加拿大浅层地热能源评估
- 格式:pdf
- 大小:865.14 KB
- 文档页数:11
地热资源地热资源是指能够为人类经济开发和利用的地热能、地热流体及其有用组分。
地热资源为重要的可再生能源矿产,合理开发利用是一种清洁能源,也是医疗、旅游、化工资源。
浅层地热能是地
热资源的一部份
热泵的工作原理应用冷凝器排出的热量进行供热
应用蒸发器吸收的热量进行制冷
北京市城区地源热泵项目分布
北京市平原区地下水换热系统适宜性分区
北京市平原区地埋管换热系统适宜性分区
现场热传导试验:对回路中循环流动水连续加热,测量加热功率、水的流量和温度及其所对应的时间,推算钻孔周围岩土的平均岩土导热系数。
计算评价地埋管单位换热量
抽水井回灌井。
地热能资源分区评估和开发影响环境污染预警方法地热能作为一种可再生能源,具有广阔的开发利用前景。
为了科学合理地评估地热能资源的分区和开发,并准确预测开发对环境产生的污染影响,需要建立相应的评估方法和预警体系。
本文将介绍地热能资源分区评估的方法以及开发对环境污染的预警方法。
地热能资源分区评估是对地热能资源进行分类和评估的过程。
它主要通过分析地热资源的地质特征、水热地球化学特征和地下热流场分布等因素,对地热能资源进行划分和评估。
在地热能资源分区评估中,需要收集大量的地质、地球物理、水文地质数据,并采用综合评价方法来确定热资源量和品质。
首先,地质特征对地热资源分区评估具有重要的影响。
地质构造和地层特征决定了地下岩体的渗透性和储集性,是地热能资源分布的基础。
通过对地质构造和地层的分析,可以确定地热资源的分布范围和类型。
其次,水热地球化学特征是进行地热资源分区评估的另一个重要指标。
地下水热系统中的水热地球化学特征对地热能资源的质量和可开发性具有重要的影响。
通过对地下水的抽取和分析,可以获取地下水的温度、pH值、电导率等信息,从而评估地热能的利用价值和潜在环境影响。
最后,地下热流场分布是地热资源分区评估的重要因素之一。
地下热流场是地球内部热能的传输通道,也是地热能的重要来源。
通过地下热流场的分析,可以确定地热能资源的分布情况和规模。
除了地热能资源分区评估外,还需要建立开发对环境污染的预警方法。
地热能开发过程中,可能会产生一定程度的环境污染,包括大气污染、水体污染和土壤污染等。
为了减少开发对环境的不利影响,需要建立预警体系,及时发现和控制潜在的环境污染风险。
在地热能开发的过程中,可以采用实时监测技术对环境污染风险进行预警。
通过安装传感器和监测设备,对大气、水体和土壤中的污染物进行实时监测,及时发现污染源和超标情况,从而采取相应的控制措施。
此外,可以利用数学建模和模拟技术进行环境污染风险评估和预测。
通过对地热能开发过程中可能产生的环境污染物进行建模和模拟,可以预测开发对环境的潜在影响和风险等级,为环境保护提供科学依据和决策支持。
国家标准《地源热泵系统工程技术规范》GB50366-2005设计要点解析中国建筑科学研究院空气调节研究所邹瑜徐伟冯小梅摘要:本文针对不同地源热泵系统的特点,结合《规范》条文,对地源热泵系统设计特点、方法及要点进行了深入分析,为地源热泵系统的设计提供指导。
关键词:地源热泵系统、设计要点、系统优化1 前言实施可持续发展能源战略已成为新时期我国能源发展的基本方针,可再生能源在建筑中的应用是建筑节能工作的重要组成部分。
2006年1月1日《可再生能源法》正式实施,地源热泵系统作为可再生能源应用的主要途径之一,同时也是最利于与太阳能供热系统相结合的系统形式,近年来在国内得到了日益广泛的应用。
地源热泵系统利用浅层地热能资源进行供热与空调,具有良好的节能与环境效益,但由于缺乏相应规范的约束,地源热泵系统的推广呈现出很大盲目性,许多项目在没有对当地资源状况进行充分评估的条件下就匆匆上马,造成了地源热泵系统工作不正常,为规范地源热泵系统的设计、施工及验收,确保地源热泵系统安全可靠的运行,更好的发挥其节能效益,由中国建筑科学研究院主编,会同13个单位共同编制了《地源热泵系统工程技术规范》(以下简称规范)。
该规范现已颁布,并于2006年1月1日起实施。
由于地源热泵系统的特殊性,其设计方法是其关键与难点,也是业内人士普遍关注的问题,同时也是国外热点课题,在新颁布的《规范》中首次对其设计方法提出了具体要求。
为了加深对规范条文的理解,本文对其部分要点内容进行解析。
2 《规范》的适用范围及地源热泵系统的定义2.1 《规范》的适用范围该《规范》适用于以岩土体、地下水、地表水为低温热源,以水或添加防冻剂的水溶液为传热介质,采用蒸气压缩热泵技术进行供热、空调或加热生活热水的系统工程的设计、施工及验收。
它包括以下两方面的含义:(1)“以水或添加防冻剂的水溶液为传热介质”,意旨不适用于直接膨胀热泵系统,即直接将蒸发器或冷凝器埋入地下的一种热泵系统。
地热能的开发利用与地质环境评估随着全球能源需求的不断增加和环境问题的日益严重,可再生能源的开发与利用成为了世界各国的共同关注点。
在各种可再生能源中,地热能因其稳定、可持续的特性备受重视。
本文将探讨地热能的开发利用及相关地质环境评估。
一、地热能的开发利用地热能是指在地球的深层热资源中,利用地球内部的热能进行发电或供热的过程。
地球内部的地热能主要来源于地壳和地幔中的放射性元素的衰变以及地球内部的地热流。
地热能的开发利用主要有两种方式,一种是直接利用,即将地热能直接应用于供热和温泉浴疗等领域;另一种是间接利用,即将地热能转化为电能进行发电。
1. 直接利用地热能直接利用地热能是将地热能直接应用于供热和温泉浴疗等领域。
地热供热系统通常由地热井、热交换器、传输管道和终端用户组成。
通过将地热能转移到终端用户,满足其供暖和生活热水需求。
另外,地热资源中的温泉水也是人们常常利用的一种直接地热能。
人们通过开发地热温泉资源建设温泉浴疗中心,为人们提供休闲和养生的场所。
2. 间接利用地热能间接利用地热能是将地热能转化为电能进行发电。
常用的地热能发电方式包括干蒸汽地热发电和二元地热发电。
干蒸汽地热发电是通过地热井将地热水转化为蒸汽,再通过蒸汽驱动涡轮发电机组发电。
而二元地热发电则是通过地热井中的高温地热水与低温工质进行热交换,使工质蒸发产生蒸汽驱动涡轮发电机组发电。
地热能的开发利用可以有效减少对传统能源的依赖,在实现可持续发展的同时,还可以减少环境污染。
然而,地热能的开发利用需要进行地质环境评估,以确保开发活动的安全与可持续性。
二、地质环境评估地质环境评估是指对地热能的开发利用区域的地下地质条件、水文地质条件、地热资源条件、地质灾害等进行综合评估和分析,以确定开发利用地热能的可行性和风险。
1. 地下地质条件评估地下地质条件评估主要研究地下岩性、构造和地层特征等,以确定地热系统建设的地质条件是否适宜。
同时,地下地质条件评估还需要考虑地下水位、地下水流动和地下水化学性质等,以确保地热系统的稳定性和安全性。
加拿大燃烧标准sor2016全文共四篇示例,供读者参考第一篇示例:加拿大燃烧标准SOR2016(Standards of Performance for New Stationary Sources,2016年版)是加拿大政府为了保护环境和人类健康而制定的燃烧排放标准。
该标准旨在控制新建固定源的排放,以减少对大气和环境的污染。
SOR2016对各种类型的燃烧设备和工艺制定了严格的排放要求,包括锅炉、发电机组、工业炉、炉窑等。
通过这一标准的实施,加拿大希望减少温室气体排放量,改善空气质量,保护生态环境。
SOR2016标准主要包括以下几个方面。
首先是氮氧化物(NOx)的排放控制。
该标准规定了各种燃烧设备在运行过程中的NOx排放限值,以减少大气中NOx的浓度,避免对臭氧层和植被造成危害。
其次是二氧化硫(SO2)的排放控制。
SO2是一种对人类健康和环境有害的气体,因此SOR2016对各种燃烧设备的SO2排放进行了限制,以保护大气环境。
另外,SOR2016还规定了一些其他污染物的排放限值,如颗粒物(PM)、挥发性有机化合物(VOCs)等,以综合控制各种污染物的排放。
为了确保SOR2016的有效实施,加拿大政府设立了严格的监测和管理机制。
各地政府和环境部门负责对新建燃烧设备的排放进行监测和检测,确保其符合SOR2016的排放标准。
同时,政府还对违反标准的企业和个人进行惩罚和处罚,以强化排放控制的执行力度。
此外,政府还通过技术支持、培训和宣传等方式,帮助企业提高排放控制的技术水平,促进环保产业的发展。
SOR2016的实施对加拿大的环保事业和经济发展起到了积极的推动作用。
一方面,通过严格控制燃烧排放,加拿大的空气质量得到了显著改善,人民的健康得到了保护。
另一方面,SOR2016的执行推动了环保产业的发展,促进了环保科技的创新,为加拿大的经济转型和可持续发展注入了新的动力。
同时,SOR2016也为加拿大在国际上树立了环保领导者的形象,提高了加拿大在环保领域的影响力和地位。
目前,我国第一部有关浅层地热能开发的行业标准《浅层地热能勘查评价技术规范》,面向全国广泛征求修改意见。
据中国地调局水环部韩再生介绍,该《规范》是中国地质调查局受国土资源标准化委员会水文地质工程地质环境地质分技术委员会委托编制完成的行业标准。
目前完成的征求意见稿,明确了有关浅层地热能的概念和术语,首次系统提出浅层地热能资源计算评价的方法,特别是在其核心技术——区域浅层地热能资源量的评价方法上作了有益探索;分别规定了区域浅层地热能调查和地源热泵工程浅层地热能勘查工作的目的、任务、基本工作内容、工程控制程度以及质量要求;对地源热泵工程浅层地热能勘查,提出了地下工程、水源井施工和质量要求、井群设计、水质评价和处理方法等;对区域浅层地热能调查、资源评价、资料整理和报告编写提出了要求。
该《规范》适用于区域浅层地热能调查评价和地源热泵工程浅层地热能的勘查评价,可作为浅层地热能资源开发中设计书编制、勘查工程布置、浅层地热资源评价、报告编写和审批的依据。
中华人民共和国地质矿产部批准中华人民共和国地质矿产部部标准DZ40—85地热资源评价方法地热资源是地质矿产资源之一,为加强地热资源的开发利用研究,特制定本标准。
本标准可作为国家、省、市、自治区制定长远规划的依据;也作为本系统进行地热田普查和初步勘探的设计依据。
1 名词、术语1.1地热资源系指在当前的技术经济条件下可以开发利用的地下岩石和水中的热能,也包括在未来条件下具有替在价值的热能。
根据研究程度,地热资源还可进一步划分为远景地热资源、推测地热资源及已查明地热资源(图1)。
图1 地热资源评价表1.1.1远景地热资源系指在小比例尺(相当于1∶100万或1∶50万)区域调查的基础上,根据某些地热现象,如温泉、浅层地温等物探资料,并基于一般的地热地质条件和理论,推测其存在的地热资源。
远景地热资源可作为进行中等比例尺调查和制定规划的依据。
1.1.2推测地热资源系指在中比例尺(相当于1∶20万或1∶10万区域调查的基础上,相应开展了地热地质、地热地球化学和地温调查,重、磁、电或地震等物探以及钻探工作,得出的地热资源。
推测地热资源可作为规划大比例尺地热调查,编制地热普查、初步勘探设计的依据。
1.1.3已查明地热资源又称已确认地热资源,系指在大比例尺(相当于1∶5万等)调查的基础上,相应开展了地热地质、地热地球化学、地温调查,重、磁、电或地震等物探工作,经钻探验证,地质构造和热储边界清楚。
同时,经过长时间单井、多井抽水试验或放喷试验以后,在计算出的地热资源。
1.2地热储量系指已查明地热资源的一部分,即在当前条件下可以用地质学方法圈闭而又能经济、合理、合法地开采的有用能源。
1.3热储系指含有能被开发利用的热流体的岩石和岩层。
热储还可分为孔隙热储和裂隙热储。
砂层、砂卯砾石层、胶结较差的砂岩、砾岩和部分碳酸盐岩等属孔隙热储。
火成岩、变质岩、部分碳酸盐岩和致密砂岩、砾岩属裂隙热储。
在进行地热资源评价时,对于孔隙和裂隙二者兼有的热储,如砂岩、砾岩和碳酸盐岩等按孔隙热储考虑。
加拿大燃烧标准sor-概述说明以及解释1.引言1.1 概述加拿大燃烧标准(SOR) 是一项制定和执行于加拿大境内的燃烧行为相关法规和准则。
该标准的主要目的是保护环境、提高空气质量和人类健康,并确保各种燃烧活动符合国内外的环境保护要求。
这些要求涵盖了各个行业和领域,包括工业、交通和居民区的燃烧活动等。
燃烧是指将可燃物质与氧气反应,产生能量和废气的过程。
虽然燃烧是一种普遍的能源利用方式,但它也会释放出大量排放物,对空气质量和环境健康产生负面影响。
为了确保燃烧行为的环境友好性,加拿大政府制定了严格的燃烧标准,以减少有害气体和颗粒物的排放,并限制对大气环境的负面影响。
加拿大燃烧标准的制定背景可以追溯到全球环保意识的提升和加强环境保护方面的法律法规。
随着科学技术的进步和环境问题的凸显,加拿大政府意识到有必要采取行动来控制、监管和减少燃烧活动的排放。
因此,加拿大燃烧标准的制定成为了一个迫切的任务,旨在保护人类健康和环境、促进可持续发展。
本文将对加拿大燃烧标准的制定背景、内容和要求,以及实施效果进行详细探讨。
此外,还将评估该标准的意义、对其进行评价,并展望未来加拿大燃烧标准的发展。
通过系统地分析和总结,旨在为加拿大燃烧标准的进一步改进和完善提供有益的参考和借鉴。
1.2 文章结构文章结构是指文章整体组织和布局的方式。
一个良好的文章结构可以使读者更好地理解和跟随文章的内容,使思路清晰、条理分明。
在本篇长文中,文章的结构主要包括引言、正文和结论三个部分。
引言部分主要用于引起读者的兴趣,简要介绍文章的主题和背景,并提出文章的目的。
通过概述加拿大燃烧标准的背景、内容和要求,以及其实施效果,引出下文的详细讨论。
正文部分是本文的核心,通过包括加拿大燃烧标准的制定背景、内容和要求,以及实施效果的详细叙述和分析,来展开对加拿大燃烧标准的探讨。
在2.1节中,可以介绍加拿大燃烧标准的制定背景,包括相关法律、政策背景和环境问题等;在2.2节中,详细介绍加拿大燃烧标准的内容和要求,包括具体的标准和限制要求,以及相关的测量和监测方法;在2.3节中,分析加拿大燃烧标准的实施效果,包括对环境和人体健康的影响等。
第N 卷"第!期中"国"地"质"调"查`.@%N"].%!!,!!年,P 月!"#$#!%&'$()*+",#-&.%/'Q ;G %!,!!J.>"',%'N*))b D %V 0JV J?%!,!!%,!%,N引用格式"张承斌%基于层次分析法T 模糊综合评价模型的浅层地热能适宜性评价,,,以山东省昌乐县为例)2*%中国地质调查!!,!!!N #!$"N'TNN%#K 49/03B %-H>F 9L>@>F <5O 9@H9F >./.U =49@@.W05.F 45G &9@5/5G 0<L9=5J ./9/9@<F >?4>5G 9G ?4<;G .?5==9/J U HV V <?.&;G 545/=>O 55O 9@H9F >./"Q?9=5=F HJ<.U 349/0@53.H/F <>/-49/J./0E G .O >/?5)2*%75.@.0>?9@-HG O 5<.U 34>/9!!,!!!N #!$"N'T NN%$基于层次分析法T 模糊综合评价模型的浅层地热能适宜性评价,,,以山东省昌乐县为例张承斌山东省煤田地质局第三勘探队 山东泰安"!$',,,摘要 层次分析法T 模糊综合评价模型可有效解决传统评价分析方法难以对模糊概念进行定量评价以及受主观影响较大等问题!使评价结果更加合理&精确%综合选取单一岩体厚度&地下水埋深&含水层总厚度&地层岩性&导热系数&比热容和地温等$个评价因子!运用层次分析法T 模糊综合评价模型对山东省昌乐县浅层地热能适宜性进行了评价!将研究区划分为适宜性中等区和适宜性差区!适宜性中等区面积为PP%$'_&!!适宜性差区面积为',%!N _&!%结合昌乐县城市规划!将研究区进一步划分为一般开发区&鼓励开发区&大力发展区和限制开发区%研究区浅层地热能开发利用潜力较大!合理开发利用可带来巨大的经济和社会效益%关键词 浅层地热能-适宜性分区-模糊综合评价-层次分析法中图分类号 E#P'-E *'P"""文献标志码 Q """文章编号 !,N(T )$,##!,!!$,!T ,,N'T ,N"收稿日期 !,!,T ,$T !N -修订日期 !,!!T ,'T !#%基金项目 山东省自然资源厅'山东省重点县#市&区$浅层地温能调查评价及示范工程建设#编号"-Z 7E *$,,,,!,'N,!,,!P*$$(项目资助%作者简介 张承斌#'N)#,$!男!硕士!工程师!主要从事水文地质调查评价工作%S &9>@"),!P#*#,c^^%?.&%,"引言浅层地热能指从地表至地下!,,&储存于水体&土体&岩石中的温度d !(e !采用热泵技术提取!用于建筑物供热或制冷的地热能)'*!具有分布广泛&储量丰富&埋藏较浅&易于开发&可循环再生&清洁环保等特点!可替代化石能源!减少污染物排放%自!,'(年开始!山东省先后完成了区域以及各地市的浅层地热能调查评价!随后开展了重点县#市&区$浅层地热调查评价及示范工程建设)!*%山东省潍坊市昌乐县周边县市区均已完成浅层地热能资源调查评价工作%随着昌乐县社会经济的发展!其节能减排压力日益增大!因此!针对昌乐县城区开展浅层地热能适宜性区划及资源潜力评价!对于当地发展清洁能源&落实新旧动能转换&实现经济社会可持续健康发展有重要意义%目前!浅层地热能适宜性评价采取的主要方法为指标法和层次分析法#9/9@<F >?4>5G 9G .4<;G .?5==!Q M E $%.Z K b X ,!!(,!,,N 浅层地热能勘查评价规范/)'*中推荐浅层地热能适宜性分区采用指标法!该方法可方便&快捷地对区域浅层地热能适宜性进行评价!但由于选取指标较少!无法做出精确&定量的评价%层次分析法是一种定量与定性相整合的多目标决策剖析方法!具有系统性强&层次分明&简洁实用等特点!近年来被广泛应用于浅层地热能适宜性评价工作!效果良好)*T #*!但其权重因子的确定常常因人而异!评价过程受主观影响较大%模糊综合评价法是一种基于模糊数学的隶属度理论!对受多种因素影响的对象进行综合评价的方法!它将定性评价转化为定量评中"国"地"质"调"查!,!!年价!即去模糊化%进行浅层地热能适宜性评价时!采用层次分析法考虑各因素对系统评价的贡献程度!再引入模糊综合评判对适宜性进行模糊综合分析)$*!可避免因个人主观影响而造成的系统误差%在充分收集研究区区域地质&水文地质&地热地质等资料的基础上!应用模糊综合评价模型对该区浅层地热能适宜性进行了评价分区!有效解决了传统评价分析方法难以对模糊概念进行精确定量评价及受主观影响较大的问题!为昌乐县浅层地热能可持续开发利用提供了依据%'"浅层地热能赋存条件A%A#浅层地质结构根据本次施工钻孔资料!!,,&以浅岩土体结构大致以岩土二元结构为主#表'$%上部土体结构主要为第四系松散岩类-下部岩体主要为临朐群玄武岩!下伏五图群砂岩&泥岩地层!部分地表A#本次施工钻孔情况B.8C A#D0'%207%3(&0'-.130(73*1钻孔编号地理位置成井深度b&第四系厚度b&基岩岩性3R,'昌乐县经济开发区前于留村),%'($%!玄武岩3R,!昌乐县宝都街道冯家庄村'!,%,*(%#玄武岩3R,*昌乐县经济开发区八里庄村'!,%'!*%)玄武岩3R,P 昌乐县宝都街道五里庄村'!,%''N%,玄武岩&砂岩&泥岩3R,(昌乐县宝都街道吴家池子村),%,)%P玄武岩3R,#昌乐县朱刘街道山坡村'!,%'!(%'砂岩&泥岩&灰岩3R,$昌乐县朱刘街道钱家庄村!,,%#*)%P玄武岩&灰岩3-,'昌乐县经济开发区黄埠村#,%)(N%(砾岩&玄武岩3-,!昌乐县经济开发区黄埠村#,%((N%!砾岩&玄武岩3-,*昌乐县经济开发区东萧村),%'!(%$玄武岩&泥岩区缺失五图群!下伏下九龙群灰岩&白云岩%'%'%'"上部土体结构研究区上部主要为第四系松散岩类!厚(f#,&!由南向北逐渐变厚!主要为大站组!局部分布黑土湖组和沂河组%岩性主要为褐黄色粉土&黏土!底部含少量碎石及土黄色姜状钙质结核!垂直节理发育%'%'%!"下部岩体结构研究区下部主要以新生界和古生界为主!隐伏于第四系之下%岩性以玄武岩&砂岩及灰岩为主%#'$临朐群#]8?$%该地层大多呈隐伏分布!局部沿低缓丘陵地带有不同程度的出露!与下伏古近系五图群呈喷发不整合接触%牛山组#]')$在研究区广泛分布!大多隐伏于第四系之下!在首阳山大面积 露%岩性主要为火山喷发沉积的灰黑色致密块状&杏仁状&气孔状玄武岩!局部夹河湖相沉积的泥岩&砂岩!底部砂砾岩%依据钻孔揭露情况!研究区南部厚约$,&!向北逐渐变厚至N#%*&以上!研究区东部厚'!f'$&%尧山组#]/$呈孤岛状零星分布于牛山组之上!二者呈不整合接触%岩性以火山喷发沉积的灰黑色致密块状玄武岩为主!在首阳山一带零星出露%#!$五图群#S'@+$%五图群在研究区呈隐伏分布!依据钻孔揭露情况!岩性主要为泥岩&砂岩!厚度一般在!,&以上%#*$九龙群#第!期张承斌""基于层次分析法T 模糊综合评价模型的浅层地热能适宜性评价,,,以山东省昌乐县为例'%松散岩类孔隙水#单井涌水量(,,f ',,,&*b J $-!%松散岩类孔隙水#单井涌水量',,f (,,&*b J $-*%松散岩类孔隙水#单井涌水量d ',,&*b J $-P%碎屑岩类孔隙裂隙水#单井涌水量d ',,&*b J !裸露型$-(%碳酸盐岩裂隙岩溶水#单井涌水量d(,,&*b J !裸露型$-#%碳酸盐岩裂隙岩溶水#单井涌水量d (,,&*b J !覆盖型$-$%碳酸盐岩夹碎屑岩岩溶裂隙水#单井涌水量d (,,&*b J !裸露型$-)%块状岩类裂隙水#单井涌水量d ',,&*b J !裸露型$-N%块状岩类裂隙水#单井涌水量',,f (,,&*b J !裸露型$-',%块状岩类裂隙水#单井涌水量(,,f ',,,&*b J !覆盖型$-''%块状岩类裂隙水#单井涌水量',,f (,,&*b J !覆盖型$-'!%研究区范围-'*%断层-'P%含水层类型及富水性分区界线-'(%水系-'#%县界-'$%本次施工钻孔及编号%图A#研究区综合水文地质略图E 36C A#+/(12%13)2/5'06%07063).7-.40&12%*1,5/.'%.'%!%'"松散岩类孔隙含水岩组主要分布于昌乐县北部地区!含水层包括第四系砂砾石&粉细砂及粉土等!厚度一般在(&左右!单位涌水量d',,&*b #J +&$%地下水位埋深一般在!%)#f 'N%$(&%地下水化学类型为M 3g *+3@T39++0型&M 3g *T39++0型!矿化度为,%)$'f ,%N!)0b A %'%!%!"喷出岩类孔洞裂隙含水岩组主要分布在研究区南部!大部分被第四系覆盖%含水层主要为新近系临朐群牛山组气孔状玄武岩#全风化,中等风化$!厚约$,&!单位涌水量一般d '!,&*b #J +&$%地下水位埋深约!,&!地下水化学类型为M 3g *+-g P T 39++0&M 3g +3@T 39型!矿化度为,%!)(f ,%(,N 0b A %'%!%*"碳酸盐岩类裂隙岩溶含水岩组主要分布于研究区东部!五图断裂以北!在孤山一带裸露地表!大部分隐伏于石炭系&二叠系&新近系及第四系之下!分布范围较广%含水层岩性为奥陶系马家沟群和寒武系九龙群炒米店组质纯灰岩和白云质灰岩等%区内单井出水量一般为(,,&*b J 左右%水化学类型主要为M 3g *+-g P T 39型和M 3g *T 39+]9!矿化度为,%*!(f ,%#)(0b A %A %F#岩土体热物性特征本次共采集')$件岩土样品!测试岩土热物性+*N +中!国!地!质!调!查"#""年参数!测试结果"表"#表明$研究区松散岩类密度较小%基岩密度较大&比热容变化较小%其中粉土'黏土等第四系松散岩类比热容相对较大%为$%$&'$%"&()*"(+(,#&石灰岩的导热系数和热扩散率的均值分别为"%-./*"0(,#和$%#$00"*1%明显高于其他岩性%岩土体各类岩性导热系数与密度具有明显的正相关性!表!"研究区主要岩土体物性及热物性特征值#$%&!"'($)$*+,)-.+-*/$01,.234(5.-*$0$67+(,)824(5.-*$04)24,)+523+(,8$-6)2*9.$67.2-0.岩性密度*"+(203.#比热容*"()((+3$(,3$#导热系数*"/(03$(,3$#热扩散率*"00"(13$#玄武岩"%"4#%56$%7$#%-#石灰岩"%6-$%#$"%-.$%#$黏土$%4-$%"#$%67#%-7粉土$%46$%"&$%67#%-"粉质黏土$%5&$%$&$%75#%-.泥岩"%#.$%##$%7"#%-6砂岩"%$"#%54$%6$#%4# "!适宜性分区研究区内第四系以黏土'粉土为主%基岩埋藏较浅%区域地下水富水性较差%且松散层和玄武岩不利于地下水回灌!碳酸盐岩类裂隙岩溶水富水性极不均匀%且富水性普遍较弱%即便局部区域富水性较强%考虑到大量抽灌灰岩水容易引发或加剧区域岩溶塌陷等地质灾害%因此%不宜将其划分为地下水换热适宜区)$%4*!综合考虑研究区的水文地质条件%将全区划分为地下水换热系统不适宜区!本文主要阐述地埋管换热系统的适宜性分区!!%:"分区方法采用模糊综合评判法和层次分析法对浅层地热能适宜性进行评价!模糊综合评判法基于模糊数学%对不方便量化的系统合成模糊关系%将一些模糊因素定量化%从而对多个因素进行评判!该方法可定量研究和处理客观存在的模糊因素%充分考虑因素的中间过渡状态)53$$*!层次分析法是一种对多目标进行分析决策的方法%将$个多目标的复杂问题分解成若干个因素%并按关系分组形成层次结构%从而确定层次中各因素的相对重要性!!%!"建立综合评价因素集因素集是以影响评价对象的各种因素为元素所组成的一个普通集合%通常用!表示!本次评价地源热泵适宜性等级的指标集为!""#$%#"%#.%#&%#7%#6%#-#%其中$#$表示松散层厚度或单一岩体厚度%#"表示地下水埋深%#.表示含水层总厚度%#&表示地层岩性%#7表示导热系数%#6表示比热容%#-表示地温"$##0#!"%"%$!地质及水文地质条件选取松散层厚度或单一岩体厚度'地下水位埋深'渗透系数以及含水层总厚度等指标)$"3$.*!松散层厚度或单一岩体厚度直接影响钻孔的平均导热系数和换热孔的施工难度%进而影响工程投资回报率!地下水位埋深影响地埋管换热系统的换热效率%水位埋藏较浅的区域%换热器与地下水及岩土体间能更好地进行能量交换!含水层总厚度决定了地下热量传递效果%也反映了地下岩"土#体的热交换条件!"%"%"!地层属性选取地层岩性等要素指标%不同岩性反映出特定的地热生成环境%决定了热物性特征和单孔换热量的大小!"%"%.!热物性选取导热系数'比热容以及地温等要素指标!岩土体导热系数直接反映能量在岩土体中传递与交换的速率%决定了地埋管换热器换热能力的高低%也影响单孔换热量!比热容是岩土体温度改变时的吸收或释放的内能%代表了岩土体蕴藏的浅层地热能资源量的大小!地温%通过$##0深度的地温%表征不同地层地温梯度以及大地热流量的大小!!%;"建立综合评价集评价集是评价者对评价对象可能做出的各种结果所组成的集合%通常用$表示!本次评价地源热泵适宜性等级的评价集为""%$%%"%%.#%其中$%$表示好%%"表示中等%%.表示差!!%<"构建评价矩阵若因素集!中第&个元素对评价集$中第$个元素的隶属度为'&$%则对第&个元素单因素评价的结果用模糊集合表示为$(&""'&$%'&"%+%'&)#%以*个单因素评价集($%("%+%(*为行组成矩阵(&5(第!期张承斌""基于层次分析法T 模糊综合评价模型的浅层地热能适宜性评价,,,以山东省昌乐县为例 3F )!称为模糊综合评价矩阵%本次评价依据研究区水文地质及热物性条件!通过专家打分!确定B h D 上每个有序对##$!>A $的隶属度%最终得到单因素评判矩阵 为C 4''4'!4'*4!'4!!4!*4*'4*!4**4P'4P!4P*4('4(!4(*4#'4#!4#*4$'4$!4 $*%"%I#确定因素权向量各因素的重要程度有所不同!为此!给各因素#$一个权重1$!各因素的权重集合的模糊集用G 表示"GC #1'!1!!1*!1!1(!1#!1$$%本次评价通过层次分析法#Q M E $构建权向量!其主要步骤是"首先!建立递阶层次结构模型-然后!构造出各层次中的所有判断矩阵!进行层次单排序及一致性检验-最后!进行层次总排序及一致性检验!确定各要素重要性排序的权值%!%(%'"评价模型地埋管热泵系统评价体系层次结构模型由*层构成!从顶层至底层分别为目标层&属性层和要素指标层)'P T '(*%本次评价目标是地埋管换热适宜性分区!由地质及水文地质条件&地层属性&热物性*项指标构成属性层!要素层细化为导热系数&比热容&含水层总厚度等$项指标#图!$%图"#地埋管换热系统适宜性分区评价模型E 36C "#+,31.83731/;0(3(6%=.7,.130(-05%70&8,'3%5434%2%.1%J)2.(6%*/*1%-!%(%!"因子权重确定因子权重采用层次分析赋权法确定%依据评价体系的层次结构模型!应用专家打分方法!通过各因素之间的两两比较确定合适的标度!构造判断矩阵%使用3R 值检验判断矩阵的一致性!如果没有通过一致性检验则需修改判断矩阵!直至达到可以接受的一致性!最后确定各因子权重#表*$%表F#地埋管换热系统适宜性分区指标权重B .8C F#K (5%J @%3621'.(H 3(61.87%0&*,31.83731/;0(3(60&434%2%.1%J)2.(6%'*/*1%-因素综合权重导热系数,%*!''含水层总厚度,%*松散层厚度或单一岩体厚度,%'*'N 比热容,%'!*$地温#',,&$,%,),!地层岩性,%,$#N 地下水位埋深,%,P*N"%L#建立综合评价模型确定单因素评判矩阵 和因素权向量 之后!通过模糊变化将 上的模糊向量 变为 上的模糊向量 !即 C 'F $H $F *C #I '!I !!I *$%其中H称为综合评价合成算子!本次评价取一般的矩阵乘法%"%M#确定系统总得分综合评价模型确定后!确定系统得分!即J C'F )+ X'F )!其中J 为系统总得分!为 中相应因素的级分%设适宜性好T 中等T 差的级分依次为=CN !(!()'%"%N#综合评分#'$绘制各要素图件%通过+9;7I -制图软件制作各要素指标的等值线#分区$图件!包括导热系数分区图&含水层厚度分区图等$幅分区图#图*$%+(N +中"国"地"质"调"查!,!!年图F#研究区各要素分区E 36C F#O 3&&%'%(1%7%-%(1;0(3(653.6'.-0&12%@0'H 3(6.'%.""#!$网格剖分%对研究区进行网格剖分!网格大小设为',,,&h',,,&%#*$网格赋值%将剖分网格与各因素指标等值线图叠加!并对网格中心点进行赋值!计算每个网格的分值!最终根据网格得分绘制地源热泵适宜性综合指数分区图#图P$%'%# 综合指数d $-!%( 综合指数d #-*%P 综合指数d (-P%综合指数等值线-(%研究区范围-#%水系-$%县界%图!#研究区地源热泵适宜性综合指数分区E 36C !#G 0-4'%2%(*3=%*,31.83731/3(5%J ;0(3(6-.40&6'0,(5P *0,')%2%.14,-43(12%*1,5/.'%.""#P $适宜性分区标准%结合专家意见并考虑实际情况!将总得分 $分的区域划分为适宜性好区!(f $分划分为适宜性中等区!d (分的区域划为适宜性差区%"%Q#分区结果!%N%'"模糊综合评价法分区结果结合研究区浅层地热能水文地质条件&地质条件及热物性&地层属性!利用层次分析法T 模糊综合评价模型!将研究区划分为地埋管换热适宜性中等区和适宜性差区#图(#9$$%适宜性中等区域面积PP%$'_&!!热导率在'%P)f*%!'8b #&+6$之间!松散层或单一岩层厚!!%(f #*%,&不等!含水层总厚度i *,&!地下水位埋深变化较大##%,f P!%(&$!属地埋管换热的较有利区域%适宜性差区面积为',%!N _&!!导热系数d '%$8b #&+6$!单一岩体厚度d #,&!属地埋管换热的相对不利区域%!%N%!"与指标法分区结果比对运用指标法对研究区进行了地埋管换热系统适宜性评价!结果表明研究区均为地埋管换热系统适宜性中等区#图(#L $$%+#N +第!期张承斌""基于层次分析法T 模糊综合评价模型的浅层地热能适宜性评价,,,以山东省昌乐县为例#9$模糊综合评价法评价分区#L $指标法评价分区'%适宜性中等区-!%适宜性差区-*%综合指数等值线-P%研究区范围-(%水系-#%县界%图I#研究区地埋管换热系统适宜性评价分区E 36C I#O 3=3*30(0&*,31.83731/;0(3(6%=.7,.130(0&6'0,(5P *0,')%2%.14,-4*/*1%-3(12%*1,5/.'%.""对比模糊综合评价法与指标法!两种方法的评价结果大致相同%由于模糊综合评价法选取的评价因子更多!并结合专家打分评价了局部适宜性差区!因此评价结果更趋于合理%模糊综合评价法对评价结果进行了定量化处理!使评价结果更加细化%同一适宜性分区内亦可通过综合指数等值线判别其适宜性的优劣程度%*"开发利用区划依据研究区浅层地热能开发利用适宜性评价结果!综合考虑研究区建筑密度&供暖供需情况及城市发展规划!通过定性评价!将昌乐县划分为一般开发区&鼓励开发区&大力推广区和限制开发区!共P 个大区!$个亚区#图#$%#'$ 区为一般开发区!位于研究区中部!属于昌乐县中心城区!面积',%()_&!%该区城镇化建设程度高!城市配套设施较为完善!供暖矛盾不突出%区内岩土体热导率较高!为地埋管换热系统适宜性中等区%可鼓励旧城改造及新建建筑采用地埋管地源热泵%#!$ 区为鼓励开发区!位于研究区北部!分为'& !!个亚区!面积共'#%()_&!%该区属昌乐县经济开发区!城镇化建设程度较低%区内岩土体热导率较高!有利于地埋管地源热泵建设%区内供暖等基础设施较为紧张!建议在做好前期勘察论证的基础上!做好相关审批及施工质量把关工作!建设一批示范工程!推广地埋管地源热泵技术!提高群众对浅层地热能的认识!为经济开发区发展助力%#*$ 区为大力推广区!分为!个部分% '区位于研究区南部!面积P%!#_&!%该区正处于大规模城镇化建设阶段!城镇化建设程度较低!新城区内供暖等基础设施较为紧张!属地埋管换热系统适宜性中等区%建议大力推广地埋管地源热泵技术!缓解环境压力!为新城区发展助力% !区位于研究区东部!属昌乐县朱刘街道!面积'*%!$_&!%该区城镇化建设程度很低!供暖等基础设施比较紧张%该区为工业园区!规划与潍坊开发区接轨!是下一步合村并居及新农村改造的重点区域!属地埋管换热系统适宜性中等区%建议大力推广地埋管地源热泵技术!鼓励新农村建设或旧村改造采用地埋管地源热泵%#P $ 区为限制开发区!面积共',%!N _&!!分为 '& !两个亚区!位于研究区西南及北部%该区浅层地热能适宜性评价为地埋管换热适宜性差区!不适宜大规模建设地源热泵系统%建议进一步提高勘查精度!结合工程建设实际情况!开展场地浅层地热能勘察工作!在严格论证的基础上!适度开发利用地埋管地源热泵系统%+$N +中!国!地!质!调!查"#""年$%一般开发区!"%鼓励开发区!&%大力推广区!'%限制开发区! (%研究区范围!)%房屋建筑!*%县界!+%水系!,%道路!$#%铁路! $$%山体及注记"图!"研究区浅层地热能开发利用区划#$%&!"'()(*+,-(./0.12/$*$30/$+.3+.$.%-0,+4 560**+7%(+/6(8-0*(.(8%9$./6(5/21908(0'!结论及建议#$$基于昌乐县的地质条件%水文地质特征%热物性及岩性组合条件等&将昌乐县城市规划区划分为浅层地热能适宜性中等区和适宜性差区&适宜性中等区面积''%*$-."&适宜性差区面积$#%",-.""#"$根据评价结果及昌乐县城市规划&将昌乐县研究区划分为一般开发区%鼓励开发区%大力发展区和限制开发区'个大区"建议在工程建设前先进行场地浅层地热能开发利用勘察&为地埋管热泵系统的设计提供依据"#&$相对于指标法&模糊综合评价法具有评价结果更合理且定量化的优点&其关键在于评价矩阵的构建和因子权重的确定"为保证评价结果的可靠性&建议选取&/(名浅层地热能研究领域相关专家进行打分"参考文献#:(4(8(.;(5$'$(!韩再生&冉伟彦&佟红兵&等%0123#""()"##,浅层地热能勘查评价规范'4(%北京*中国标准出版社&"##,%56714&8679:&3;7<5=&>?6@%0123#""()"##,4A>B C D C E B6?C;7D;F4G6@@;HI>;?G>F.6@J7>F<KL7M>N?C<6?C;767O J M6@P6EC;7'4(%=>C Q C7<*4?67O6F ON R F>N N;D S GC76&"##,%'"(!李卫洲%山东省临沂市浅层地热能特征及开发利用'0(%北京*中国地质大学#北京$&"#$,%T C91%3G>S G6F6B?>F C N?C B N67O0>M>@;A.>7?;D4G6@@;HI>;?G>F E .6@J7>F<K C7T C7K C S C?K&4G67O;7<R F;M C7B>'0(%=>C Q C7<*S GC76 U7C M>F N C?K;D I>;N B C>7B>N#=>C Q C7<$&"#$,%'&(!卫万顺&李宁波&冉伟彦&等%浅层地温能开发利用中的关键问题研究'V(%城市地质&"##,&'#&$*$W(%9>C94&T C X=&8679:&>?6@%4?POK;7?G>->K AF;Y@>.N;DO>M>@;A.>7?67O P?C@C Z6?C;7;D N G6@@;H<>;?G>F.6@>7>F<K'V(%U F E Y67I>;@&"##,&'#&$*$W(%''(!卫万顺&郑桂森&冉伟彦&等%浅层地温能资源评价'[(%北京*中国大地出版社&"#$#%9>C94&1G>7<I4&8679:&>?6@%J M6@P6?C;7;74G6@@;HI>;EG>F.6@J7>F<K8>N;PF B>N'[(%=>C Q C7<*S GC76T67O R F>N N&"#$#% '((!层次分析法'J=2\T(%'"#"#W#,W#)(%G??AN*22H C-C%.Y6@C Y% B;.2H C-C2层次分析法%3G>676@K?C B GC>F6F B GK AF;B>N N'J=2\T(%'"#"#W#,W#)(%G?EAN*22H C-C%.Y6@C Y%B;.2H C-C223G>676@K?C B GC>F6F B GK AF;B>N N% ')(!许苗娟&姜媛&谢振华&等%基于层次分析法的北京市平原区水源热泵适宜性分区研究'V(%城市地质&"##,&'#$$*$+W"$%]P[V&V C67<:&]C>15&>?6@%4?POK;7OC M C N C;7;D?G>6AAF;AF C E 6?>F67-;D H6?>F N;PF B>G>6?AP.AN Y6N>O;7^5RC7=>C Q C7< A@6C7'V(%U F Y67I>;@&"##,&'#$$*$+W"$%'*(!雷柏茂&李江燕&梁佩博&等%基于模糊综合评判和层次分析法的中子管故障风险评估'V(%原子能科学技术&"#$,&(&#$$$*""'*W""()%T>C=[&T C V:&T C67<R=&>?6@%8C N-6N N>N N.>7?;D7>P?F;7?PY> D6C@PF>Y6N>O;7D PZ Z K B;.AF>G>7N C M>>M6@P6?C;767O676@K?C B GC>F E 6F B GK AF;B>N N'V(%^?;.C BJ7>F<K4B C3>B G7;@&"#$,&(&#$$$*""'*W""()%'+(!孙彦伟&常彬%茌平县浅层地热能开发利用方式适宜性研究'V(%能源与环境&"#$,#&$*$,W"#&""%4P7:9&S G67<=%4?POK;7?G>N PC?6YC@C?K;D N G6@@;H<>;?G>F.6@ >7>F<K O>M>@;A.>7?67O P?C@C Z6?C;7C7S GC AC7<S;P7?K'V(%J7>F<K J7M C F;7&"#$,#&$*$,W"#&""%',(!常建娥&蒋太立%层次分析法确定权重的研究'V(%武汉理工大学学报*信息与管理工程版&"##*&",#$$*$(&W$()%S G67<VJ&V C67<3T%8>N>6F B G;7?G>H>C<G?;DB;>D D C B C>7?GF;P<G676@K?C B GC>F6F B GK AF;B>N N'V(%V9PG67U7C M3>B G7;@*L7E D;F.[676<J7<&"##*&",#$$*$(&W$()%'$#(符学葳%基于层次分析法的模糊综合评价研究和应用'0(%哈尔滨*哈尔滨工业大学&"#$$%_P]9%3G>8>N>6F B G67O^AA@C B6?C;7;D_PZ Z K^5R'0(%56F E YC7*56F YC7L7N?C?P?>;D3>B G7;@;<K&"#$$%'$$(丁家玲&叶金华%层次分析法和模糊综合评判在教师课堂教学质量评价中的应用'V(%武汉大学学报*社会科学版&"##&&()#"$*"'$W"'(%0C7<V T&:>V5%\7^5R.;O>@67O D PZ Z K Q PO<>.>7?C7>M6@P6E ?C;7;D P7O>F<F6OP6?>?>6B GC7<`P6@C?K'V(%9PG67U7C MV*4;B 4B C&"##&&()#"$*"'$W"'(%++,+第!期张承斌""基于层次分析法T 模糊综合评价模型的浅层地热能适宜性评价,,,以山东省昌乐县为例)'!*王树星!宋亮!梁云汉%淄博市周村区浅层地温能开发利用资源潜力评价)2*%山东国土资源!!,')!*P #'!$"P!T P$%89/0-:!-./0A !A >9/01M %E .F 5/F >9@5O 9@H9F >./.U J5O 5@.;C &5/F 9/J HF >@>V 9F >./.U =49@@.W05.F 45G &9@5/5G 0<>/K 4.H?H/J>=C F G >?F .U K >L.?>F <)2*%-49/J./0A 9/J R 5=.HG !!,')!*P #'!$"P!T P$%)'**高志友!宁文峰!李宁%莱州市浅层地温能初步评价)2*%化工矿产地质!!,')!P,#P $"!!$T !*P%79.K 1!]>/08\!A >]%E G 5@>&>/9G <5O 9@H9F >./.U =49@@.W 0G .H/J F 5&;5G 9F HG 55/5G 0<>/A 9>V 4.H 3>F <)2*%75.@345&+>/5G !!,')!P,#P $"!!$T !*P%)'P *胡彩萍%地埋管换热影响岩土体传热因素及热影响范围分析)2*%山东国土资源!!,'$!**#)$"('T ($%M H 3E %Q /9@<=>=./459F F G 9/=U 5G U 9?F .G =9/J F 45G &9@>/U @H5/?5G 9/05.U G .?_9/J =.>@>/U @H5/?5J L<459F F G 9/=U 5G >/H/J5G 0G .H/J ;>;5)2*%-49/J./0A 9/J R 5=.HG !!,'$!**#)$"('T ($%)'(*金婧!席文娟!陈宇飞!等%基于Q M E 的浅层地热能适宜性分区评价)2*%水资源与水工程学报!!,'!!!*#*$"N'T N*%2>/2!:>82!345/1\!5F 9@%Q ==5==&5/F .U =H>F 9L>@>F <.U =49@@.W 05.F 45G &9@5/5G 0<L9=5J ./Q M E )2*%289F 5G R 5=.HG 89F 5G S /0!!,'!!!*#*$"N'T N*%+,31.83731/%=.7,.130(0&*2.770@6%012%'-.7%(%'6/8.*%50(.(.7/13)23%'.')2/4'0)%**.(5&,;;/)0-4'%2%(*3=%%=.7,.130(">).*%*1,5/0&G 2.(67%G 0,(1/3(+2.(50(6<'0=3()%K M Q ]7345/0L>/#7'!*K L .8'41+$')M ,13'-=&1)2')56'18-$,82",'8'5$0:#4,1#!=&1)2')5M 1$11)!$',,,!6&$)1$>8*1'.)1"Q /9@<F >?4>5G 9G ?4<;G .?5==#Q M E $T U HV V <?.&;G 545/=>O 55O 9@H9F >./&.J5@?9/L59;;@>5J F .5U U 5?F >O 5C @<=.@O 5F 45;G .L@5&=?9H=5J L<F G 9J>F >./9@5O 9@H9F >./&5F 4.J=!W 4>?49G 5F 45J>U U >?H@F <>/^H9/F >F 9F >O 59==5==&5/F 9/J F 45=HLD 5?F >O 55U U 5?F =./U HV V <?./?5;F 1=!=.F 49F F 455O 9@H9F >./G 5=H@F =9G 5&.G 5G 59=./9L@59/J 9??HG 9F 5%X 45G 5=59G ?45G =>/F 4>=;9;5G 49O 59J.;F 5J $U 9?F .G =!>/?@HJ>/0=>/0@5G .?_&9==!J5;F 4.U 0G .H/JW 9F 5G !F .F 9@F 4>?_/5==.U 9^H>U 5G !@>F 4.@.0<.U =F G 9F H&!F 45G &9@?./JH?F >O >F <!459F ?9;9?>F <9/J =.>@F 5&;5G 9F HG 5!F .5O 9@H9F 5F 459J9;F 9C L>@>F <.U =49@@.W05.F 45G &9@5/5G 0<.U 349/0@53.H/F <>/-49/J./0E G .O >/?5L<Q M E T U HV V <?.&;G 545/=>O 55O 9@HC9F >./&.J5@%X 45G 5=59G ?49G 59W 9=J>O >J5J >/F .F W .=HL=5?F >./=!>/?@HJ>/0&5J>H&=H>F 9L>@>F <9G 59=.U PP%$'_&!9/J ;..G =H>F 9L>@>F <9G 59=.U ',%!N _&!%X 45=F HJ<9G 59=W 5G 5U HG F 45G J>O >J5J >/F .05/5G 9@J5O 5@.;&5/F V ./5!5/C.HG 90>/0J5O 5@.;&5/F V ./5!O >0.G .H=J5O 5@.;&5/F V ./59/J G 5=F G >?F 5J J5O 5@.;&5/F V ./5!?.&L>/5J W >F 4F 45HG C L9/;@9//>/0.U 349/0@53.H/F <%X 45=49@@.W05.F 45G &9@5/5G 0<>/F 45=F HJ<9G 5949=F 450G 59F 5G ;.F 5/F >9@!9/J F 45G 59=./9L@5J5O 5@.;&5/F ?9/LG >/04H055?./.&>?9/J =.?>9@L5/5U >F =%%/@0'5*"=49@@.W05.F 45G &9@5/5G 0<-=H>F 9L>@>F <V ./>/0-U HV V <?.&;G 545/=>O 55O 9@H9F >./-Q M E #9/9@<F >?4>5G 9G C 4<;G .?5==$ 责任编辑 沈效群 ""+N N +。
国家标准《地源热泵系统工程技术规范》GB50366设计要点解析1 前言实施可持续发展能源战略已成为新时期我国能源发展的基本方针,可再生能源在建筑中的应用是建筑节能工作的重要组成部分。
2006年1月1日《可再生能源法》正式实施,地源热泵系统作为可再生能源应用的主要途径之一,同时也是最利于与太阳能供热系统相结合的系统形式,近年来在国内得到了日益广泛的应用。
地源热泵系统利用浅层地热能资源进行供热与空调,具有良好的节能与环境效益,但由于缺乏相应规范的约束,地源热泵系统的推广呈现出很大盲目性,许多项目在没有对当地资源状况进行充分评估的条件下就匆匆上马,造成了地源热泵系统工作不正常,为规范地源热泵系统的设计、施工及验收,确保地源热泵系统安全可靠的运行,更好的发挥其节能效益,由中国建筑科学研究院主编,会同13个单位共同编制了《地源热泵系统工程技术规范》(以下简称规范)。
该规范现已颁布,并于2006年1月1日起实施。
由于地源热泵系统的特殊性,其设计方法是其关键与难点,也是业内人士普遍关注的问题,同时也是国外热点课题,在新颁布的《规范》中首次对其设计方法提出了具体要求。
为了加深对规范条文的理解,本文对其部分要点内容进行解析。
2 《规范》的适用范围及地源热泵系统的定义2.1 《规范》的适用范围该《规范》适用于以岩土体、地下水、地表水为低温热源,以水或添加防冻剂的水溶液为传热介质,采用蒸气压缩热泵技术进行供热、空调或加热生活热水的系统工程的设计、施工及验收。
它包括以下两方面的含义:(1)“以水或添加防冻剂的水溶液为传热介质”,意旨不适用于直接膨胀热泵系统,即直接将蒸发器或冷凝器埋入地下的一种热泵系统。
该系统目前在北美地区别墅或小型商用建筑中应用,它优点是成孔直径小,效率高,也可避免使用防冻剂;但制冷剂泄漏危险性较大,仅适于小规模应用。
(2)“采用蒸气压缩热泵技术进行……”意旨不包括吸收式热泵。
2.2 地源热泵系统的定义地源热泵系统根据地热能交换系统形式的不同,分为地埋管地源热泵系统(简称地埋管系统)、地下水地源热泵系统(简称地下水系统)和地表水地源热泵系统(简称地表水系统)。
浅层地热标准
浅层地热标准是指对地热资源的利用进行规范的技术要求和指导原则。
浅层地热指的是位于地下20米以内的地热资源,一般通过浅井、浅孔等方式进行开发利用。
浅层地热标准通常包括以下几个方面:
1. 配套设施标准:包括浅层地热井的设计、施工和运行管理的规范要求,如井的孔径、深度、施工材料和工艺等。
2. 能源利用效率标准:包括地热能源的有效利用率、能源转换效率等要求,以确保地热能源的高效利用,并降低对环境的影响。
3. 环境保护标准:包括地热能源开发过程中对地下水、土壤、大气的环境保护要求,以减少或避免对环境的污染。
4. 安全标准:包括地下开挖工作的安全要求、地热能源系统的运行安全要求等,以确保工作人员和周围环境的安全。
5. 监测评估标准:包括对地热资源开发利用过程中的监测和评估要求,以检测地热资源的储量和变化情况,为开发决策和管理提供依据。
浅层地热标准的制定旨在推动浅层地热能源的可持续利用和开发,提高能源利用效率,减少对传统能源的依赖,同时保护环
境和确保安全。
这些标准的实施将有助于推动浅层地热能源产业的发展,并促进可持续能源的利用。
地热资源评价方法
地热资源的评价方法主要包括以下几种:
1. 地热勘探:通过地质勘探、地球物理勘探和地球化学勘探等方法,对潜在地热资源进行勘探,确定资源的类型、分布和储存条件。
2. 温度测量:通过地热井和热储水井的温度测量,获取地下热水或岩石的温度数据,评估地热资源的温度梯度和热储量。
3. 水文地质调查:通过水文地质调查、地下水位监测和水文地球化学分析等方法,揭示地下水文地质条件,并确定热水的循环路径和流量。
4. 地热潜力评估:通过地质建模、数值模拟和统计方法等,分析地热资源的潜力,包括资源的可开采性、可开发程度和经济价值。
5. 环境评价:评估地热开发对周边环境的影响,包括地热井对地下水和地表水的影响、地热开采对地热区域温度分布的影响等。
6. 经济评价:通过经济学方法,对地热资源的开发潜力进行评估,包括资源的开发成本、经济效益和投资回收期等。
综合以上评价方法,可以系统地评估地热资源的储量、温度、产能、可开采性、
环境影响和经济效益等指标,为地热资源的合理开发和利用提供科学依据。
加拿大浅层地热能源评估*——热增益与热汇Jacek Majorowicz等(Department of Geology and Geological Engineering, University of North Dakota, Grand Forks, ND, USA;Geological Survey of Canada, Calgary, AB, Canada.)翻译:赵玉军;校对:佟元清【摘要】加拿大浅层(自地表到地下250m)温度分布图显示了巨大的可变性,这主要与地表气候强迫有关。
自地下250m往上温度随深度变化非常小,这与由近来全球气候变暖引起的地下热量获取有关。
根据在达到平衡水井中开展的精确温度测井获得的温度数据,以及从气象站网络获得的温度时间序列,可计算在寒冷时期用于供热,以及在温度最高月份用于制冷的有效热能。
在加拿大利用地热能开展二氧化碳减排具有巨大潜力。
通过地源热泵可利用地下存储的地热能在特定温度非常低的冬季进行供热。
潜在有效热能的储量是巨大的。
在加拿大多年冻土边界以南地下50m的区域,在供热季节潜在的有效热能总值为1.1 E21 J (1100夸特)。
【关键词】地热能加拿大地热热泵热流气候变化缓解序言在加拿大,高成本的不可再生能源以及对二氧化碳排放影响的关注,大大增强了人们对开发可再生能源潜力的兴趣。
虽然以往开展的工作证实,加拿大有很大的地热能资源开发前景,但到目前为止,人们还是低估了地热能源储量。
在加拿大西部和北部地区发现的高热流(平均90±15 mW/m2)以及在加拿大和美国的高山热流,能提供用于空间供热与发电的可用地热能,但在加拿大大多数地区低温地热能源潜力巨大。
加拿大各处储存的丰富的近地表地热能源目前已得以成功利用。
在加拿大所有的民用住宅中,约30 000套系统直接利用的地热能为2546TJ/a。
在这些住宅区,一般住宅利用的热泵系统容量为10KW。
此外,在加拿大约有5000套地热系统用于工业区、办公大楼、溜冰场和公共机构供热与制冷,例如大学和监狱。
这些浅层地热系统仍处于初期利用阶段,可对其进行进一步开发。
在加拿大,广泛利用地源热泵技术(GHSP)替代普遍安装的基于化石燃料的供热与制冷技术,可实现每年累积减排37Mt的二氧化碳等价物。
对于目前住宅空间调节与水供热系统的二氧化碳排放而言,这相当于减小了62%,并大大降低了不可再生能源的需求量。
地热能开发的关键环节是增强人们对地热资源的认识,了解地热能源潜力与分布,以及开发新的经济模型,包括能显示其竞争本质的二氧化碳减排。
我们首次对加拿大浅层地热资源潜力开展了全国性评估。
背景低温地热资源(小于80℃)的利用依赖于热泵技术。
利用热泵从地下低温系统提取热量并以更高的温度输出,使设备能够供应比运转热泵所需等价能量更高的热能,最终实现净能获取。
这种有效的热量传递装置直接安装在建筑物内地表(或储水池)以下。
一般来说,地下能量交换系统(EE)需要120m的水平回路或90m的垂直回路,以便为每吨单位尺寸提供热能。
因此,对于热泵系统而言,垂直孔是最有效的布置方式。
利用热泵耦合钻孔换热器(BHE)系统(地表耦合或地源热泵)可提取浅层地热能源(深度小于数百米)。
图 1 艾伯塔省Winagami省立公园水井的温度-深度测井曲线在所谓的‘中性区’(在加拿大深度约为地下20m)以下,温度场受非日或非季节性变化的影响。
在该深度以下区域的温度与地表气候强迫和深层陆地热流有关。
换热器的能量供应来自于垂直地热通量、水平热传递、地下水的对流传递(如果存在)以及地表与大气之间的热交换。
在加拿大北方寒冷气候条件下,热泵耦合钻孔换热器系统最适于空间/民用水供热。
应用最广泛的热泵耦合钻孔换热器供热系统,安装于地下深度50至250m的一个或多个钻孔,是一种闭合回路热泵耦合系统。
这些热泵系统适于为一些小规模、分散的建筑物供热,例如独立住宅或联排住宅。
换热器(大多数为安装于回填钻孔中的双U形塑料管)几乎可以安装于任何类型的地质介质中,但具有低导热性的物质除外,例如干燥砾石层。
对基于热泵系统的浅层地热能潜力进行评估,需要精确的温度数据与等温线图,该图描绘了在不同深度温度大于0℃的空间变化。
同样也需要地表温度(GST)分布模式。
在后面的实例中,我们需要基于通常在侧压面(变化范围为数米到数十或数百米)以下获得的温度测井来评估温度,以及模拟地表温度。
最新的研究成果表明,近来气候变暖已对浅层地表温度产生了影响。
在与平均气温增加有关的净热能通量区域,任何有关浅层地热潜力的评估也都需要阐明地表气温和地表温度之间的关系。
我们在地热资源评估中包括了这一部分内容。
图 2 加拿大基于水井温度-深度测井的温度分布图(℃),(a)深度50m(三角形代表所使用井场的位置);(b)深度100m;(c)深度150m;(d)深度200m;(e)深度250m方法温度-深度评估对加拿大所有地区地下深度0、50、100、150、200和250m的区域绘制了温度图。
这些温度数据以加拿大各地水井的高精度井温测井(一些数据以多级温度-深度测井为基础)为基础。
温度数据由达到热平衡条件的浅水井的点温度与深度测量值组成。
从水井水位顶部到井底温度记录的间隔通常在2-10m之间。
图1所示为在艾伯塔省Winagami 省立公园测量的温度-深度剖面实例。
根据加拿大多个现有数据文件和未公开的测井结果,对温度记录进行汇编。
温度-深度数据来源包括如下:●在“加拿大地热数据采集”——地热丛刊上公布的由矿能与资源公司(EMR)地球物理分公司在加拿大北部(北纬60°)测量的温度数据;EMR地球物理分公司于1973-1981年创建的温度与深度曲线图与清单。
●加拿大(主要在加拿大东部与不列颠哥仑比亚省)各地温度测井曲线,来自于国际热流委员会的数据库(IHFC 和 NOAA 钻孔温度与气候改造数据库, 2002)。
这些数据由密歇根州立大学收集,由加拿大与美国多名研究者提供。
在该数据库中给出了数据提供者的姓名、测井日期、位置和温度-深度数据对。
●由埃得蒙顿市的北方地热咨询公司和EMR 地球物理分公司以及位于卡尔加里加拿大地质调查局 (GSC),于1991-2006年间记录的有关加拿大西部沉积盆地未公开的测井记录。
这些数据将收录于GSC卡尔加里加拿大温度数据采集期刊。
图 3 由全球变暖(——温度异常与深度(m)的关系)引起的加拿大不同地区温度瞬变所有收集的数据均来自于通过附装电缆热敏探测器获得的高精度温度-深度测井曲线,这种热敏探测器的校准精度通常为0.003℃。
在某些情况下利用数据记录器测量温度数据,温度与压力数据由记录器内的计算器记录,而这种记录器通过钢丝绳下入井内。
把热敏探测器下入井内,并在充满水的井段开始记录不同深度间隔内的温度数据。
通常对用于测井的水井进一步钻进,以开展矿物探测和建立水文地质观测网。
这些水井在初始钻进终止后数年内达到热平衡。
在深度50、100、150、200、250m处的温度可以直接从温度读数获取,或者通过计算不同点之间的热梯度从数据点的上限和下限推断得出。
在某些情况下,对某个单独场地进行重复测井,或者在20-30m 半径范围内对多个水井测量(例如艾伯塔省地下水观测井)。
在这些区域,对各个场地的测量数据求平均值。
基于对地下50、100、150、200和250m 深度的温度数据的汇总,创建一系列新的温度分布图(图2a-e)。
地表气温评估使用的地表气温(SAT)数据来自于加拿大均匀分布的历史气候网(HCN)数据库,且长期温度时间序列专门设计用于分析加拿大各地的气候变化。
利用一种基于回归模型的技术年对最大、最小温度系列进行测试,以实现环境气象站的“相对一致性”。
该方法包括对温度系列异质性的测定,而这些温度系列由于气象站的变更因而是非气候阶段变化的,包括场地暴露、位置、仪器、观测者、观测计划或以上所有方面的改变。
从回归模型导出月调整值,并按照最新的同质温度系列部分采用这些调整值以获得每个同质的温度片段。
只要有可能,通过历史证据更正鉴定的异质性的主要原因,例如调查员报告。
历史SAT数据代表最初主要在飞机场或农业站的测量值。
在天然草地上铺设组合仪器,以保持全国观测的一致性。
考虑了仪器最邻近区域的温度变化,并做了调整以确保时间系列的同质性。
通常,仪器周围的地表特征并不一定代表更广泛的区域地貌特征。
其温度系列将计划用于代表森林区域。
相反,从井温测井获得的GST数据具有不同的场地观测特征。
这些场地位于自上个世纪土地利用和土地覆盖已发生变化的自然区域。
图 4 基于深层温度测井计算的目前地表温度(GST)(℃),以及修止的温度测井日期与当前日期之间时间间隔内近来全球变暖的响应气候变暖引起的热通量Majorowicz和 Skinner (1997)首次计算了艾伯塔省以及整个加拿大由人为地表变暖引起的的热增益(部分由气候变暖引起,部分与皆伐等导致的陆地变化有关)。
地下有效热能部分是储存的与上个世纪以来全球变暖有关的热量。
了解这一部分热能非常重要。
根据温度与深度△T(z)(图3)的瞬变值和比热C计算单位体积内累积的热量:H=cΔT(z),(1)式中,T(z)——与气候变暖有关的温度与深度瞬变值;C——比热2.5MJ/m3K;H用J/m3表示。
表面积S(m2)的总热能E为:,(2)式中,E用焦耳表示。
在加拿大将其评估为E21 J。
由于近来的气候变暖,对于陆地而言该值为9.1E21 J。
热通量Q为:,(3)式中:△T(z)——随深度变化的温度;t——时间,C——比热容量。
热流——W/m2。
图 5 在气象站百叶箱(高于地表1.5m)记录的年正常(1971-2000)日地表气温(SAT)(℃):(a)日均SAT;(b)日最大SAT和(C)日最小SAT结果深度-温度分布图2a-e所示为温度-深度图。
这些图显示了两个一般趋势:(1)温度由南向北逐渐下降;(2)在某些位置温度随深度的增加而增大。
在所有深度观测的浅层地下温度模式显示了向北下降的趋势。
加拿大北部大部分地区的年均气温低于0℃,这与其形成多年冻土条件的地下温度也低于0℃有关。
加拿大北部多年冻土的基底深度限制了其浅层地热系统的利用率。
在北部地区,我们利用5℃的等值线确定适于浅层地热能利用的区域。
对于深度大于100m的区域而言,这将延伸至加拿大南部育空地区最北部区域及西北地区。
然而,在深度250m处,在南部地区某些位置的地下温度高达10℃。
通常,在加拿大南部的浅层温度最高,且利用地源热泵开采浅层地热能将是最有前途的。
图 6 地表温度(GST)与地表气温(SAT)之间的差异(℃):(a)年正常(1971-2000)日最大SAT;(b)年正常(1971-2000)日最小SAT。