比推理的应用题点 平面几何与立体几何之间的类比答案 V O -BCD ·OA →+V O -ACD ·OB →+V O -ABD ·OC →+V O -ABC ·OD →=0 15.给出下列等式:1=1, 1-4=-(1+2), 1-4+9=1+2+3, 1-4+9-16=-(1+2+3+4),……(1)写出第5个和第6个等式,并猜想第n (n ∈N *)个等式; (2)用数学归纳法证明你猜想的等式. 考点 利用数学归纳法证明等式 题点 等式中的归纳、猜想、证明(1)解 第5个等式为1-4+9-16+25=1+2+3+4+5, 第6个等式为1-4+9-16+25-36=-(1+2+3+4+5+6). 猜想第n 个等式为12-22+32-42+…+(-1)n -1n 2=(-1)n -1·(1+2+3+…+n ).(2)证明 ①当n =1时,左边=12=1,右边=(-1)0×1=1,左边=右边,猜想成立.②假设当n =k (k ≥1,k ∈N *)时,猜想成立,即12-22+32-42+…+(-1)k -1k 2=(-1)k -1·k (k +1)2,则当n =k +1时,12-22+32-42+…+(-1)k -1k 2+(-1)k (k +1)2=(-1)k -1·k (k +1)2+(-1)k (k+1)2=(-1)k (k +1)·⎣⎡⎦⎤(k +1)-k 2=(-1)k ·(k +1)[(k +1)+1]2, 故当n =k +1时,猜想也成立由①②可知,对于任意n ∈N *,猜想均成立.。
2.2.2反证法1.反证法是□01间接证明的一种基本方法.假设原命题□02不成立,经过正确的推理,最后得出□03矛盾,因此说明假设□04错误,从而证明了原命题成立,这样的证明方法叫做反证法.2.用反证法证明命题的步骤,大体上分为:(1)反设:假设命题的结论□05不成立,即假设结论的反面成立;(2)归谬:从□06假设出发,通过推理论证,得出矛盾;(3)结论:由矛盾判定假设不正确,从而肯定命题的结论正确.3.反证法常见的矛盾类型反证法的关键是在正确的推理下得出矛盾,这个矛盾可以是与□07已知条件矛盾,或与□08假设矛盾,或与□09定义、定理、公理、事实矛盾等.反证法中的“反设”和“归谬”(1)反证法中的“反设”,这是应用反证法的第一步,也是关键一步.“反设”的结论将是下一步“归谬”的一个已知条件.“反设”是否正确、全面,直接影响下一步的证明.做好“反设”应注意:①正确分清题设和结论;②对结论实施正确否定;③对结论否定后,找出其所有情况.(2)反证法的“归谬”是反证法的核心,其含义是从命题结论的题设(即把“反设”作为一个新的已知条件)及原命题的条件出发,引用一系列论据进行正确推理,推出与已知条件、定义、定理、公理等相矛盾的结果.1.判一判(正确的打“√”,错误的打“×”)(1)反证法属于间接证明问题的方法.()(2)反证法的证明过程既可以是合情推理也可以是一种演绎推理.()(3)反证法的实质是否定结论导出矛盾.()答案(1)√(2)×(3)√2.做一做(1)已知a≠0,证明关于x的方程ax=b有且只有一解,适宜用________证明.(2)用反证法证明命题“a,b∈N,如果ab可被5整除,那么a,b至少有一个能被5整除”,则假设的内容是________.(3)用反证法证明命题“如果a>b,则3a>3b”时,假设的内容是________.答案(1)反证法(2)a,b都不能被5整除(3)3a≤3b探究1用反证法证明否定性命题例1已知f(x)=a x+x-2x+1(a>1),证明方程f(x)=0没有负数根.[证明]假设x0是f(x)=0的负数根,则x0<0,x0≠-1且ax0=-x0-2 x0+1,由0<ax0<1可知0<-x0-2x0+1<1,解得12<x0<2,这与x0<0矛盾,故假设不成立.即方程f(x)=0没有负数根.拓展提升反证法属于逻辑方法范畴,它的本质体现在“否定之否定等于肯定”,其中第一个否定是指“否定结论(假设)”;第二个否定是指“逻辑推理结果否定了假设”.反证法属于“间接解题方法”,书写格式易错之处是“假设”易错写成“设”.【跟踪训练1】已知a,b,c,d∈R,且ad-bc=1.求证:a2+b2+c2+d2+ab+cd≠1.证明假设a2+b2+c2+d2+ab+cd=1.因为ad-bc=1,所以a2+b2+c2+d2+ab+cd=ad-bc.所以a2+b2+c2+d2+ab+cd+bc-ad=0.所以2a2+2b2+2c2+2d2+2ab+2cd+2bc-2ad=0.所以(a+b)2+(b+c)2+(c+d)2+(a-d)2=0.所以a+b=0,b+c=0,c+d=0,a-d=0,所以a=b=c=d=0,所以ad-bc=0,这与ab -bc =1矛盾,从而假设不成立,原命题成立, 即a 2+b 2+c 2+d 2+ab +cd ≠1.探究2 用反证法证明“至多”“至少”型命题例2 已知a ,b ,c 是互不相等且均不为0的实数,求证:由y =ax 2+2bx +c ,y =bx 2+2cx +a 和y =cx 2+2ax +b 确定的三条抛物线至少有一条与x 轴有两个不同的交点.[证明] 假设题设中的函数确定的三条抛物线都不与x 轴有两个不同的交点. 由y =ax 2+2bx +c ,y =bx 2+2cx +a ,y =cx 2+2ax +b ,得Δ1=(2b )2-4ac ≤0,且Δ2=(2c )2-4ab ≤0,且Δ3=(2a )2-4bc ≤0.同向不等式求和得4b 2+4c 2+4a 2-4ac -4ab -4bc ≤0, ∴2a 2+2b 2+2c 2-2ab -2bc -2ac ≤0, ∴(a -b )2+(b -c )2+(a -c )2≤0,∴a =b =c . 这与题设a ,b ,c 互不相等矛盾, 因此假设不成立,从而命题得证. 拓展提升常见结论词与反设词列表如下:【跟踪训练2】 求证下列三个方程:x 2+4ax -4a +3=0,x 2+(a -1)x +a 2=0,x 2+2ax -2a =0至少有一个方程有实根时实数a 的取值范围为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a ≥-1或a ≤-32. 证明若方程没有一个有实根,则⎩⎨⎧16a 2-4(3-4a )<0,(a -1)2-4a 2<0,4a 2+8a <0.解得-32<a <-1.所以若三个方程至少有一个方程有实根,则实数a 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a ≥-1或a ≤-32.探究3 用反证法证明唯一性命题例3 用反证法证明:过已知直线a 外一点A 有且只有一条直线b 与已知直线a 平行.[证明] 由两条直线平行的定义可知,过点A 至少有一条直线与直线a 平行. 假设过点A 还有一条直线b ′与已知直线a 平行,即b ∩b ′=A ,b ′∥a . 因为b ∥a ,由平行公理知b ′∥b ,这与假设b ∩b ′=A 矛盾,所以假设错误,原命题成立.拓展提升证明“唯一性”命题的方法:“唯一性”包含“有一个”和“除了这个没有另外一个”两层意思.证明后一层意思时,采用直接证法往往会相当困难,因此一般情况下都采用间接证法,即用反证法(假设“有另外一个”,推出矛盾)或同一法(假设“有另外一个”,推出它就是“已知那一个”)证明,而用反证法有时比用同一法更方便.【跟踪训练3】 已知直线m 与直线a 和b 分别交于A ,B 且a ∥b ,求证:过a ,b ,m 有且只有一个平面.证明 ∵如图,a ∥b ,∴过a ,b 有一个平面α.又m ∩a =A ,m ∩b =B , ∴A ∈a ,B ∈b , ∴A ∈α,B ∈α.又A ∈m ,B ∈m ,∴m ⊂α. 即过a ,b ,m 有一个平面α.假设过a ,b ,m 还有一个平面β异于平面α,则a ⊂α,b ⊂α,a ⊂β,b ⊂β,这与a ∥b ,过a ,b 有且只有一个平面相矛盾. 因此,过a ,b ,m 有且只有一个平面.1.“否定结论”是反证法的第一步,它的正确与否直接影响能否正确使用反证法.否定结论的步骤是:弄清结论本身的情况;找出结论的全部相反情况;正确否定上述结论.2.反证法中引出矛盾的结论,不是推理本身的错误,而是开始假定“结论的反面是正确的”是错误的.3.在反证法证题的过程中,经常画出某些不合常理的图形,甚至是不可能存在的图形,这样做的目的是为了能清楚地说明问题.在证明过程中,每一步推理所得结论的正确性,完全由它所依据的理由来保证,而不能借助图形的直观,这与用直接法通过图形找到证题的途径是完全不一样的.1.用反证法证明命题“三角形的内角中至少有一个不大于60°”时,反设正确的是( )A .假设三个内角都不大于60°B .假设三个内角都大于60°C .假设三个内角至多有一个大于60°D .假设三个内角至多有两个大于60° 答案 B解析 “至少有一个不大于”的否定为“都大于”,所以选B. 2.如果两个实数之和为正数,则这两个数( ) A .一个是正数,一个是负数 B .两个都是正数 C .至少有一个是正数 D .两个都是负数答案 C解析 假设两个数都不是正数,则其和必为负数或零.所以选C.3.命题“关于x 的方程ax =b (a ≠0)的解是唯一的”的结论的否定是________. 答案 无解或至少两解解析 方程解的情况有:①无解;②唯一解;③两个或两个以上的解. 4.若下列两个方程x 2+(a -1)x +a 2=0,x 2+2ax -2a =0中至少有一个方程有实根,则实数a 的取值范围是________.答案 {a |a ≤-2或a ≥-1}解析 假设两个一元二次方程均无实根,则有⎩⎨⎧Δ1=(a -1)2-4a 2<0,Δ2=(2a )2-4(-2a )<0,即⎩⎨⎧3a 2+2a -1>0,a 2+2a <0,解得a 的取值集合为:{a |-2<a <-1},所以其补集为{a |a ≤-2或a ≥-1},即为所求的a 的取值范围.5.如果非零实数a ,b ,c 两两不相等,且2b =a +c ,求证:2b =1a +1c 不成立. 证明 假设2b =1a +1c 成立,则2b =a +c ac =2b ac . 故b 2=ac .又b =a +c 2,所以⎝⎛⎭⎪⎫a +c 22=ac ,即(a -c )2=0,所以a =c , 这与a ,b ,c 两两不相等矛盾,因此2b =1a +1c 不成立.。
§2.3数学归纳法学习目标 1.了解数学归纳法的原理.2.能用数学归纳法证明一些简单的数学命题.知识点数学归纳法对于一个与正整数有关的等式n(n-1)(n-2)…(n-50)=0.思考1验证当n=1,n=2,…,n=50时等式成立吗?答案成立.思考2能否通过以上等式归纳出当n=51时等式也成立?为什么?答案不能,上面的等式只对n取1至50的正整数成立.梳理(1)数学归纳法的定义一般地,证明一个与正整数n有关的命题,可按下列步骤进行:①(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立;②(归纳递推)假设当n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.这种证明方法叫做数学归纳法.(2)数学归纳法的框图表示1.与正整数n有关的数学命题的证明只能用数学归纳法.(×)2.数学归纳法的第一步n0的初始值一定为1.(×)3.数学归纳法的两个步骤缺一不可.(√)类型一用数学归纳法证明等式例1用数学归纳法证明:1×4+2×7+3×10+…+n(3n+1)=n(n+1)2,其中n∈N*.考点用数学归纳法证明等式证明 (1)当n =1时,左边=1×4=4,右边=1×22=4,左边=右边,等式成立. (2)假设当n =k (k ≥1,k ∈N *)时等式成立, 即1×4+2×7+3×10+…+k (3k +1)=k (k +1)2, 那么当n =k +1时,1×4+2×7+3×10+…+k (3k +1)+(k +1)[3(k +1)+1] =k (k +1)2+(k +1)[3(k +1)+1]=(k +1)(k 2+4k +4)=(k +1)[(k +1)+1]2, 即当n =k +1时等式也成立.根据(1)和(2)可知等式对任何n ∈N *都成立.反思与感悟 用数学归纳法证明恒等式时,一是弄清n 取第一个值n 0时等式两端项的情况;二是弄清从n =k 到n =k +1等式两端增加了哪些项,减少了哪些项;三是证明n =k +1时结论也成立,要设法将待证式与归纳假设建立联系,并朝n =k +1证明目标的表达式变形. 跟踪训练1 求证:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n (n ∈N *).考点 用数学归纳法证明等式 题点 利用数学归纳法证明等式 证明 (1)当n =1时,左边=1-12=12,右边=11+1=12,左边=右边.(2)假设当n =k (k ≥1,k ∈N *)时等式成立, 即1-12+13-14+…+12k -1-12k=1k +1+1k +2+…+12k ,则当n =k +1时,⎝⎛⎭⎫1-12+13-14+…+12k -1-12k +⎝⎛⎭⎫12k +1-12k +2 =⎝⎛⎭⎫1k +1+1k +2+…+12k +⎝⎛⎭⎫12k +1-12k +2 =1k +2+1k +3+…+12k +1+12(k +1). 即当n =k +1时,等式也成立.综合(1),(2)可知,对一切n ∈N *,等式成立.例2 求证:1n +1+1n +2+…+13n >56(n ≥2,n ∈N *).考点 用数学归纳法证明不等式 题点 利用数学归纳法证明不等式证明 (1)当n =2时,左边=13+14+15+16=5760,故左边>右边,不等式成立.(2)假设当n =k (k ≥2,k ∈N *)时,命题成立, 即1k +1+1k +2+…+13k >56,则当n =k +1时,1(k +1)+1+1(k +1)+2+…+13k +13k +1+13k +2+13(k +1)=1k +1+1k +2+…+13k +⎝⎛⎭⎫13k +1+13k +2+13k +3-1k +1>56+⎝⎛⎭⎫13k +1+13k +2+13k +3-1k +1.(*) 方法一 (分析法) 下面证(*)式≥56,即13k +1+13k +2+13k +3-1k +1≥0, 只需证(3k +2)(3k +3)+(3k +1)(3k +3)+(3k +1)(3k +2)-3(3k +1)(3k +2)≥0, 只需证(9k 2+15k +6)+(9k 2+12k +3)+(9k 2+9k +2)-(27k 2+27k +6)≥0, 只需证9k +5≥0,显然成立. 所以当n =k +1时,不等式也成立. 方法二 (放缩法)(*)式>⎝⎛⎭⎫3×13k +3-1k +1+56=56,所以当n =k +1时,不等式也成立.由(1)(2)可知,原不等式对一切n ≥2,n ∈N *均成立. 引申探究把本例改为求证:1n +1+1n +2+1n +3+…+1n +n >1124(n ∈N *).证明 (1)当n =1时,左边=12>1124,不等式成立.(2)假设当n =k (k ≥1,k ∈N *)时,不等式成立,即1k +1+1k +2+1k +3+…+1k +k >1124, 则当n =k +1时,1k +2+1k +3+…+12k +12k +1+12k +2=1k +1+1k +2+1k +3+…+12k +12k +1+12k +2-1k +1>1124+12k +1+12k +2-1k +1, ∵12k +1+12k +2-1k +1=2(k +1)+(2k +1)-2(2k +1)2(k +1)(2k +1)=12(k +1)(2k +1)>0, ∴1k +1+1k +2+1k +3+…+12k +12k +1+12k +2-1k +1>1124+12k +1+12k +2-1k +1>1124,∴当n =k +1时,不等式成立.由(1)(2)知对于任意正整数n ,不等式成立. 反思与感悟 用数学归纳法证明不等式的四个关键(1)验证第一个n 的值时,要注意n 0不一定为1,若n >k (k 为正整数),则n 0=k +1.(2)证明不等式的第二步中,从n =k 到n =k +1的推导过程中,一定要用到归纳假设,不应用归纳假设的证明不是数学归纳法,因为缺少归纳假设.(3)用数学归纳法证明与n 有关的不等式一般有两种具体形式:一是直接给出不等式,按要求进行证明;二是给出两个式子,按要求比较它们的大小,对第二类形式往往要先对n 取前几个值的情况分别验证比较,以免出现判断失误,最后猜出从某个n 值开始都成立的结论,常用数学归纳法证明.(4)用数学归纳法证明不等式的关键是由n =k 时成立得n =k +1时成立,主要方法有比较法、分析法、综合法、放缩法等.跟踪训练2 在数列{a n }中,已知a 1=a (a >2),a n +1=a 2n2(a n -1)(n ∈N *),用数学归纳法证明:a n >2(n ∈N *).考点 用数学归纳法证明不等式 题点 利用数学归纳法证明不等式 证明 ①当n =1时,a 1=a >2,命题成立;②假设当n =k (k ≥1,k ∈N *)时,命题成立,即a k >2,则当n =k +1时,a k +1-2=a 2k2(a k -1)-2=(a k -2)22(a k -1)>0, ∴当n =k +1时,命题也成立. 由①②得,对任意正整数n ,都有a n >2.类型三 归纳—猜想—证明例3 已知数列{a n }满足关系式a 1=a (a >0),a n =2a n -11+a n -1(n ≥2,n ∈N *),(1)用a 表示a 2,a 3,a 4;(2)猜想a n 的表达式(用a 和n 表示),并用数学归纳法证明. 考点 数学归纳法证明数列问题 题点 利用数学归纳法证明数列通项问题 解 (1)a 2=2a1+a,a 3=2a 21+a 2=2×2a 1+a 1+2a 1+a =4a1+3a ,a 4=2a 31+a 3=2×4a 1+3a 1+4a 1+3a =8a1+7a .(2)因为a 1=a =20a1+(20-1)a ,a 2=21a1+(21-1)a ,…,猜想a n =2n -1a1+(2n -1-1)a. 下面用数学归纳法证明. ①当n =1时,因为a 1=a =20a1+(20-1)a ,所以当n =1时猜想成立.②假设当n =k (k ≥1,k ∈N *)时猜想成立, 即a k =2k -1a1+(2k -1-1)a, 所以当n =k +1时,a k +1=2a k1+a k =2k a 1+(2k -1-1)a 1+2k -1a1+(2k -1-1)a =2k a1+(2k -1-1)a +2k -1a =2k a1+2×2k -1a -a=2(k+1)-1a1+[2(k+1)-1-1]a,所以当n=k+1时猜想也成立.根据①与②可知猜想对一切n∈N*都成立.反思与感悟“归纳—猜想—证明”的一般步骤跟踪训练3考察下列各式2=2×13×4=4×1×34×5×6=8×1×3×55×6×7×8=16×1×3×5×7你能做出什么一般性的猜想?能证明你的猜想吗?考点用数学归纳法证明等式题点等式中的归纳,猜想、证明解由题意得,2=2×1,3×4=4×1×3,4×5×6=8×1×3×5,5×6×7×8=16×1×3×5×7,…,猜想:(n+1)(n+2)(n+3)…2n=2n·1·3·5·…·(2n-1),下面利用数学归纳法进行证明.(1)当n=1时,猜想显然成立;(2)假设当n=k(k≥1,k∈N*)时,猜想成立,即(k+1)(k+2)(k+3)…2k=2k·1·3·5·…·(2k-1),那么当n=k+1时,(k+1+1)(k+1+2)(k+1+3)·…·2(k+1)=(k+1)(k+2)·…·2k·(2k+1)·2=2k·1·3·5·…·(2k-1)(2k+1)·2=2k+1·1·3·5·…·(2k+1)=2k+1·1·3·5·…·[2(k+1)-1]所以当n=k+1时猜想成立.根据(1)(2)可知对任意正整数猜想均成立.1.已知f (n )=1+12+13+…+1n (n ∈N *),计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,f (32)>72,由此推算:当n ≥2时,有( ) A .f (2n )>2n +12(n ∈N *)B .f (2n )>2(n +1)+12(n ∈N *)C .f (2n )>2n +12(n ∈N *)D .f (2n )>n +22(n ∈N *)考点 利用数学归纳法证明不等式 题点 不等式中的归纳、猜想、证明 答案 D解析 f (4)>2改写成f (22)>2+22;f (8)>52改写成f (23)>3+22;f (16)>3改写成f (24)>4+22;f (32)>72改写成f (25)>5+22,由此可归纳得出:当n ≥2时,f (2n )>n +22(n ∈N *).2.用数学归纳法证明“1+a +a 2+…+a 2n +1=1-a 2n +21-a(a ≠1)”.在验证n =1时,左端计算所得项为( ) A .1+a B .1+a +a 2 C .1+a +a 2+a 3D .1+a +a 2+a 3+a 4考点 数学归纳法定义及原理 题点 数学归纳法第一步:归纳奠基 答案 C解析 将n =1代入a 2n+1得a 3,故选C.3.若命题A (n )(n ∈N *)在n =k (k ∈N *)时成立,则有n =k +1时命题成立.现知命题对n =n 0(n 0∈N *)时成立,则有( ) A .命题对所有正整数都成立B .命题对小于n 0的正整数不成立,对大于或等于n 0的正整数都成立C .命题对小于n 0的正整数成立与否不能确定,对大于或等于n 0的正整数都成立D .以上说法都不正确 考点 数学归纳法定义及原理题点 数学归纳法第二步:归纳递推 答案 C解析 由已知,得n =n 0(n 0∈N *)时命题成立,则n =n 0+1时命题成立, 在n =n 0+1时命题成立的前提下,又可推得,n =(n 0+1)+1时命题也成立, 依此类推,可知选C.4.用数学归纳法证明1+2+22+…+2n -1=2n -1(n ∈N *)的过程如下:(1)当n =1时,左边=1,右边=21-1=1,等式成立.(2)假设当n =k (k ∈N *)时等式成立,即1+2+22+…+2k -1=2k -1,则当n =k +1时,1+2+22+…+2k -1+2k=1-2k +11-2=2k +1-1.所以当n =k +1时,等式也成立.由此可知对于任何n ∈N *,等式都成立. 上述证明,错误是________. 考点 数学归纳法定义及原理 题点 数学归纳法第二步:归纳递推 答案 未用归纳假设解析 本题在由n =k 成立证明n =k +1成立时, 应用了等比数列的求和公式,而未用上归纳假设,这与数学归纳法的要求不符. 5.用数学归纳法证明:121×3+223×5+…+n 2(2n -1)(2n +1)=n (n +1)2(2n +1)(n ∈N *). 考点 用数学归纳法证明等式 题点 利用数学归纳法证明等式 证明 ①当n =1时,左边=121×3=13,右边=1×(1+1)2×(2×1+1)=13,左边=右边,等式成立.②假设当n =k (k ≥1,k ∈N *)时,等式成立. 即121×3+223×5+…+k 2(2k -1)(2k +1)=k (k +1)2(2k +1), 当n =k +1时,左边=121×3+223×5+…+k 2(2k -1)(2k +1)+(k +1)2(2k +1)(2k +3)=k (k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=k (k +1)(2k +3)+2(k +1)22(2k +1)(2k +3)=(k +1)(2k 2+5k +2)2(2k +1)(2k +3)=(k +1)(k +2)2(2k +3),右边=(k +1)(k +1+1)2[2(k +1)+1]=(k +1)(k +2)2(2k +3),左边=右边,等式成立. 即对所有n ∈N *,原式都成立.在应用数学归纳法证题时应注意以下几点:(1)验证是基础:找准起点,奠基要稳,有些问题中验证的初始值不一定是1.(2)递推是关键:正确分析由n =k 到n =k +1时式子项数的变化是应用数学归纳法成功证明问题的保障;(3)利用假设是核心:在第二步证明中一定要利用归纳假设,这是数学归纳法的核心环节,否则这样的证明就不是数学归纳法证明.一、选择题1.在应用数学归纳法证明凸n 边形的对角线为12n (n -3)条时,第一步应验证n 等于( )A .1B .2C .3D .4考点 数学归纳法定义及原理 题点 数学归纳法第一步:归纳奠基 答案 C解析 由凸多边形的性质,应先验证三角形,故选C.2.某个命题与正整数有关,如果当n =k (k ∈N *)时,该命题成立,那么可推得当n =k +1时,该命题也成立.现在已知当n =5时,该命题成立,那么可推导出( ) A .当n =6时命题不成立 B .当n =6时命题成立 C .当n =4时命题不成立 D .当n =4时命题成立考点 数学归纳法定义及原理 题点 数学归纳第二步:归纳递推 答案 B3.设S k =1k +1+1k +2+1k +3+…+12k ,则S k +1为( )A .S k +12k +2B .S k +12k +1+12k +2C .S k +12k +1-12k +2D .S k +12k +2-12k +1考点 数学归纳法定义及原理 题点 数学归纳法第二步:归纳递推 答案 C解析 因式子右边各分数的分母是连续正整数, 则由S k =1k +1+1k +2+…+12k ,①得S k +1=1k +2+1k +3+…+12k +12k +1+12(k +1).②由②-①,得S k +1-S k =12k +1+12(k +1)-1k +1=12k +1-12(k +1). 故S k +1=S k +12k +1-12(k +1). 4.一个与正整数n 有关的命题中,当n =2时命题成立,且由n =k 时命题成立,可以推得n =k +2时命题也成立,则( ) A .该命题对于n >2的自然数n 都成立 B .该命题对于所有的正偶数都成立 C .该命题何时成立与k 取值无关 D .以上答案都不对考点 数学归纳法定义及原理 题点 数学归纳法第二步:归纳递推 答案 B解析 由n =k 时命题成立,可以推出n =k +2时命题也成立,且使命题成立的第一个正偶数n 0=2.故对所有的正偶数都成立.5.设f (x )是定义在正整数集上的函数,且f (x )满足:“当f (k )≥k 2成立时,总可推出f (k +1)≥(k +1)2成立”,那么,下列命题总成立的是( ) A .若f (3)≥9成立,则当k ≥1时,均有f (k )≥k 2成立B .若f (5)≥25成立,则当k ≤5时,均有f (k )≥k 2成立C .若f (7)<49成立,则当k ≥8时,均有f (k )<k 2成立D .若f (4)=25成立,则当k ≥4时,均有f (k )≥k 2成立考点 数学归纳法定义及原理题点 数学归纳法的定义答案 D解析 对于D ,∵f (4)=25≥42,∴当k ≥4时,均有f (k )≥k 2.6.在数列{a n }中,a 1=2,a n +1=a n 3a n +1(n ∈N *),依次计算a 2,a 3,a 4,归纳推测出a n 的通项表达式为( )A.24n -3B.26n -5C.24n +3D.22n -1 考点 数学归纳法证明数列问题题点 利用数学归纳法证明数列通项问题答案 B解析 结合题意,得a 1=2,a 2=27,a 3=213,a 4=219,…,可推测a n =26n -5,故选B. 7.用数学归纳法证明等式(n +1)(n +2)…(n +n )=2n ·1·3·…·(2n -1)(n ∈N *)的过程中,从n =k 到n =k +1左端需要增乘的代数式为( )A .2k +1B.2k +1k +1 C .2(2k +1)D.2k +3k +1考点 数学归纳法定义及原理题点 数学归纳法的第二步:归纳递推答案 C解析 当n =k +1时,左端为(k +2)(k +3)…[(k +1)+(k -1)]·[(k +1)+k ]·(2k +2)=(k +1)(k +2)…(k +k )(2k +1)·2,∴应增乘2(2k +1).二、填空题8.用数学归纳法证明“对于足够大的自然数n ,总有2n >n 3”时,验证第一步不等式成立所取的第一个值n 0最小应当是________.考点 数学归纳法定义及原理题点 数学归纳法第一步:归纳奠基答案 109.证明:假设当n =k (k ∈N *)时等式成立,即2+4+…+2k =k 2+k ,那么2+4+…+2k +2(k +1)=k 2+k +2(k +1)=(k +1)2+(k +1),即当n =k +1时等式也成立.因此对于任何n ∈N *等式都成立.以上用数学归纳法证明“2+4+…+2n =n 2+n (n ∈N *)”的过程中的错误为_________. 考点 数学归纳法定义及原理题点 数学归纳法第二步:归纳递推答案 缺少步骤归纳奠基10.已知f (n )=1+12+13+…+1n ,n ∈N *,用数学归纳法证明f (2n )>n 2时,f (2n +1)-f (2n )=________________________________________________________________________. 考点 数学归纳法定义及原理题点 数学归纳法第二步:归纳递推答案 12n +1+12n +2+…+12n +1三、解答题11.用数学归纳法证明⎝⎛⎭⎫1-14⎝⎛⎭⎫1-19⎝⎛⎭⎫1-116·…·⎝⎛⎭⎫1-1n 2=n +12n(n ≥2,n ∈N *). 考点 用数学归纳法证明等式题点 利用数学归纳法证明等式证明 (1)当n =2时,左边=1-14=34, 右边=2+12×2=34, 所以左边=右边,所以当n =2时等式成立.(2)假设当n =k (k ≥2,k ∈N *)时等式成立,即⎝⎛⎭⎫1-14⎝⎛⎭⎫1-19⎝⎛⎭⎫1-116·…·⎝⎛⎭⎫1-1k 2=k +12k, 那么当n =k +1时,⎝⎛⎭⎫1-14⎝⎛⎭⎫1-19⎝⎛⎭⎫1-116·…·⎝⎛⎭⎫1-1k 2⎣⎡⎦⎤1-1(k +1)2=k +12k ⎣⎡⎦⎤1-1(k +1)2 =k +12k ·k (k +2)(k +1)2 =k +22(k +1)=(k +1)+12(k +1), 即当n =k +1时,等式成立.综合(1)(2)知,对任意n ≥2,n ∈N *,等式恒成立.12.用数学归纳法证明:122+132+142+…+1n 2<1-1n(n ≥2,n ∈N *). 考点 用数学归纳法证明不等式题点 利用数学归纳法证明不等式证明 (1)当n =2时,左式=122=14, 右式=1-12=12. 因为14<12,所以不等式成立. (2)假设当n =k (k ≥2,k ∈N *)时,不等式成立,即122+132+142+…+1k 2<1-1k, 则当n =k +1时,122+132+142+…+1k 2+1(k +1)2<1-1k +1(k +1)2=1-(k +1)2-k k (k +1)2=1-k 2+k +1k (k +1)2<1-k (k +1)k (k +1)2=1-1k +1, 所以当n =k +1时,不等式也成立.综上所述,对任意n ≥2的正整数,不等式都成立.四、探究与拓展13.用数学归纳法证明“34n +1+52n +2(n ∈N *)能被14整除”时,当n =k +1时,34(k +1)+1+52(k +1)+2应变形为________________.考点 数学归纳法定义及原理题点 数学归纳法第二步:归纳递推答案 34×(34k +1+52k +2)-52k +2×14×4 解析 34(k +1)+1+52(k+1)+2=34×34k +1+52×52k +2=34×34k +1+34×52k +2+52×52k +2-34×52k +2=34×(34k +1+52k +2)-52k +2×(34-52)=34×(34k +1+52k +2)-52k +2×14×4. 14.已知数列{a n }的前n 项和S n =1-na n (n ∈N *).(1)计算a 1,a 2,a 3,a 4;(2)猜想a n 的表达式,并用数学归纳法证明你的结论.考点 数学归纳法证明数列问题题点 利用数学归纳法证明数列通项问题解 (1)计算得a 1=12;a 2=16;a 3=112;a 4=120.(2)猜想:a n =1n (n +1).下面用数学归纳法证明.①当n =1时,猜想显然成立.②假设当n =k (k ≥1,k ∈N *)时,猜想成立, 即a k =1k (k +1),那么,当n =k +1时,S k +1=1-(k +1)a k +1, 即S k +a k +1=1-(k +1)a k +1.又S k =1-ka k =kk +1,所以kk +1+a k +1=1-(k +1)a k +1,从而a k +1=1(k +1)(k +2)=1(k +1)[(k +1)+1], 即n =k +1时,猜想也成立.故由①和②可知猜想成立.。
第二章 推理与证明2.1.1 合情推理与演绎推理(1)归纳推理【要点梳理】1、从一个或几个已知命题得出另一个新命题的思维过程称为 任何推理包括 和 两个部分。
是推理所依据的命题,它告诉我们 是什么, 是根据前提推得的命题,它告诉我们 是什么。
2、从个别事实中推演车一般性的结论的推理通常称为 ,它的思维过程是3、归纳推理有如下特点(1)归纳推理的前提是几个已知的 现象,归纳所得的结论是尚属未知的 现象,该结论超越了前提所包含的范围。
(2)由归纳推理得到的结论具有 的性质,结论是否真实,还需经过逻辑证明和实践检验,因此,它 作为数学证明的工具。
(填“能”或“不能”)(3)归纳推理是一种具有 的推理,通过归纳法得到的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题。
【指点迷津】1、运用归纳推理的一般步骤是什么?首先,通过观察特例发现某些相似性(特例的共性或一般规律);然后,把这种相似性推广为一个明确表述的一般命题(猜想);然后,对所得的一般性命题进行检验。
2、在数学上,检验的标准是什么?标准是是否能进行严格的证明。
3、归纳推理的一般模式是什么?S 1具有P ;S 2具有P ;……;S n 具有P (S 1、S 2、…、S n 是A 类事件的对象) 所以A 类事件具有P【典型例题】例1、设N n x f x f x f x f x f x f x x f n n ∈'='='==-),()(,),()(),()(,sin )(112010 ,则)()(2005=x fA 、x sinB 、x sin -C 、x cosD 、x cos - 【解析】:,cos )(sin )(1x x x f ='=)()()(sin )(cos )()(cos )(sin )(sin )cos ()(cos )sin ()(sin )(cos )(42615432x f x f x f x x x f x f x x x f xx x f xx x f x x x f n n ====-='==='=='-=-='-=-='=+故可猜测)(x f n 是以4为周期的函数,有x x f x f x f n n sin )(,cos )1()(2414-===++xf x f x x f n n sin )4()(cos )(4434==-=++故选C【点评】归纳推理是由部分到整体、由个别到一般的推理,是人们在日常活动和科学学习研究中经常使用的一种推理方法,必须认真学习领会,在归纳推理的过程中,应注意所探求的事物或现象的本质属性和因果关系。
章末复习学习目标 1.整合本章知识要点.2.进一步理解合情推理与演绎推理的概念、思维形式、应用等.3.进一步熟练掌握直接证明与间接证明.4.理解数学归纳法,并会用数学归纳法证明问题.1.合情推理(1)归纳推理:由部分到整体、由个别到一般的推理.(2)类比推理:由特殊到特殊的推理.(3)合情推理:归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.2.演绎推理(1)演绎推理:由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.3.直接证明和间接证明(1)直接证明的两类基本方法是综合法和分析法:①综合法是从已知条件推出结论的证明方法;②分析法是从结论追溯到条件的证明方法.(2)间接证明的一种方法是反证法,是从结论反面成立出发,推出矛盾的方法.4.数学归纳法数学归纳法主要用于解决与正整数有关的数学命题.证明时,它的两个步骤缺一不可,它的第一步(归纳奠基)是证当n=n0时结论成立;第二步(归纳递推)是假设当n=k时结论成立,推得当n=k+1时结论也成立.1.归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.(×)2.“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.(√)3.综合法是直接证明,分析法是间接证明.(×)4.反证法是指将结论和条件同时否定,推出矛盾.(×)类型一 合情推理与演绎推理 例1 (1)观察下列等式:⎝⎛⎭⎫sin π3-2+⎝⎛⎭⎫sin 2π3-2=43×1×2; ⎝⎛⎭⎫sin π5-2+⎝⎛⎭⎫sin 2π5-2+⎝⎛⎭⎫sin 3π5-2+⎝⎛⎭⎫sin 4π5-2 =43×2×3; ⎝⎛⎭⎫sin π7-2+⎝⎛⎭⎫sin 2π7-2+⎝⎛⎭⎫sin 3π7-2+…+⎝⎛⎭⎫sin 6π7-2=43×3×4; ⎝⎛⎭⎫sin π9-2+⎝⎛⎭⎫sin 2π9-2+⎝⎛⎭⎫sin 3π9-2+…+⎝⎛⎭⎫sin 8π9-2=43×4×5; …… 照此规律,⎝⎛⎭⎫sin π2n +1-2+⎝⎛⎭⎫sin 2π2n +1-2+⎝⎛⎭⎫sin 3π2n +1-2+…+⎝⎛⎭⎫sin 2n π2n +1-2=________. 考点 归纳推理的应用题点 归纳推理在数对(组)中的应用 答案 43n (n +1)解析 第一个等式中1=3-12,2=3+12;第二个等式中,2=5-12,3=5+12;第三个等式中,3=7-12,4=7+12.由此可推得第n 个等式等于43×2n +1-12×2n +1+12=43n (n +1).(2)根据图(1)的面积关系:S △P A ′B ′S △P AB =P A ′P A ·PB ′PB ,可猜想图(2)有体积关系:V 三棱锥P -A ′B ′C ′V 三棱锥P -ABC=________.考点 类此推理的应用题点 平面几何与立体几何之间的类比 答案P A ′P A ·PB ′PB ·PC ′PC解析 题干两图中,与△P AB ,△P A ′B ′相对应的是三棱锥P -ABC ,P -A ′B ′C ′;与△P A ′B ′两边P A ′,PB ′相对应的是三棱锥P -A ′B ′C ′的三条侧棱P A ′,PB ′,PC ′.与△P AB 的两条边P A ,PB 相对应的是三棱锥P -ABC 的三条侧棱P A ,PB ,PC .由此,类比题图(1)的面积关系,得到题图(2)的体积关系为V 三棱锥P -A ′B ′C ′V 三棱锥P -ABC=P A ′P A ·PB ′PB ·PC ′PC .(3)有三张卡片,分别写有1和2,1和3,2和3.甲、乙、丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.考点 演绎推理的综合应用 题点 演绎推理在其他方面的应用 答案 1和3解析 由题意可知丙不拿2和3.若丙拿1和2,则乙拿2和3,甲拿1和3,满足题意; 若丙拿1和3,则乙拿2和3,甲拿1和2,不满足题意. 故甲的卡片上的数字是1和3.反思与感悟 (1)用归纳推理可从具体事例中发现一般规律,但应注意,仅根据一系列有限的特殊事例,所得出的一般结论不一定可靠,其结论的正确与否,还要经过严格的理论证明. (2)进行类比推理时,要尽量从本质上思考,不要被表面现象所迷惑,否则,只抓住一点表面的相似甚至假象就去类比,就会犯机械类比的错误.(3)演绎推理是由一般到特殊的推理,其结论不会超出前提所界定的范围,所以其前提和结论之间的联系是必然的.因此,在演绎推理中,只要前提及推理正确,结论必然正确. 跟踪训练1 (1)如图是由火柴棒拼成的图形,第n 个图形由n 个正方形组成.通过观察可以发现:第4个图形中有________根火柴棒;第n 个图形中有________根火柴棒. 考点 归纳推理的应用 题点 归纳推理在图形中的应用 答案 13 3n +1解析 设第n 个图形中火柴棒的根数为a n ,可知a 4=13. 通过观察得到递推关系式a n -a n -1=3(n ≥2,n ∈N *), 所以a n =3n +1.(2)若数列{a n }为等差数列,S n 为其前n 项和,则有性质“若S m =S n (m ,n ∈N *且m ≠n ),则S m +n =0.”类比上述性质,相应地,当数列{b n }为等比数列时,写出一个正确的性质:________________. 考点 类比推理的应用题点 等差数列与等比数列之间的类比答案 数列{b n }为等比数列,T m 表示其前m 项的积,若T m =T n (m ,n ∈N *,m ≠n ),则T m +n =1解析 由等差数列的运算性质类比推理到等比数列的运算性质时, 加减运算类比推理为乘除运算. 累加类比为累乘,由此,等差数列{a n }的性质类比到等比数列{b n }中为: 数列{b n }为等比数列,T m 表示其前m 项的积, 若T m =T n (m ,n ∈N *,m ≠n ), 则T m +n =1.类型二 综合法与分析法例2 试用分析法和综合法分别推证下列命题:已知α∈(0,π),求证:2sin 2α≤sin α1-cos α.考点 分析法和综合法的综合应用 题点 分析法和综合法的综合应用 证明 方法一 分析法 要证2sin 2α≤sin α1-cos α成立,只需证4sin αcos α≤sin α1-cos α,∵α∈(0,π),∴sin α>0, 只需证4cos α≤11-cos α,∵1-cos α>0, ∴4cos α(1-cos α)≤1,可变形为4cos 2α-4cos α+1≥0, 只需证(2cos α-1)2≥0,显然成立. 方法二 综合法 ∵11-cos α+4(1-cos α)≥4,当且仅当cos α=12,即α=π3时取等号,∴4cos α≤11-cos α.∵α∈(0,π),∴sin α>0, ∴4sin αcos α≤sin α1-cos α,∴2sin 2α≤sin α1-cos α.反思与感悟 分析法和综合法是两种思路相反的推理方法:分析法是倒溯,综合法是顺推,二者各有优缺点.分析法容易探路,且探路与表述合一,缺点是表述易错;综合法条件清晰,易于表述,因此对于难题常把二者交互运用,互补优缺,形成分析综合法,其逻辑基础是充分条件与必要条件.跟踪训练2 设a ,b 是两个正实数,且a ≠b ,求证:a 3+b 3>a 2b +ab 2. 考点 分析法及应用 题点 分析法解决不等式问题证明 要证a 3+b 3>a 2b +ab 2成立,即需证 (a +b )(a 2-ab +b 2)>ab (a +b )成立, 即需证a 2-ab +b 2>ab 成立. 只需证a 2-2ab +b 2>0成立, 即需证(a -b )2>0成立.而由已知条件可知,a ≠b ,所以a -b ≠0, 所以(a -b )2>0显然成立. 即a 3+b 3>a 2b +ab 2. 类型三 反证法例3 若x ,y 都是正实数,且x +y >2,求证:1+x y <2与1+yx <2中至少有一个成立.考点 反证法及应用 题点 反证法的应用证明 假设1+x y <2和1+yx <2都不成立,则有1+x y ≥2和1+yx ≥2同时成立.因为x >0且y >0,所以1+x ≥2y 且1+y ≥2x ,两式相加,得2+x +y ≥2x +2y ,所以x +y ≤2. 这与已知x +y >2矛盾. 故1+x y <2与1+y x<2中至少有一个成立.反思与感悟 反证法常用于直接证明困难或以否定形式出现的命题;涉及“都是……”“都不是……”“至少……”“至多……”等形式的命题时,也常用反证法. 跟踪训练3 已知:ac ≥2(b +d ).求证:方程x 2+ax +b =0与方程x 2+cx +d =0中至少有一个方程有实数根. 考点 反证法及应用 题点 反证法的应用证明 假设两方程都没有实数根,则Δ1=a 2-4b <0与Δ2=c 2-4d <0,有a 2+c 2<4(b +d ),而a 2+c 2≥2ac ,从而有4(b +d )>2ac ,即ac <2(b +d ),与已知矛盾,故原命题成立. 类型四 数学归纳法例4 已知在数列{a n }中,a 1=-23,其前n 项和S n 满足a n =S n +1S n +2(n ≥2),计算S 1,S 2,S 3,S 4,猜想S n 的表达式,并用数学归纳法加以证明. 考点 数学归纳法证明数列问题 题点 数学归纳法证明数列通项问题 解 当n ≥2时,a n =S n -S n -1=S n +1S n +2.∴S n =-1S n -1+2(n ≥2).则有S 1=a 1=-23,S 2=-1S 1+2=-34,S 3=-1S 2+2=-45,S 4=-1S 3+2=-56,由此猜想:S n =-n +1n +2(n ∈N *).下面用数学归纳法证明:(1)当n =1时,S 1=-23=a 1,猜想成立.(2)假设当n =k (k ≥1,k ∈N *)时猜想成立, 即S k =-k +1k +2成立,那么当n =k +1时,S k +1=-1S k +2=-1-k +1k +2+2 =-k +2k +3=-(k +1)+1(k +1)+2.即当n =k +1时猜想成立.由(1)(2)可知,对任意正整数n ,猜想均成立.反思与感悟 (1)用数学归纳法证明等式问题是数学归纳法的常见题型,其关键点在于“先看项”,弄清等式两边的构成规律,等式两边各有多少项,初始n 0是多少.(2)由n =k 到n =k +1时,除等式两边变化的项外还要利用当n =k 时的式子,即利用假设,正确写出归纳证明的步骤,从而使问题得以证明. 跟踪训练4 观察下列四个等式: 第一个式子 1=1 第二个式子 2+3+4=9 第三个式子 3+4+5+6+7=25 第四个式子 4+5+6+7+8+9+10=49 (1)按照此规律,写出第五个等式;(2)请你做出一般性的猜想,并用数学归纳法证明. 考点 利用数学归纳法证明等式 题点 等式中的归纳、猜想、证明 解 (1)第5个等式:5+6+7+…+13=81. (2)猜想第n 个等式为n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2. 下面用数学归纳法证明.①当n =1时,左边=1,右边=(2-1)2=1, 猜想成立.②假设当n =k (k ≥1,k ∈N *)时,猜想成立, 即有k +(k +1)+(k +2)+…+(3k -2)=(2k -1)2. 那么当n =k +1时,左边=(k +1)+(k +2)+…+(3k -2)+(3k -1)+3k +(3k +1) =k +(k +1)+(k +2)+…+(3k -2)+(2k -1)+3k +(3k +1) =(2k -1)2+(2k -1)+3k +(3k +1) =4k 2-4k +1+8k =(2k +1)2 =[2(k +1)-1]2. 右边=[2(k +1)-1]2,即当n =k +1时,猜想也成立. 根据①②知,猜想对任意n ∈N *都成立.1.数列5,9,17,33,x ,…中的x 等于( ) A .47 B .65 C .63D .128考点 归纳推理的应用题点 归纳推理在数对(组)中的应用 答案 B解析 5=22+1,9=23+1,17=24+1,33=25+1, 归纳可得:x =26+1=65.2.在平面直角坐标系中,方程x a +yb =1表示x ,y 轴上的截距分别为a ,b 的直线,类比到空间直角坐标系中,在x ,y ,z 轴上截距分别为a ,b ,c (abc ≠0)的平面方程为( ) A.x a +y b +zc=1 B.x ab +y bc +zca =1 C.xy ab +yz bc +zxca=1 D .ax +by +cz =1考点 类比推理的应用题点 平面几何与立体几何之间的类比 答案 A解析 ∵在平面直角坐标系中,方程x a +yb =1表示的图形是一条直线,具有特定性质:“在x轴,y 轴上的截距分别为a ,b ”.类比到空间直角坐标系中,在x ,y ,z 轴上截距分别为a ,b ,c (abc ≠0)的平面方程为x a +y b +zc =1.故选A.3.若a >0,b >0,则有( ) A.b 2a >2b -a B.b 2a <2b -a C.b 2a ≥2b -a D.b 2a≤2b -a 考点 综合法及应用题点 利用综合法解决不等式问题 答案 C解析 因为b 2a -(2b -a )=b 2-2ab +a 2a =(b -a )2a ≥0,所以b 2a≥2b -a .4.用反证法证明命题:“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 3+ax +b =0没有实根B .方程x 3+ax +b =0至多有一个实数C .方程x 3+ax +b =0至多有两个实根D .方程x 3+ax +b =0恰好有两个实根 考点 反证法及应用 题点 如何正确进行反设 答案 A解析 方程x 3+ax +b =0至少有一个实根的反面是方程x 3+ax +b =0没有实根,故选A. 5.用数学归纳法证明:12×4+14×6+16×8+…+12n (2n +2)=n 4(n +1)(n ∈N *). 考点 用数学归纳法证明等式 题点 利用数学归纳法证明等式解 (1)当n =1时,左边=12×1×(2×1+2)=18,右边=14×(1+1)=18.左边=右边,所以等式成立.(2)假设当n =k (k ≥1,k ∈N *)时等式成立, 即有12×4+14×6+16×8+…+12k (2k +2)=k 4(k +1),则当n =k +1时,12×4+14×6+16×8+…+12k (2k +2)+12(k +1)[2(k +1)+2] =k 4(k +1)+14(k +1)(k +2)=k (k +2)+14(k +1)(k +2)=(k +1)24(k +1)(k +2) =k +14(k +2)=k +14[(k +1)+1].所以当n =k +1时,等式也成立,由(1)(2)可知,对于一切n ∈N *,等式都成立.1.归纳和类比都是合情推理,前者是由特殊到一般,部分到整体的推理,后者是由特殊到特殊的推理,但二者都能由已知推测未知,都能用于猜想,推理的结论不一定为真,有待进一步证明.2.演绎推理与合情推理不同,是由一般到特殊的推理,是数学中证明的基本推理形式.也是公理化体系所采用的推理形式,另一方面,合情推理与演绎推理又是相辅相成的,前者是后者的前提,后者论证前者的可靠性.3.直接证明和间接证明是数学证明的两类基本证明方法.直接证明的两类基本方法是综合法和分析法:综合法是从已知条件推导出结论的证明方法;分析法是由结论追溯到条件的证明方法,在解决数学问题时,常把它们结合起来使用,间接证法的一种方法是反证法,反证法是从结论反面成立出发,推出矛盾的证明方法.4.数学归纳法主要用于解决与正整数有关的数学问题.证明时,它的两个步骤缺一不可.它的第一步(归纳奠基)当n =n 0时,结论成立.第二步(归纳递推)假设当n =k 时,结论成立,推得当n =k +1时,结论也成立.数学归纳法是在可靠的基础上,利用命题自身具有的传递性,运用有限的步骤(两步)证明出无限的命题成立.一、选择题1.证明命题:“f (x )=e x +1e x 在(0,+∞)上是增函数”.现给出的证法如下:因为f (x )=e x +1e x ,所以f ′(x )=e x -1e x .因为x >0,所以e x >1,0<1e x <1.所以e x -1e x >0,即f ′(x )>0.所以f (x )在(0,+∞)上是增函数,使用的证明方法是( ) A .综合法 B .分析法 C .反证法 D .以上都不是考点 综合法及应用题点 利用综合法解决函数问题 答案 A解析 这是从已知条件出发利用已知的定理证得结论的,是综合法,故选A. 2.若a <b <0,则下列不等式中成立的是( ) A.1a <1b B .a +1b >b +1aC .b +1a >a +1bD.b a <b +1a +1考点 分析法及应用题点分析法解决不等式问题答案 C解析取a=-2,b=-1,验证可知C正确.3.我们把1,4,9,16,25,…这些数称为“正方形点数”,这是因为这些数量的点可以排成一个正方形,如图所示,则第n个正方形点数是()A.n(n-1) B.n(n+1)C.(n+1)2D.n2考点归纳推理的应用题点归纳推理在图形中的应用答案 D解析由题意可知第n个正方形点数为n2.4.在数列1,2,2,3,3,3,4,4,4,4,…中,第25项为()A.25 B.7C.6 D.8考点归纳推理的应用题点归纳推理在数对(组)中的应用答案 B解析由所给的数列规律知,第25项为7.5.已知{b n}为等比数列,b5=2,则b1b2b3…b9=29.若{a n}为等差数列,a5=2,则{a n}的类似结论为()A.a1a2a3…a9=29B.a1+a2+…+a9=29C.a1a2…a9=2×9 D.a1+a2+…+a9=2×9考点类比推理的应用题点等差数列与等比数列之间的类比答案 D解析由等差数列的性质a1+a9=a2+a8=…=2a5可知D正确.6.用数学归纳法证明“2n>n2+1对于n≥n0的自然数n都成立”时,第一步证明中的起始值n0应取()A.2 B.3C.5 D.6考点数学归纳法定义及原理题点数学归纳法第一步:归纳奠基答案 C解析当n取1,2,3,4时,2n>n2+1不成立,当n=5时,25=32>52+1=26,即第一个能使2n>n2+1成立的n值为5,故选C.7.已知a+b+c=0,则ab+bc+ca的值()A.大于0 B.小于0C.不小于0 D.不大于0考点综合法及应用题点综合法的应用答案 D解析因为(a+b+c)2=a2+b2+c2+2(ab+bc+ca)=0,又因为a2+b2+c2≥0,所以2(ab+bc+ca)≤0,即ab+bc+ca≤0.8.某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段,下表为10名学生的预赛成绩,其中有三个数据模糊.在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则()A.2号学生进入30秒跳绳决赛B.5号学生进入30秒跳绳决赛C.8号学生进入30秒跳绳决赛D.9号学生进入30秒跳绳决赛考点演绎推理的综合应用题点演绎推理在其他方面的应用答案 B解析进入立定跳远决赛的有8人,根据成绩应是1号至8号.若a>63,则同时进入两决赛的不是6人,不符合题意;若61≤a≤63,则同时进入两决赛的有1,2,3,5,6,7号,符合题意;若a=60,则同时进入两决赛的不是6人,不符合题意;若a ≤59,则同时进入两决赛的有1,3,4,5,6,7号,符合题意. 综上可知,5号进入30秒跳绳决赛. 二、填空题9.已知正三角形内切圆的半径是高的13,把这个结论推广到空间正四面体,类似的结论是____________________. 考点 类比推理的应用题点 平面几何与立体几何之间的类比 答案 正四面体的内切球的半径是高的14解析 原问题的解法为等面积法,即正三角形的面积S =12ah 1=3×12ar ⇒r =13h 1(其中a 是正三角形的边长,h 1是高,r 是内切圆半径).类比,用等体积法,V =13Sh 2=4×13R ·S ⇒R =14h 2(其中S 为底面正三角形的面积,h 2是高,R是内切球的半径). 10.已知2+23=223,3+38=338,4+415=4415,…,6+a b=6ab,a ,b 均为正实数,由以上规律可推测出a ,b 的值,则a +b =________. 考点 归纳推理的应用题点 归纳推理在数对(组)中的应用 答案 41解析 由题意归纳推理得6+a b=6ab,b =62-1=35,a =6. ∴a +b =6+35=41.11.完成反证法证题的全过程.题目:设a 1,a 2,…,a 7是由数字1,2,…,7任意排成的一个数列,求证:乘积p =(a 1-1)(a 2-2)…(a 7-7)为偶数.证明:假设p 为奇数,则________均为奇数.① 因为7个奇数之和为奇数,故有(a 1-1)+(a 2-2)+…+(a 7-7)为________.② 而(a 1-1)+(a 2-2)+…+(a 7-7)=(a 1+a 2+…+a 7)-(1+2+…+7)=________.③ ②与③矛盾,故p 为偶数. 考点 反证法及应用 题点 反证法的应用答案 a 1-1,a 2-2,…,a 7-7 奇数 0解析 由假设p 为奇数可知,(a 1-1),(a 2-2),…,(a 7-7)均为奇数,故(a 1-1)+(a 2-2)+…+(a 7-7)=(a 1+a 2+…+a 7)-(1+2+…+7)=0为奇数,这与0为偶数相矛盾. 三、解答题12.用综合法或分析法证明:(1)如果a ,b >0,则lg a +b 2≥lg a +lg b 2;(2)6+10>23+2.考点 分析法和综合法的综合应用 题点 分析法和综合法的综合应用 证明 (1)当a ,b >0时,有a +b2≥ab , ∴lg a +b2≥lg ab ,∴lg a +b 2≥12lg(ab )=lg a +lg b 2.(2)要证6+10>23+2, 只需证(6+10)2>(23+2)2, 即260>248,这是显然成立的, ∴原不等式成立.13.求证:不论x ,y 取何非零实数,等式1x +1y =1x +y 总不成立.考点 反证法及应用 题点 反证法的应用证明 假设存在非零实数x ,y 使得等式1x +1y =1x +y 成立.于是有y (x +y )+x (x +y )=xy , 即x 2+y 2+xy =0, 即⎝⎛⎭⎫x +y 22+34y 2=0. 由y ≠0,得34y 2>0.又⎝⎛⎭⎫x +y22≥0, 所以⎝⎛⎭⎫x +y 22+34y 2>0. 与x 2+y 2+xy =0矛盾,故原命题成立.四、探究与拓展14.设S ,V 分别表示表面积和体积,如△ABC 的面积用S △ABC 表示,三棱锥O -ABC 的体积用V O -ABC 表示,对于命题:如果O 是线段AB 上一点,则|OB →|·OA →+|OA →|·OB →=0.将它类比到平面的情形时,应该有:若O 是△ABC 内一点,有S △OBC ·OA →+S △OCA ·OB →+S △OBA ·OC →=0.将它类比到空间的情形时,应该有:若O 是三棱锥A -BCD 内一点,则有__________. 考点 类比推理的应用题点 平面几何与立体几何之间的类比答案 V O -BCD ·OA →+V O -ACD ·OB →+V O -ABD ·OC →+V O -ABC ·OD →=0 15.给出下列等式:1=1, 1-4=-(1+2), 1-4+9=1+2+3, 1-4+9-16=-(1+2+3+4),……(1)写出第5个和第6个等式,并猜想第n (n ∈N *)个等式; (2)用数学归纳法证明你猜想的等式. 考点 利用数学归纳法证明等式 题点 等式中的归纳、猜想、证明(1)解 第5个等式为1-4+9-16+25=1+2+3+4+5, 第6个等式为1-4+9-16+25-36=-(1+2+3+4+5+6). 猜想第n 个等式为12-22+32-42+…+(-1)n -1n 2=(-1)n -1·(1+2+3+…+n ).(2)证明 ①当n =1时,左边=12=1,右边=(-1)0×1=1,左边=右边,猜想成立.②假设当n =k (k ≥1,k ∈N *)时,猜想成立,即12-22+32-42+…+(-1)k -1k 2=(-1)k -1·k (k +1)2,则当n =k +1时,12-22+32-42+…+(-1)k -1k 2+(-1)k (k +1)2=(-1)k -1·k (k +1)2+(-1)k (k+1)2=(-1)k (k +1)·⎣⎡⎦⎤(k +1)-k 2=(-1)k ·(k +1)[(k +1)+1]2, 故当n =k +1时,猜想也成立由①②可知,对于任意n ∈N *,猜想均成立.。