同济大学线性代数第五版
- 格式:pdf
- 大小:2.11 MB
- 文档页数:22
成都大学诗叶子制作第一章 行列式1. 利用对角线法则计算下列三阶行列式: (1)381141102---;解 381141102---=2⨯(-4)⨯3+0⨯(-1)⨯(-1)+1⨯1⨯8 -0⨯1⨯3-2⨯(-1)⨯8-1⨯(-4)⨯(-1) =-24+8+16-4=-4. (2)ba c a cb cb a ;解 ba c a cb cb a =acb +bac +cba -bbb -aaa -ccc=3abc -a 3-b 3-c 3.(3)222111c b a c b a ;解 222111c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2=(a -b )(b -c )(c -a ).成都大学诗叶子制作(4)y x y x x y x y yx y x +++.解 yx y x x y x y yx y x +++=x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3).2. 按自然数从小到大为标准次序, 求下列各排列的逆序数:(1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2;解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1;解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3;解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ⋅ ⋅ ⋅ (2n -1) 2 4 ⋅ ⋅ ⋅ (2n );解 逆序数为2)1(-n n :3 2 (1个) 5 2, 5 4(2个)7 2, 7 4, 7 6(3个)⋅⋅⋅⋅⋅⋅(2n-1)2, (2n-1)4, (2n-1)6,⋅⋅⋅, (2n-1)(2n-2) (n-1个)(6)1 3 ⋅⋅⋅(2n-1) (2n) (2n-2) ⋅⋅⋅ 2.解逆序数为n(n-1) :3 2(1个)5 2, 5 4 (2个)⋅⋅⋅⋅⋅⋅(2n-1)2, (2n-1)4, (2n-1)6,⋅⋅⋅, (2n-1)(2n-2) (n-1个)4 2(1个)6 2, 6 4(2个)⋅⋅⋅⋅⋅⋅(2n)2, (2n)4, (2n)6,⋅⋅⋅, (2n)(2n-2) (n-1个)3.写出四阶行列式中含有因子a11a23的项.解含因子a11a23的项的一般形式为(-1)t a11a23a3r a4s,其中rs是2和4构成的排列,这种排列共有两个,即24和42.所以含因子a11a23的项分别是(-1)t a11a23a32a44=(-1)1a11a23a32a44=-a11a23a32a44,(-1)t a11a23a34a42=(-1)2a11a23a34a42=a11a23a34a42.4.计算下列各行列式:成都大学诗叶子制作成都大学诗叶子制作(1)7110025*******214; 解 71100251020214214010014231020211021473234-----======c c c c 34)1(143102211014+-⨯---= 143102211014--=01417172001099323211=-++======c c c c .(2)2605232112131412-; 解 2605232112131412-26053212213041224--=====c c 041203212213041224--=====r r 0000003212213041214=--=====r r . (3)efcf bf de cd bd aeac ab ---;解 efcf bf de cd bd aeac ab ---e c b e c b e c b adf ---=abcdef adfbce 4111111111=---=.成都大学诗叶子制作(4)dc b a 100110011001---. 解 d c b a 100110011001---dc b aab ar r 10011001101021---++===== d c a ab 101101)1)(1(12--+--=+01011123-+-++=====cd c ada ab dc ccdad ab +-+--=+111)1)(1(23=abcd +ab +cd +ad +1. 5. 证明:(1)1112222b b a a b ab a +=(a -b )3;证明1112222b b a a b ab a +00122222221213a b a b a a b a ab a c c c c ------=====ab a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--==(a -b )3 . (2)y x z x z y zy x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;证明bzay by ax bx az by ax bx az bz ay bxaz bz ay by ax +++++++++成都大学诗叶子制作bz ay by ax x by ax bx az z bxaz bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=bz ay y x by ax x z bxaz z y b y by ax z x bx az y z bz ay x a +++++++=22z y x y x z xz y b y x z x z y z y x a 33+=y x z x z y zy x b y x z x z y z y x a 33+=y x z x z y zy x b a )(33+=.(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ; 证明2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2, c 2-c 1得) 5232125232125232125232122222++++++++++++=d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2得)成都大学诗叶子制作022122212221222122222=++++=d d c c b b a a . (4)444422221111d c b a d c b a d c b a =(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ); 证明 444422221111d c b a d c b a d c b a )()()(0)()()(001111222222222a d d a c c a b b a d d a c c a b b ad a c a b ---------=)()()(111))()((222a d d a c c a b b d c b a d a c a b +++---=))(())((00111))()((a b d b d d a b c b c c b d b c a d a c a b ++-++------= )()(11))()()()((a b d d a b c c b d b c a d a c a b ++++-----= =(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ).成都大学诗叶子制作(5)12211 000 00 1000 01a x a a a a x x x n n n+⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--- =x n +a 1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n .证明 用数学归纳法证明.当n =2时, 2121221a x a x a x a x D ++=+-=, 命题成立. 假设对于(n -1)阶行列式命题成立, 即 D n -1=x n -1+a 1 x n -2+ ⋅ ⋅ ⋅ +a n -2x +a n -1, 则D n 按第一列展开, 有 11100 100 01)1(11-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--+=+-xx a xD D n n n n =xD n -1+a n =x n +a 1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n . 因此, 对于n 阶行列式命题成立.6. 设n 阶行列式D =det(a ij ), 把D 上下翻转、或逆时针旋转90︒、或依副对角线翻转, 依次得n nn n a a a a D 11111 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=, 11112 n nn n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= , 11113 a a a a D n nnn ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=,证明D D D n n 2)1(21)1(--==, D 3=D .证明 因为D =det(a ij ), 所以成都大学诗叶子制作nnn n n n nnnn a a a a a a a a a a D 2211111111111 )1( ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=- ⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--=-- )1()1(331122111121nnn n nn n n a a a a a a a a D D n n n n 2)1()1()2( 21)1()1(--+-+⋅⋅⋅++-=-=.同理可证 nnn n n n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=- )1(11112)1(2D D n n Tn n 2)1(2)1()1()1(---=-=. D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(.7. 计算下列各行列式(D k 为k 阶行列式):(1)aaD n 11⋅⋅⋅=, 其中对角线上元素都是a , 未写出的元素都是0; 解成都大学诗叶子制作aa a a a D n 0 0010 000 00 000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n 行展开) )1()1(10 00 00 000 0010 000)1(-⨯-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=n n n aa a )1()1(2 )1(-⨯-⋅⋅⋅⋅-+n n n a a an n n nn a a a+⋅⋅⋅-⋅-=--+)2)(2(1)1()1(=a n -a n -2=a n -2(a 2-1).(2)xa aa x a a a xD n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ; 解 将第一行乘(-1)分别加到其余各行, 得 ax x a ax x a a x x a a a a x D n --⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅--⋅⋅⋅=000 0 00 0, 再将各列都加到第一列上, 得ax ax a x aaa a n x D n -⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-+=0000 0 000 00 )1(=[x +(n -1)a ](x -a )n -1.成都大学诗叶子制作(3)111 1 )( )1()( )1(1111⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅--⋅⋅⋅-=---+n a a a n a a a n a a a D n n n nn n n ; 解 根据第6题结果, 有 nnn n n n n n n n a a a n a a a n a a aD )( )1()( )1( 11 11)1(1112)1(1-⋅⋅⋅--⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=---++此行列式为范德蒙德行列式. ∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏≥>≥++---=112)1()]([)1(j i n n n j i∏≥>≥++⋅⋅⋅+-++-⋅-⋅-=1121)1(2)1()()1()1(j i n n n n n j i∏≥>≥+-=11)(j i n j i .(4)nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112; 解成都大学诗叶子制作nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112(按第1行展开) nn n n n nd d c d c b a b a a 00011111111----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=0)1(1111111112c d c d c b a b a b nn n n n nn ----+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-+. 再按最后一行展开得递推公式D 2n =a n d n D 2n -2-b n c n D 2n -2, 即D 2n =(a n d n -b n c n )D 2n -2. 于是 ∏=-=ni i i i i n D c b d a D 222)(.而 111111112c b d a d c b a D -==, 所以 ∏=-=n i i i i i n c b d a D 12)(. (5) D =det(a ij ), 其中a ij =|i -j |;成都大学诗叶子制作解 a ij =|i -j |, 04321 4 01233 10122 21011 3210)det(⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅==n n n n n n n n a D ij n 043211 11111 11111 11111 1111 2132⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅--⋅⋅⋅-=====n n n n r r r r 15242321 0 22210 02210 00210 0001 1213-⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅-+⋅⋅⋅+=====n n n n n c c c c =(-1)n -1(n -1)2n -2.(6)nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121, 其中a 1a 2 ⋅ ⋅ ⋅ a n≠0.解nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 111 1121成都大学诗叶子制作nn n n a a a a a a a a a c c c c +-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=====--10001 000 100 0100 0100 0011332212132 11113121121110 00011 000 00 11000 01100 001 ------+-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅⋅⋅⋅=n n n a a a a a a a a∑=------+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=n i i n n a a a a a a a a 1111131******** 000100 10000 01000 001)11)((121∑=+=ni i n a a a a .8. 用克莱姆法则解下列方程组: (1)⎪⎩⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x ;解 因为成都大学诗叶子制作14211213513241211111-=----=D , 142112105132412211151-=------=D , 284112035122412111512-=-----=D , 426110135232422115113-=----=D , 14202132132212151114=-----=D , 所以 111==D D x , 222==D D x , 333==D D x , 144-==D D x .(2)⎪⎪⎩⎪⎪⎨⎧=+=++=++=++=+150650650651655454343232121x x x x x x x x x x x x x .解 因为 665510006510006510065100065==D , 150751001651000651000650000611==D , 114551010651000650000601000152-==D ,成都大学诗叶子制作70351100650000601000051001653==D , 39551000601000051000651010654-==D , 2121100005100065100651100655==D , 所以66515071=x , 66511452-=x , 6657033=x , 6653954-=x , 6652124=x .9. 问λ, μ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 系数行列式为μλμμμλ-==1211111D .令D =0, 得 μ=0或λ=1.于是, 当μ=0或λ=1时该齐次线性方程组有非零解.10. 问λ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ成都大学诗叶子制作有非零解?解 系数行列式为λλλλλλλ--+--=----=101112431111132421D=(1-λ)3+(λ-3)-4(1-λ)-2(1-λ)(-3-λ) =(1-λ)3+2(1-λ)2+λ-3. 令D =0, 得λ=0, λ=2或λ=3.于是, 当λ=0, λ=2或λ=3时, 该齐次线性方程组有非零解.第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换. 解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,成都大学诗叶子制作故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y ,⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB成都大学诗叶子制作⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T .4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫⎝⎛=49635.(2)⎪⎪⎭⎫⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫⎝⎛---=632142. (4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ;成都大学诗叶子制作解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问:(1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA . (2)(A +B )2=A 2+2AB +B 2吗? 解 (A +B )2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A ,成都大学诗叶子制作 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148, 但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B )2≠A 2+2AB +B 2.(3)(A +B )(A -B )=A 2-B 2吗?解 (A +B )(A -B )≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A , 而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A , 故(A +B )(A -B )≠A 2-B 2. 6. 举反列说明下列命题是错误的:(1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ; 解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取成都大学诗叶子制作 ⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k . 8. 设⎪⎪⎭⎫ ⎝⎛=λλλ001001A , 求A k . 解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ, ⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A ,成都大学诗叶子制作 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=k A k k k k k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明:当k =2时, 显然成立.假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121. 9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵.证明 因为A T =A , 所以成都大学诗叶子制作 (B T AB )T =B T (B T A )T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA .证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB )T =(BA )T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB )T =AB , 所以 AB =(AB )T =B T A T =BA .11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A , 故 *||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解 ⎪⎭⎫ ⎝⎛-=θθθθc o s s i n s i n c o s A . |A |=1≠0, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A ,成都大学诗叶子制作 所以 *||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos . (3)⎪⎪⎭⎫ ⎝⎛---145243121; 解 ⎪⎪⎭⎫ ⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为 ⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012. (4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:成都大学诗叶子制作 (1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X ⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122.(3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ; 解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X .成都大学诗叶子制作 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012. 13. 利用逆矩阵解下列线性方程组: (1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x ,成都大学诗叶子制作 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x . 14. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1),所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E ,由定理2推论知(E -A )可逆, 且(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ).另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ),故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ),两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.成都大学诗叶子制作 证明 由A 2-A -2E =O 得A 2-A =2E , 即A (A -E )=2E ,或 E E A A =-⋅)(21, 由定理2推论知A 可逆, 且)(211E A A -=-. 由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E ,或 E A E E A =-⋅+)3(41)2( 由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2,即 |A ||A -E |=2,故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A (A -E )=2E⇒A -1A (A -E )=2A -1E ⇒)(211E A A -=-, 又由 A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E⇒ (A +2E )(A -3E )=-4 E ,所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1,成都大学诗叶子制作 )3(41)2(1A E E A -=+-. 16. 设A 为3阶矩阵, 21||=A , 求|(2A )-1-5A *|. 解 因为*||11A A A =-, 所以 |||521||*5)2(|111----=-A A A A A |2521|11---=A A =|-2A -1|=(-2)3|A -1|=-8|A |-1=-8⨯2=-16. 17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)-1=(A -1)*.证明 由*||11A A A =-, 得A *=|A |A -1, 所以当A 可逆时, 有 |A *|=|A |n |A -1|=|A |n -1≠0,从而A *也可逆.因为A *=|A |A -1, 所以(A *)-1=|A |-1A .又*)(||)*(||1111---==A A A A A , 所以 (A *)-1=|A |-1A =|A |-1|A |(A -1)*=(A -1)*.18. 设n 阶矩阵A 的伴随矩阵为A *, 证明:(1)若|A |=0, 则|A *|=0;(2)|A *|=|A |n -1.证明(1)用反证法证明. 假设|A *|≠0, 则有A *(A *)-1=E , 由此得成都大学诗叶子制作A =A A *(A *)-1=|A |E (A *)-1=O ,所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0. (2)由于*||11A A A =-, 则AA *=|A |E , 取行列式得到|A ||A *|=|A |n . 若|A |≠0, 则|A *|=|A |n -1;若|A |=0, 由(1)知|A *|=0, 此时命题也成立. 因此|A *|=|A |n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B .解 由AB =A +2E 可得(A -2E )B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫⎝⎛-=011321330.20. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E )B =A 2-E , 即 (A -E )B =(A -E )(A +E ).因为01001010100||≠-==-E A , 所以(A -E )可逆, 从而成都大学诗叶子制作⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A *BA =2BA -8E , 求B . 解 由A *BA =2BA -8E 得 (A *-2E )BA =-8E , B =-8(A *-2E )-1A -1 =-8[A (A *-2E )]-1 =-8(AA *-2A )-1 =-8(|A |E -2A )-1 =-8(-2E -2A )-1 =4(E +A )-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-==2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B . 解 由|A *|=|A |3=8, 得|A |=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E )-1A =3[A (E -A -1)]-1A成都大学诗叶子制作11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161. 23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1.|P |=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001,故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511,求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ成都大学诗叶子制作⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112 ⎪⎪⎭⎫⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B )B -1=B -1+A -1=A -1+B -1,而A -1(A +B )B -1是三个可逆矩阵的乘积, 所以A -1(A +B )B -1可逆, 即A -1+B -1可逆.(A -1+B -1)-1=[A -1(A +B )B -1]-1=B (A +B )-1A . 26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B ,则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫⎝⎛+=222111B A O B B A A ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A ,成都大学诗叶子制作所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠.解 4100120021100101002000021010010110100101==--=--=D C B A , 而 01111|||||||| ==D C B A ,故 |||||||| D C B A D C B A ≠.28. 设⎪⎪⎪⎭⎫⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A , 则 ⎪⎭⎫⎝⎛=21A O O A A ,故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,成都大学诗叶子制作1682818281810||||||||||===A A A A A . ⎪⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求 (1)1-⎪⎭⎫ ⎝⎛O B A O ; 解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则 ⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n EBC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C OC O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A . 解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321.成都大学诗叶子制作由此得 ⎪⎩⎪⎨⎧=+=+==s nE BD CD O BD CD OAD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵: (1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则成都大学诗叶子制作⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A B C O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1. 把下列矩阵化为行最简形矩阵:(1)⎪⎪⎭⎫⎝⎛--340313021201;解 ⎪⎪⎭⎫⎝⎛--340313021201(下一步: r 2+(-2)r 1, r 3+(-3)r 1. )~⎪⎪⎭⎫⎝⎛---020*********(下一步: r 2÷(-1), r 3÷(-2). )~⎪⎪⎭⎫⎝⎛--010*********(下一步: r 3-r 2. )成都大学诗叶子制作~⎪⎪⎭⎫⎝⎛--300031001201(下一步: r 3÷3. )~⎪⎪⎭⎫⎝⎛--100031001201(下一步: r 2+3r 3. )~⎪⎪⎭⎫⎝⎛-100001001201(下一步: r 1+(-2)r 2, r 1+r 3. )~⎪⎪⎭⎫⎝⎛100001000001.(2)⎪⎪⎭⎫⎝⎛----174034301320;解 ⎪⎪⎭⎫⎝⎛----174034301320(下一步: r 2⨯2+(-3)r 1, r 3+(-2)r 1. )~⎪⎪⎭⎫⎝⎛---310031001320(下一步: r 3+r 2, r 1+3r 2. )~⎪⎪⎭⎫⎝⎛0000310010020(下一步: r 1÷2. )~⎪⎪⎭⎫⎝⎛000031005010.成都大学诗叶子制作(3)⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; 解 ⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311(下一步: r 2-3r 1, r 3-2r 1, r 4-3r 1. )~⎪⎪⎪⎭⎫⎝⎛--------1010500663008840034311(下一步: r 2÷(-4), r 3÷(-3) , r 4÷(-5). )~⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311(下一步: r 1-3r 2, r 3-r 2, r 4-r 2. )~⎪⎪⎪⎭⎫⎝⎛---00000000002210032011. (4)⎪⎪⎪⎭⎫⎝⎛------34732038234202173132. 解 ⎪⎪⎪⎭⎫⎝⎛------34732038234202173132(下一步: r 1-2r 2, r 3-3r 2, r 4-2r 2. )~⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110(下一步: r 2+2r 1, r 3-8r 1, r 4-7r 1. )成都大学诗叶子制作~⎪⎪⎪⎭⎫⎝⎛--41000410002020111110(下一步: r 1↔r 2, r 2⨯(-1), r 4-r 3. )~⎪⎪⎪⎭⎫⎝⎛----00000410001111020201(下一步: r 2+r 3. )~⎪⎪⎪⎭⎫⎝⎛--00000410003011020201. 2. 设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A , 求A .解 ⎪⎪⎭⎫⎝⎛100001010是初等矩阵E (1, 2), 其逆矩阵就是其本身.⎪⎪⎭⎫⎝⎛100010101是初等矩阵E (1, 2(1)), 其逆矩阵是E (1, 2(-1)) ⎪⎪⎭⎫⎝⎛-=100010101.⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=100010101987654321100001010A⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=287221254100010101987321654.成都大学诗叶子制作3. 试利用矩阵的初等变换, 求下列方阵的逆矩阵:(1)⎪⎪⎭⎫⎝⎛323513123;解 ⎪⎪⎭⎫ ⎝⎛100010001323513123~⎪⎪⎭⎫⎝⎛---101011001200410123~⎪⎪⎭⎫ ⎝⎛----1012002110102/102/3023~⎪⎪⎭⎫⎝⎛----2/102/11002110102/922/7003~⎪⎪⎭⎫⎝⎛----2/102/11002110102/33/26/7001故逆矩阵为⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267.(2)⎪⎪⎪⎭⎫ ⎝⎛-----1210232112201023.解 ⎪⎪⎪⎭⎫ ⎝⎛-----10000100001000011210232112201023成都大学诗叶子制作~⎪⎪⎪⎭⎫ ⎝⎛----00100301100001001220594012102321~⎪⎪⎪⎭⎫ ⎝⎛--------20104301100001001200110012102321~⎪⎪⎪⎭⎫ ⎝⎛-------106124301100001001000110012102321 ~⎪⎪⎪⎭⎫⎝⎛----------10612631110`1022111000010000100021 ~⎪⎪⎪⎭⎫⎝⎛-------106126311101042111000010000100001故逆矩阵为⎪⎪⎪⎭⎫⎝⎛-------10612631110104211. 4. (1)设⎪⎪⎭⎫ ⎝⎛--=113122214A , ⎪⎪⎭⎫⎝⎛--=132231B , 求X 使AX =B ;解 因为成都大学诗叶子制作⎪⎪⎭⎫ ⎝⎛----=132231 113122214) ,(B A ⎪⎪⎭⎫⎝⎛--412315210 100010001 ~r ,所以 ⎪⎪⎭⎫⎝⎛--==-4123152101B A X .(2)设⎪⎪⎭⎫ ⎝⎛---=433312120A , ⎪⎭⎫ ⎝⎛-=132321B , 求X 使XA =B . 解 考虑A T X T =B T . 因为⎪⎪⎭⎫ ⎝⎛----=134313*********) ,(T T B A ⎪⎪⎭⎫⎝⎛---411007101042001 ~r ,所以 ⎪⎪⎭⎫⎝⎛---==-417142)(1T T T B A X ,从而 ⎪⎭⎫ ⎝⎛---==-4741121BA X . 5. 设⎪⎪⎭⎫⎝⎛---=101110011A , AX =2X +A , 求X .解 原方程化为(A -2E )X =A . 因为⎪⎪⎭⎫⎝⎛---------=-101101110110011011) ,2(A E A⎪⎪⎭⎫⎝⎛---011100101010110001~,成都大学诗叶子制作所以 ⎪⎪⎭⎫⎝⎛---=-=-011101110)2(1A E A X .6. 在秩是r 的矩阵中,有没有等于0的r -1阶子式? 有没有等于0的r 阶子式?解 在秩是r 的矩阵中, 可能存在等于0的r -1阶子式, 也可能存在等于0的r 阶子式.例如, ⎪⎪⎭⎫⎝⎛=010*********A , R (A )=3.0000是等于0的2阶子式, 010001000是等于0的3阶子式. 7. 从矩阵A 中划去一行得到矩阵B , 问A , B 的秩的关系怎样?解 R (A )≥R (B ).这是因为B 的非零子式必是A 的非零子式, 故A 的秩不会小于B 的秩.8. 求作一个秩是4的方阵, 它的两个行向量是(1, 0, 1, 0, 0), (1, -1, 0, 0, 0).解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵:成都大学诗叶子制作⎪⎪⎪⎪⎭⎫ ⎝⎛-0000001000001010001100001, 此矩阵的秩为4, 其第2行和第3行是已知向量.9. 求下列矩阵的秩, 并求一个最高阶非零子式:(1)⎪⎪⎭⎫⎝⎛---443112112013;解 ⎪⎪⎭⎫⎝⎛---443112112013(下一步: r 1↔r 2. )~⎪⎪⎭⎫⎝⎛---443120131211(下一步: r 2-3r 1, r 3-r 1. )~⎪⎪⎭⎫⎝⎛----564056401211(下一步: r 3-r 2. )~⎪⎭⎫ ⎝⎛---000056401211, 矩阵的2秩为, 41113-=-是一个最高阶非零子式.(2)⎪⎪⎭⎫⎝⎛-------815073*********;成都大学诗叶子制作解 ⎪⎪⎭⎫⎝⎛-------815073*********(下一步: r 1-r 2, r 2-2r 1, r 3-7r 1. )~⎪⎭⎫ ⎝⎛------15273321059117014431(下一步: r 3-3r 2. ) ~⎪⎭⎫ ⎝⎛----0000059117014431, 矩阵的秩是2, 71223-=-是一个最高阶非零子式.(3)⎪⎪⎪⎭⎫⎝⎛---02301085235703273812. 解 ⎪⎪⎪⎭⎫⎝⎛---02301085235703273812(下一步: r 1-2r 4, r 2-2r 4, r 3-3r 4. )~⎪⎪⎪⎭⎫⎝⎛------023*********63071210(下一步: r 2+3r 1, r 3+2r 1. )~⎪⎪⎪⎭⎫⎝⎛-0230114000016000071210(下一步: r 2÷16r 4, r 3-16r 2. )成都大学诗叶子制作~⎪⎪⎪⎭⎫⎝⎛-02301000001000071210 ~⎪⎪⎪⎭⎫⎝⎛-00000100007121002301, 矩阵的秩为3, 070023085570≠=-是一个最高阶非零子式.10. 设A 、B 都是m ⨯n 矩阵, 证明A ~B 的充分必要条件是R (A )=R (B ).证明 根据定理3, 必要性是成立的.充分性. 设R (A )=R (B ), 则A 与B 的标准形是相同的. 设A 与B 的标准形为D , 则有A ~D , D ~B .由等价关系的传递性, 有A ~B .11. 设⎪⎪⎭⎫⎝⎛----=32321321k k k A , 问k 为何值, 可使(1)R (A )=1; (2)R (A )=2; (3)R (A )=3.解 ⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ⎪⎪⎭⎫⎝⎛+-----)2)(1(0011011 ~k k k k k r . (1)当k =1时, R (A )=1; (2)当k =-2且k ≠1时, R (A )=2;成都大学诗叶子制作(3)当k ≠1且k ≠-2时, R (A )=3.12. 求解下列齐次线性方程组:(1)⎪⎩⎪⎨⎧=+++=-++=-++02220202432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎭⎫ ⎝⎛--212211121211~⎪⎪⎭⎫ ⎝⎛---3/410013100101,于是 ⎪⎪⎩⎪⎪⎨⎧==-==4443424134334x x x x x x x x ,故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x (k 为任意常数).(2)⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有成都大学诗叶子制作A =⎪⎪⎭⎫ ⎝⎛----5110531631121~⎪⎪⎭⎫⎝⎛-000001001021,于是 ⎪⎩⎪⎨⎧===+-=4432242102x x x xx x x x ,故方程组的解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛10010*********k k x x x x (k 1, k 2为任意常数).(3)⎪⎩⎪⎨⎧=-+-=+-+=-++=+-+07420634072305324321432143214321x x x x x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有 A =⎪⎪⎪⎭⎫⎝⎛-----7421631472135132~⎪⎪⎪⎭⎫ ⎝⎛1000010000100001,于是 ⎪⎩⎪⎨⎧====0004321x x x x ,故方程组的解为。
线性代数同济大学第五版课后习题答案第五版线性代数同济版答案第一章行列式1用对角法则计算下列三阶行列式(1)2011年?4?1?183解决办法2011年?4?1?1832(4)3 0(1)(1)1 1 8 0 1 3 2(1)8 1(4)(1)24 8 16 4 4(2)abcbcacab解决办法abcbcacabacb bac cba bbb aaa ccc 3abc a3 b3 c3111abc222abc (3)111abc222abc解决方案bc2 ca2 ab2 ac2 ba2 cb2(a)b)c)c)a)xyx?yyx?yxx?yxy(4)解决办法x(x y)y yx(x y)(x y)yx y3(x y)3 x3 3xy(x y)y3 x2 y x3 y3 x32(x3 y3)根据自然数从小到大的标准顺序,找出下列排列的逆序数xyx?yyx?yxx?yxy(1)1 2 3 4解的逆序数是0 (2)4 1 3 2反向订单号是4 41 43 42 32 (3)3 4 2 1逆解的数目是5 3 2 3 1 4 2 4 1,2 1 (4)2 4 1 3逆解的个数是3 2 1 4 1 4 3 (5)1 3 (2n 1) 2 4 (2n)n(n )?1)解的逆序数为23 2 (1)5 2 5 4(2)7 2 7 4 7 6(3)(2n 1)2 (2n 1)4 (2n 1)6 (2n 1)(2n 2) (n(6)13(2 n1)(2n)(2 N2)2解的逆序数是n(n 1) 3 2(1)5 2 5 4 (2)(2 n1)2(2 n1)4(2 n1)6(2 n1)(2 N2)(n42(1)6 2 6 4(2)(2n)2 (2n)4 (2n)6 (2n)(2n 2) (n 1) 3将包含因子a11a23的项写入四阶行列式以求解包含因子a11a23的项的一般形式是(1)ta11a23a3ra4s当rs是2和4的排列时,有两个这样的排列,即24和42,因此包含因子a11a23的项分别是(1)ta 11a 23 a 32 a 44(1)1a 11 a 23 a 32 a 44 a 11 a 23 a 32 a 44)11 (1)ta 11 a 23 a 34 a 42(1)2 a 11 a 23 a 34 a 42 a 11 a 23 a 34 a 42 4计算下列行列式41100 (1)1251202112514207 20214c2?c342??????10c?7c10307441100解决方案?12302021?1024?1?10?14岁?122?(?1)4?30103?144?110c2?c39910?12岁?2??????00吗?2?010314c1?12c31717142315 (2)1?120423611222315解决方案1?12042361c4?c221?????312521?12042360r4?r222?????310221?12142340200r4?r123?????101?120423002?000(3)?阿巴卡巴德?cddebfcf?仰角指示器解决办法?阿巴卡。
第二章 矩阵矩阵及其运算是线性代数的核心,是后续各章的基础,本章主要讨论矩阵的概念、矩阵运算、初等矩阵、逆矩阵与伴随矩阵以及矩阵方程.§1 矩阵的概念定义1 由n m ⨯个数),,2,1;,2,1(n j m i a ij ==排成的m 行n 列的数表:⎪⎪⎪⎪⎪⎭⎫⎝⎛=mn m m n n a a a a a a a a a A 212222111211称为m 行n 列矩阵,其中ij a 称为矩阵A 的第i 行第j 列元素.矩阵可用大写字母 ,,B A 来表示,简记为n m A ⨯或n m ij a A ⨯=)(. 当n m =时, ()n a a a A 11211 =,则称A 称为m 阶方阵或m 阶矩阵;当1=m 时, ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=12111m a a a A ,则称A 称为行矩阵当1=n 时,A 称为列矩阵。
定义2 设n m A ⨯中每个元素都是零的矩阵称为零矩阵,记为:n m O ⨯ 或O . 定义3 矩阵n m ij a ⨯-)(称为矩阵n m ij a A ⨯=)(的负矩阵,记作A -. 定义4 如果n m ij a A ⨯=)(与m xn ij b B )(=,有ij ij b a =),,2,1;,2,1(n j m i ==,那么称这两矩阵相等,记为B A =.几个特殊矩阵(1) 设方阵n n ij a A ⨯=)(中, ),,2,1,,(0n j i j i a ij =≠=,则称它为对角矩阵,记为:),,,(2211nn a a a diag ;特别地,当12211====nn a a a 时,即⎪⎪⎪⎪⎪⎭⎫⎝⎛=100010001 A 时,称A 为n 阶单位矩阵,记作n E 或E .(2)设方阵nn ij a A ⨯=)(中,⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n a a a a a a A 022211211时,当j i >时0=ij a ,称为上三角阵.(4)设方阵nn ij a A ⨯=)(中,⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n a a a a a a A 21222111时,当j i <时0=ij a ,称为下三角阵.§2 矩阵的运算一、矩阵的加法定义 5 设两个同型矩阵n m ij n m ij b B a A ⨯⨯==)(,)(,可以相加,其和是同型矩阵n m ij c C ⨯=)(,其元素是B A ,对应元素之和,称为矩阵B A ,之和,记为B AC +=.即 n m ij ij n m ij b a c ⨯⨯+=)()(由于矩阵的加法归结为两个数表对应元素相加,因而与数的加法有相同运算性质;;A O A =+ A B B A +=+ .)()(C B A C B A ++=++例1 已知.212111320112B A B A +⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛-=,求, 解 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛+++++--+=+5322012312201111)1(2B A . 二、数与矩阵的乘法定义6:数k 与矩阵n m ij a A ⨯=)(相乘,即以数k 乘A 的每个元素,即n m j i ka kA ⨯=)(⎪⎪⎪⎪⎪⎭⎫⎝⎛=mn m m n n ka ka ka ka ka ka ka ka ka 212222111211称为矩阵()nm ij a A ⨯=与数k 的数量乘积,记为kA .由此可知,若矩阵A 的所有元素有公因数,则公因数可提到矩阵A 外作为系数.矩阵=-⨯nm ij a )(⎪⎪⎪⎪⎪⎭⎫⎝⎛---------mn m m n n a a a a a a a a a 212222111211称为矩阵A 的负矩阵,记为A -显然有O A A =-+)( 数量乘积满足以下规律:A kl lA k )()(=;OA =0;AA =1;lAkA A l k +=+)(;kB kA B A k +=+)(三、矩阵的乘法定义7设矩阵s m ik a A ⨯=)(与矩阵n s kj b B ⨯=)(可以相乘,其积AB 是n m ⨯矩阵n m ij c C ⨯=)(,其元素ij c 是矩阵A 的第i 行元素与矩阵B 的第j 列元素对应乘积之和,即AB C =,其中∑==+++=SK kj ik sj is j i j i ij b a b a b a b a c 12211 ,),,2,1;,2,1(n j m i ==.单位矩阵E 与数k 相乘所得矩阵称为数量矩阵,简称数量阵.例2 设⎪⎪⎭⎫⎝⎛--=213012A , ⎪⎪⎪⎭⎫⎝⎛--=051231B ,则AB C =. 解:⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛--==81570051231213012AB C如果n m ij a A ⨯=)(是一线性方程组的系数矩阵,而⎪⎪⎪⎪⎪⎭⎫⎝⎛=n x x x X21 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=m b b b B 21,分别是未知量和常数项所成的1⨯n 和1⨯m 矩阵,那么线性方程组可以写成矩阵形式,B AX =.矩阵乘法满足运算规律 (1)矩阵的乘法满足结合律,即)()(BC A C AB =(2)矩阵乘法和加法适合分配律,即BC AC C B A +=+)(,CB CA B A C +=+)((3)矩阵的乘法不适合交换律,即:一般AB ≠BA例3 ⎪⎪⎭⎫ ⎝⎛--=1111A ,⎪⎪⎭⎫⎝⎛--=1111B ,求.AB⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=000011111111AB .而 ⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫⎝⎛--=222211111111BA (4)数乘矩阵与所有的n n ⨯矩阵相乘是可交换的.)()(kE A A kE kA ==对于矩阵的乘法,请特别注意:(1) 乘积AB 只有当左矩阵A 的列数等于右矩阵的行数时才有意义.同理,仅当A 为方阵时,2A 才有意义.(2) 矩阵乘法一般不满足交换律.实际上,AB 有意义时,BA 未必有意义,即使AB 与BA 都有意义,二者也未必相等.当BA AB =时,称B A ,相乘是可交换的.特别地,当E AB =时,E BA =也成立.(3)矩阵乘法与数的乘法不同,有O AB =不能得出B A ,至少有一个为O 的结论,由此又得AY AX =及O A ≠不能得出Y X =的结论,这又使得在解矩阵方程时不能像解通常代数方程那样约去非零的因子.四、方阵的幂(1)设A 为n 阶方阵,定义A 的幂为,1A A =,,2 AA A = .1A A A k k -=对于正整数l k ,成立kl l K l k l k A A A A A ==+)(;对于0≠A 时,定义,0E A =,)(1k kA A --=则这两个运算公式可推广于任何整数l k ,.(2) 对任何正整数k ,求方阵的幂kA ,往往需要一定的技巧,常用的几种方法:① 用乘法算出,,32A A 以此观察或通过递推得出kA 的结构,写出一般表达式.必要时用数学归纳法证明.例4 设⎪⎪⎪⎭⎫ ⎝⎛=101020101A ,(1)求);2(E A A -(2)求).2(21≥--n A A n n解 (1) =-)2(E A A ⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛101000101101020101⎪⎪⎪⎭⎫ ⎝⎛=000000000(2) =--12n nAA =--)2(1E A A n O E A A An =--)2(2例5 设矩阵⎪⎪⎪⎭⎫ ⎝⎛=010101001A ,证明E A A A n n -+=-22)3(≥n ,并由此计算100A.证明 利用数学归纳法,当3=n 时,由于,1010110010101010010101010012⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=A,0111020010101010011011110013⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=A可直接验证E A A A -+=23成立. 设k n =时,E A AA k k-+=-22成立,则对于1+=k n 时:A E A A A A A k k k )(221-+==-+AA A k -+=-31A E A A A k --++=-)(21E A A k -+=-21即对于1+=k n 等式也成立,故对于一切3≥n 成立.利用已经证明的等式计算100A,可得:E A A A -+=298100E A E A A -+-+=2296)()(2296E A A -+= )(3294E A A -+= =)(4922E A A -+=E A 49502-=故.105001500011000100014910101100150100⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛=A② 利用结合律,若方阵的各行对应成比例,则矩阵可写成T αβ的形式,由于αβT是一个数,所以将矩阵的幂归结为数的幂与矩阵之积.例6 设⎪⎪⎪⎭⎫ ⎝⎛=963321642A ,求nA .解 因为矩阵A 的各行对应成比例,设矩阵TA αβ=,⎪⎪⎪⎭⎫⎝⎛=312α(1,2,3)=Tβ(1,2,3)312(1,2,3)312(1,2,3)312(1,2,3)312963321642⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛= nn A)(1,2,3)312(1,2,3)312(1,2,3)312((1,2,3)312⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛= (1,2,3)313121-⎪⎪⎪⎭⎫ ⎝⎛=n (1,2,3)312311⎪⎪⎪⎭⎫ ⎝⎛=-n.311A n -=③ 若矩阵A 是数量矩阵与幂零矩阵之和,即B E A +=λ,且存在l,使0=l B ,则利用公式kn n k n n k n k n k B C B E C B E C E C B E ++++=+---11110)()()()(λλλλ例7设,000000⎪⎪⎪⎭⎫ ⎝⎛=b c a A 求).,3,2( =n A n解,000000000000000000002⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=ab b c a b c a A,0000000000000000000000023⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛==b c a ab A A A于是,000000002⎪⎪⎪⎭⎫ ⎝⎛=ab A O A n =).3(≥n注 若存在正整数k 使O A k=,则称A 为幂零矩阵,本题中的A 是3阶幂零矩阵,一般主对角线及其下方元素全为0的n 阶矩阵是n 阶幂零矩阵,对一切n k ≥,O A k=.例8 设⎪⎪⎪⎭⎫⎝⎛=λλλ001001A , 求).,3,2( =n A n 解 令,000100010⎪⎪⎪⎭⎫⎝⎛=B 则B E A +=λ,而B 是幂零矩阵.,0000001000001000100001000102⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=B O B k =).3(≥k于是n n B E A )(+=λkn n k n n k n k n B C B E C B E C E C ++++=---11110)()()(λλλB n n B n E n n n 212)1(---++=λλλ ⎪⎪⎪⎪⎪⎭⎫⎝⎛-=---nn nn n n n n n n λλλλλλ0002)1(121.④ 当矩阵Q P A Λ=,且E PQ =时,求矩阵A 的幂问题.例9设,110111121⎪⎪⎪⎭⎫⎝⎛-=P ,11121133031⎪⎪⎪⎭⎫ ⎝⎛---=Q ⎪⎪⎪⎭⎫⎝⎛=Λ066,Q P A Λ=求n A .解:E QP =⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---=10001000111011112111121133031QP Q QP P A n ΛΛΛ=⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=-111211330310661*********n ⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=--1112113303106611011112111n n .211121112622⎪⎪⎪⎭⎫ ⎝⎛--⋅=-n五、矩阵的转置定义8设矩阵n m A ⨯的第),2,1(m i i =行写成第i 列,也将第),,2,1(n j j =列写成第j 行当⎪⎪⎪⎪⎪⎭⎫⎝⎛=mn m m n n a a a a a a a a a A 212222111211时⎪⎪⎪⎪⎪⎭⎫⎝⎛=nm n nm m T a a a a a a a a a A 212221212111. 注 n m ⨯矩阵转置所得到的矩阵是m n ⨯矩阵 满足条件A A T=的矩阵A 称为对称矩阵. 满足条件A A T -=的矩阵A 称为反对称矩阵. 矩阵的转置规律 (1) A A TT =)((2) TTTB A B A +=+)( (3)TTTA B AB =)((4) T T kA kA =)((k 为实数)证明(3):设s m ij a A ⨯=)( n s ij b B ⨯=)( 则AB 中),(j i 的元素为∑=sk kj ik b a 1所以TAB )(中),(j i 的元素为∑=Sk kijk b a1 (1)其次,TB 中),(k i 的元素为ki b TA 中),(j k 的元素为jk a 故TTA B 中),(j i 的元素即为:∑∑===sk ki jk sk jk kib a a b11(2)比较(1),(2)即得(3)例10设⎪⎪⎭⎫ ⎝⎛-=231102A ,⎪⎪⎪⎭⎫⎝⎛-=102324171B ,求T AB )(. ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-=1013173140102324171231102AB⎪⎪⎪⎭⎫ ⎝⎛-=213012TA ⎪⎪⎪⎭⎫ ⎝⎛-=131027241T BT T T AB A B )(1031314170213012131027241=⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-=六、方阵的行列式n 阶方阵A 的2n 个元素按原来的相对位置所成的n 阶行列式称为A 的行列式,记为A 或)det(A .特别需要注意,矩阵与行列式的区别(1) 矩阵A 是2n 个元素按某个规律排成的数表,而行列式A 则是这2n 个元素按某种规则运算所得的数.(2) 两个矩阵当且仅当它们同型且对应元素相等时才相等,而两个行列式相等是指它们经计算所得的值相等,并不要求对应元素相等,甚至阶数都可以不同.(3) 两个同型矩阵相加是对应元素相加,而两个行列式相加必须求得它们的值而后相加,一般不能归结为对应元素之间的运算.(4) 对于矩阵一般不满足A A T=,而行列式A AT=却成立.(5) 当n 阶矩阵A 的每个元素都乘以同一个数l 时,得到的是lA ,而组成行列式A 的每个元素都乘以同一个数l 时,得到的却是A l n .(6) 一般而言BA AB ≠,但却有A B B A AB ==. 例11 设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足E B BA 2+=,则求B .分析 化简方程乘积形式,两边再取行列式.解:由E B BA 2+=,得E E A B 2)(=-,两边取行列式,得42==-E E A B又,21111=-=-E A 因此2=B . §3 逆矩阵一、逆矩阵定义定义9 对于n 阶矩阵A ,若存在矩阵B ,使,E BA AB ==则称矩阵A 是可逆矩阵或者称A 为非奇异矩阵,矩阵B 为A 的逆矩阵,记为1-=A B .于是E AA A A ==--11.在矩阵运算中,可根据不同情况将单位矩阵E 写成A A 1-或1-AA 是常用的有效技巧.二、逆矩阵的性质① 对于可逆矩阵A ,逆矩阵1-A 是唯一的.证明:假设矩阵C B ,都是矩阵A 的逆矩阵,则有.,E AC E BA ==C EC BAC AC B BE B =====∴)(所以可逆矩阵A 的逆矩阵是唯一的.② 可逆矩阵乘以非零常数为可逆矩阵,可逆矩阵的乘积是可逆矩阵,但可逆矩阵之和未必是可逆矩阵.③ 逆矩阵的运算性质设矩阵B A ,都是可逆矩阵,k 为不为零的常数,则;)(11A A =--111)(---=A B AB ;111)(--=A kkA ;;)()(11T T A A --=.11AA =- 三、伴随矩阵定义10 设ij A 是矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n a a a a a a a a a A 212222111211中元素ij a 的代数余子式,则矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn nnn n A A A A A A A A A A212221212111*称为A 的伴随矩阵。
幻灯片1线性代数(第五版)幻灯片2●在以往的学习中,我们接触过二元、三元等简单的线性方程组.●但是,从许多实践或理论问题里导出的线性方程组常常含有相当多的未知量,并且未知量的个数与方程的个数也不一定相等.幻灯片3●我们先讨论未知量的个数与方程的个数相等的特殊情形.●在讨论这一类线性方程组时,我们引入行列式这个计算工具.幻灯片4●行列式是线性代数的一种工具!●学习行列式主要就是要能计算行列式的值.第一章行列式●内容提要●§1 二阶与三阶行列式●§2 全排列及其逆序数●§3 n 阶行列式的定义●§4 对换●§5 行列式的性质●§6 行列式按行(列)展开§7 克拉默法则●行列式的概念.●(选学内容)●行列式的性质及计算.●——线性方程组的求解.幻灯片5§1 二阶与三阶行列式●我们从最简单的二元线性方程组出发,探●求其求解公式,并设法化简此公式.幻灯片6一、二元线性方程组与二阶行列式●二元线性方程组●由消元法,得●当时,该方程组有唯一解幻灯片7●二元线性方程组●请观察,此公式有何特点?●分母相同,由方程组的四个系数确定.●分子、分母都是四个数分成两对相乘再相减而得.●求解公式为幻灯片8●我们引进新的符号来表示“四个数分成两对相乘再相减”.●二元线性方程组●记号●数表●其求解公式为●表达式称为由该●数表所确定的二阶行列式,即●其中,称为元素.●i 为行标,表明元素位于第i 行;●j 为列标,表明元素位于第j 列.●原则:横行竖列幻灯片9●二阶行列式的计算●——对角线法则●主对角线●副对角线●即:主对角线上两元素之积-副对角线上两元素之积幻灯片10●二元线性方程组●若令●(方程组的系数行列式)●则上述二元线性方程组的解可表示为幻灯片11●求解二元线性方程组●例1●解●因为●所以幻灯片12二、三阶行列式●定义设有9个数排成3行3列的数表●原则:横行竖列●引进记号●主对角线●副对角线●称为三阶行列式.●二阶行列式的对角线法则并不适用!幻灯片13●三阶行列式的计算●——对角线法则●实线上的三个元素的乘积冠正号,●虚线上的三个元素的乘积冠负号.●注意:对角线法则只适用于二阶与三阶行列式.幻灯片14●例2 计算行列式●解●按对角线法则,有幻灯片15●例3 求解方程●方程左端●解●由得幻灯片16§2 全排列及其逆序数幻灯片17●用1、2、3三个数字,可以组成多少个没有重复数字的三位数?●引例● 1 2 3●解● 1● 3● 2●百位●3种放法● 3● 1● 2● 1●2种放法●十位●1种放法● 1● 2● 3●个位●共有●种放法.幻灯片18●问题把 n 个不同的元素排成一列,共有多少种不同的●排法?●定义把 n 个不同的元素排成一列,叫做这 n 个元素的全排列. n 个不同元素的所有排列的种数,通常用Pn 表示.●显然●即n 个不同的元素一共有n! 种不同的排法.● 3个不同的元素一共有3! =6种不同的排法●123,132,213,231,312,321●所有6种不同的排法中,只有一种排法(123)中的数字是按从小到大的自然顺序排列的,而其他排列中都有大的数排在小的数之前.●因此大部分的排列都不是“顺序”,而是“逆序”.幻灯片20●对于n 个不同的元素,可规定各元素之间的标准次序.●n 个不同的自然数,规定从小到大为标准次序.●定义当某两个元素的先后次序与标准次序不同时,●就称这两个元素组成一个逆序.●例如在排列32514中,● 3 2 5 1 4●思考题:还能找到其它逆序吗?●答:2和1,3和1也构成逆序.幻灯片21●定义排列中所有逆序的总数称为此排列的逆序数.●排列的逆序数通常记为 .●奇排列:逆序数为奇数的排列.●偶排列:逆序数为偶数的排列.●思考题:符合标准次序的排列是奇排列还是偶排列?●答:符合标准次序的排列(例如:123)的逆序数等于零,因而是偶排列.幻灯片22●计算排列的逆序数的方法●设是 1, 2, …, n 这n 个自然数的任一排列,并规定由小到大为标准次序.●先看有多少个比大的数排在前面,记为;●再看有多少个比大的数排在前面,记为 ;●最后看有多少个比大的数排在前面,记为 ;●则此排列的逆序数为幻灯片23●例1:●求排列 32514 的逆序数.●解:●练习:●求排列 453162 的逆序数.●解:幻灯片24§3 n 阶行列式的定义幻灯片25一、概念的引入●规律:●三阶行列式共有6项,即3!项.●每一项都是位于不同行不同列的三个元素的乘积.●每一项可以写成(正负号除外),其中●是1、2、3的某个排列.●当是偶排列时,对应的项取正号;当是奇排列时,对应的项取负号.幻灯片26●所以,三阶行列式可以写成●其中表示对1、2、3的所有排列求和.●二阶行列式有类似规律.下面将行列式推广到一般的情形.幻灯片27二、n 阶行列式的定义●简记作,●其中为行列式D的(i, j)元● n 阶行列式共有 n! 项.●每一项都是位于不同行不同列的 n 个元素的乘积.●每一项可以写成(正负号除外),其中●是1, 2, …, n 的某个排列.●当是偶排列时,对应的项取正号;当是奇排列时,对应的项取负号.幻灯片28●思考题:成立吗?●答:符号可以有两种理解:●若理解成绝对值,则;若理解成一阶行列式,则 .●注意:当n = 1时,一阶行列式|a| = a,注意不要与绝对值的记号相混淆. 例如:一阶行列式 .幻灯片29●例:●写出四阶行列式中含有因子的项.●解:●和●例:●计算行列式幻灯片30●解:●其中幻灯片31幻灯片32●四个结论:●(1) 对角行列式●(2)幻灯片33●(3) 上三角形行列式(主对角线下侧元素都为0)●(4) 下三角形行列式(主对角线上侧元素都为0)幻灯片34●思考题:用定义计算行列式●-1●解:用树图分析●3●1●-2●1●-1●2●-2●3●3●-1●故幻灯片35●思考题●已知,求的系数.幻灯片36●解●含的项有两项,即●对应于●故的系数为-1.幻灯片37§4 对换幻灯片38一、对换的定义●定义●在排列中,将任意两个元素对调,其余的元素不动,这种作出新排列的手续叫做对换.●将相邻两个元素对换,叫做相邻对换.●例如幻灯片39●备注●相邻对换是对换的特殊情形.●一般的对换可以通过一系列的相邻对换来实现.如果连续施行两次相同的对换,那么排列就还原了.幻灯片40二、对换与排列奇偶性的关系●定理1 对换改变排列的奇偶性.●证明●先考虑相邻对换的情形.幻灯片41●注意到除外,其它元素的逆序数不改变.幻灯片42●当时,,, .●当时,,, .●因此相邻对换改变排列的奇偶性.幻灯片43●既然相邻对换改变排列的奇偶性,那么●因此,一个排列中的任意两个元素对换,排列的奇偶性改变.●推论●奇排列变成标准排列的对换次数为奇数,●偶排列变成标准排列的对换次数为偶数.●由定理1知,对换的次数就是排列奇偶性的变化次数,而标准排列是偶排列(逆序数为零),因此可知推论成立.●证明幻灯片44●因为数的乘法是可以交换的,所以 n 个元素相乘的次序是可以任意的,即●每作一次交换,元素的行标与列标所成的排列●与都同时作一次对换,即与同时改变奇偶性,但是这两个排列的逆序数之和的奇偶性不变.幻灯片45●设对换前行标排列的逆序数为,列标排列的逆序数为 .●设经过一次对换后行标排列的逆序数为●列标排列的逆序数为●因为对换改变排列的奇偶性,是奇数,也是奇数.●所以是偶数,●即是偶数.●于是与同时为奇数或同时为偶数.●因此,交换中任意两个元素的位置后,其行标排列与列标排列的逆序数之和的奇偶性不变.幻灯片46●经过一次对换是如此,经过多次对换还是如此. 所以,在一系列对换之后有幻灯片47幻灯片48●例1 试判断和●是否都是六阶行列式中的项.幻灯片49●例2 用行列式的定义计算幻灯片50●解幻灯片51三、小结● 1. 对换改变排列奇偶性.● 2. 行列式的三种表示方法幻灯片52§5 行列式的性质幻灯片53一、行列式的性质●记●行列式称为行列式的转置行列式.●若记,则 .●性质1 行列式与它的转置行列式相等,即 .幻灯片54●性质1 行列式与它的转置行列式相等.●证明●若记,则●根据行列式的定义,有●行列式中行与列具有同等的地位,行列式的性质凡是对行成立的对列也同样成立.幻灯片55●性质2 互换行列式的两行(列),行列式变号.●备注:交换第行(列)和第行(列),记作 .●验证●于是●推论如果行列式有两行(列)完全相同,则此行列式为零.●证明●互换相同的两行,有,所以 .幻灯片56●性质3 行列式的某一行(列)中所有的元素都乘以同一个倍数,等于用数乘以此行列式.●备注:第行(列)乘以,记作 .●验证●我们以三阶行列式为例. 记●根据三阶行列式的对角线法则,有幻灯片57●推论行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面.●备注:第行(列)提出公因子,记作 .幻灯片58●性质4 行列式中如果有两行(列)元素成比例,则此行列式为零.●验证●我们以4阶行列式为例.幻灯片59●性质5 若行列式的某一列(行)的元素都是两数之和,●例如:●则幻灯片60●验证●我们以三阶行列式为例.幻灯片61●性质6 把行列式的某一列(行)的各元素乘以同一个倍数然后加到另一列(行)对应的元素上去,行列式不变.●备注:以数乘第行(列)加到第行(列)上,记作 .●验证●我们以三阶行列式为例. 记●则幻灯片62二、应用举例●计算行列式常用方法:利用运算把行列式化为●上三角形行列式,从而算得行列式的值.●例1幻灯片63●解幻灯片64幻灯片65幻灯片66幻灯片67幻灯片68●解幻灯片69幻灯片70●例3 设●证明幻灯片71●证明●对作运算,把化为下三角形行列式●设为●对作运算,把化为下三角形行列式●设为幻灯片72●对 D 的前 k 行作运算,再对后 n 列作运算,●把 D 化为下三角形行列式●故幻灯片73三、小结● (行列式中行与列具有同等的地位, 凡是对行成立的性质对列也同样成立).●行列式的6个性质●计算行列式常用方法:(1)利用定义;(2)利用性质把行列式化为上三角形行列式,从而算得行列式的值.幻灯片74●思考题●计算4阶行列式幻灯片75●思考题解答●解幻灯片76幻灯片77§6 行列式按行(列)展开●对角线法则只适用于二阶与三阶行列式.●本节主要考虑如何用低阶行列式来表示高阶行列式.幻灯片78一、引言●结论三阶行列式可以用二阶行列式表示.●思考题任意一个行列式是否都可以用较低阶的行列式表示?幻灯片79●在n 阶行列式中,把元素所在的第行和第列划后,留下来的n-1阶行列式叫做元素的余子式,记作 .●把称为元素的代数余子式.●例如●结论因为行标和列标可唯一标识行列式的元素,所以行列●式中每一个元素都分别对应着一个余子式和一个代数余子式.幻灯片80●引理一个n 阶行列式,如果其中第行所有元素除●外都为零,那么这行列式等于与它的代数余子式的乘积,即.●例如幻灯片81●当位于第1行第1列时,●分析●即有●(根据P.14例10的结论)●又●从而●下面再讨论一般情形.幻灯片82●我们以4阶行列式为例.●思考题:能否以代替上述两次行变换?幻灯片83●思考题:能否以代替上述两次行变换?●答:不能.幻灯片84●被调换到第1行,第1列幻灯片85二、行列式按行(列)展开法则●定理3 行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即幻灯片86●同理可得幻灯片87●例(P.12例7续)幻灯片88●例证明范德蒙德(Vandermonde)行列式●证明用数学归纳法●所以n=2时(1)式成立.幻灯片89●假设(1)对于n-1阶范德蒙行列式成立,从第n行开始,后行●减去前行的倍:●按照第1列展开,并提出每列的公因子,就有幻灯片90● n−1阶范德蒙德行列式幻灯片91●推论行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即●分析我们以3阶行列式为例.●把第1行的元素换成第2行的对应元素,则幻灯片92●定理3 行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即●推论行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即●综上所述,有●同理可得幻灯片93●例计算行列式●解幻灯片94幻灯片95●例设 , 的元的余子式和●代数余子式依次记作和,求●及●分析利用幻灯片96●解幻灯片97幻灯片98§7 克拉默法则幻灯片99●二元线性方程组●若令●(方程组的系数行列式)●则上述二元线性方程组的解可表示为幻灯片100一、克拉默法则●如果线性方程组●的系数行列式不等于零,即幻灯片101●那么线性方程组(1)有解并且解是唯一的,解可以表示成●其中是把系数行列式中第列的元素用方程组右端的常数项代替后所得到的阶行列式,即幻灯片102●定理中包含着三个结论:●方程组有解;(解的存在性)●解是唯一的;(解的唯一性)●解可以由公式(2)给出.●这三个结论是有联系的. 应该注意,该定理所讨论的只是系数行列式不为零的方程组,至于系数行列式等于零的情形,将在第三章的一般情形中一并讨论.幻灯片103关于克拉默法则的等价命题●设●定理4 如果线性方程组(1)的系数行列式不等于零,则该线性方程组一定有解,而且解是唯一的 .●定理4′如果线性方程组无解或有两个不同的解,则它的系数行列式必为零.幻灯片104●例解线性方程组●解幻灯片105幻灯片106幻灯片107●线性方程组●常数项全为零的线性方程组称为齐次线性方程组,否则称为非齐次线性方程组.●齐次线性方程组总是有解的,因为(0,0,…, 0)就是一个解,称为零解. 因此,齐次线性方程组一定有零解,但不一定有非零解.●我们关心的问题是,齐次线性方程组除零解以外是否存在着非零解.幻灯片108●齐次线性方程组的相关定理●定理5 如果齐次线性方程组的系数行列式,则齐次●线性方程组只有零解,没有非零解.●定理5′如果齐次线性方程组有非零解,则它的系数行列式必为零.●备注●这两个结论说明系数行列式等于零是齐次线性方程组有非零解的必要条件.●在第三章还将证明这个条件也是充分的. 即:齐次线性方程组有非零解系数行列式等于零幻灯片109●练习题:问取何值时,齐次方程组●有非零解?●解●如果齐次方程组有非零解,则必有 .●所以时齐次方程组有非零解.幻灯片110●思考题●当线性方程组的系数行列式为零时,能否用克拉默法则解方程组?为什么?此时方程组的解为何?●答:当线性方程组的系数行列式为零时,不能用克拉默法●则解方程组,因为此时方程组的解为无解或有无穷多解.幻灯片111三、小结● 1. 用克拉默法则解线性方程组的两个条件●(1)方程个数等于未知量个数;●(2)系数行列式不等于零.● 2. 克拉默法则的意义主要在于建立了线性方程组的解●和已知的系数以及常数项之间的关系.它主要适用于●理论推导.幻灯片112第二章矩阵及其运算幻灯片113§1 矩阵●一、矩阵概念的引入●二、矩阵的定义●三、特殊的矩阵●四、矩阵与线性变换幻灯片114● B一、矩阵概念的引入● C● A●例某航空公司在A、B、C、D 四座城市之间开辟了若干航线,四座城市之间的航班图如图所示,箭头从始发地指向目的地.● D●城市间的航班图情况常用表格来表示:●√●√幻灯片115● A B C D●√●√● A● B● C● D●√●√●√●√●√●为了便于计算,把表中的√改成1,空白地方填上0,就得到一个数表:●这个数表反映了四个城市之间交通联接的情况.幻灯片116二、矩阵的定义●由 m×n 个数排成的 m 行 n 列的数表●称为 m 行 n 列矩阵,简称 m×n 矩阵.●记作幻灯片117●简记为●这 m×n 个数称为矩阵A的元素,简称为元.●元素是实数的矩阵称为实矩阵,●元素是复数的矩阵称为复矩阵.幻灯片118矩阵行列式●行数不等于列数●共有m×n个元素●本质上就是一个数表●行数等于列数●共有n2个元素幻灯片119●三、特殊的矩阵●行数与列数都等于 n 的矩阵,称为 n 阶方阵.可记作 .●只有一行的矩阵称为行矩阵(或行向量) .●●只有一列的矩阵称为列矩阵(或列向量) .元素全是零的矩阵称为零距阵.可记作 O .●例如:幻灯片120●形如的方阵称为对角阵.●特别的,方阵称为单位阵.●记作●记作.幻灯片121●同型矩阵与矩阵相等的概念●两个矩阵的行数相等、列数相等时,称为同型矩阵.●例如●为同型矩阵.●两个矩阵与为同型矩阵,并且对应元●素相等,即则称矩阵 A 与 B 相等,记作 A = B .幻灯片122●例如●注意:不同型的零矩阵是不相等的.幻灯片123●四、矩阵与线性变换● n 个变量与 m 个变量之间的●关系式●表示一个从变量到变量线性变换,●其中为常数.幻灯片124●系数矩阵●线性变换与矩阵之间存在着一一对应关系.幻灯片125●例线性变换●称为恒等变换.●单位阵 En幻灯片126●例 2阶方阵●投影变换●例2阶方阵●以原点为中心逆时针●旋转j 角的旋转变换幻灯片127§2 矩阵的运算幻灯片128●一、矩阵的加法●定义:设有两个 m×n 矩阵 A = (aij),B = (bij) ,那么矩阵 A 与 B 的和记作 A+B,规定为●说明:只有当两个矩阵是同型矩阵时,才能进行加法运算.幻灯片129●知识点比较幻灯片130●矩阵加法的运算规律●设 A、B、C 是同型矩阵设矩阵 A = (aij) ,记-A = (-aij),称为矩阵 A 的负矩阵.显然幻灯片131●二、数与矩阵相乘●定义:数 l 与矩阵 A 的乘积记作 l A 或 A l ,规定为幻灯片132●数乘矩阵的运算规律设 A、B是同型矩阵,l , m 是数矩阵相加与数乘矩阵合起来,统称为矩阵的线性运算.幻灯片133●知识点比较幻灯片134●一、矩阵与矩阵相乘●定义:设,,那么规定矩阵 A 与矩阵 B 的乘积是一个 m×n 矩阵,其中●并把此乘积记作 C = AB.幻灯片135●矩阵乘法的运算规律●(1) 乘法结合律●(2) 数乘和乘法的结合律(其中 l 是数)●(3) 乘法对加法的分配律●(4) 单位矩阵在矩阵乘法中的作用类似于数1,即●纯量阵不同于对角阵●推论:矩阵乘法不一定满足交换律,但是纯量阵 lE 与任何同阶方阵都是可交换的.幻灯片136●(5) 矩阵的幂若 A 是 n 阶方阵,定义●显然●思考:下列等式在什么时候成立?●A、B可交换时成立幻灯片137●四、矩阵的转置●定义:把矩阵 A 的行换成同序数的列得到的新矩阵,叫做的转置矩阵,记作AT .●例幻灯片138●转置矩阵的运算性质幻灯片139●解法2幻灯片140●定义:设 A 为 n 阶方阵,如果满足,即●那么 A 称为对称阵.●如果满足 A = -AT,那么 A 称为反对称阵.●对称阵●反对称阵幻灯片141●例:设列矩阵 X = ( x1, x2, …, xn )T 满足 X T X = 1,E 为 n 阶单位阵,H = E-2XXT,试证明 H 是对称阵,且 HHT = E.●证明:●从而 H 是对称阵.幻灯片142●五、方阵的行列式●定义:由 n 阶方阵的元素所构成的行列式,叫做方阵 A 的行列式,记作|A|或detA.●运算性质幻灯片143●定义:行列式 |A| 的各个元素的代数余子式 Aij 所构成的如下矩阵●称为矩阵 A 的伴随矩阵.●性质幻灯片144●六、共轭矩阵●当为复矩阵时,用表示的共轭复数,记,称为的共轭矩阵.●运算性质●(设A,B 为复矩阵,l 为复数,且运算都是可行的):幻灯片145§3 逆矩阵幻灯片146●矩阵与复数相仿,有加、减、乘三种运算.●矩阵的乘法是否也和复数一样有逆运算呢?●这就是本节所要讨论的问题.●这一节所讨论的矩阵,如不特别说明,所指的都是 n 阶方阵.●从乘法的角度来看,n 阶单位矩阵 E 在同阶方阵中的地位类似于 1 在复数中的地位.一个复数 a ≠ 0的倒数 a-1可以用等式 a a-1 = 1 来刻划. 类似地,我们引入幻灯片147●定义: n 阶方阵 A 称为可逆的,如果有 n 阶方阵 B,使得●这里 E 是 n 阶单位矩阵.●根据矩阵的乘法法则,只有方阵才能满足上述等式.●对于任意的 n 阶方阵 A,适合上述等式的矩阵 B 是唯一的(如果有的话).●定义:如果矩阵 B 满足上述等式,那么 B 就称为 A 的逆矩阵,●记作 A-1 .幻灯片148●下面要解决的问题是:●在什么条件下,方阵 A 是可逆的?如果 A 可逆,怎样求 A-1 ?幻灯片149●结论:,其中幻灯片150●例:求3阶方阵的逆矩阵.●解:| A | = 1,幻灯片151●方阵A可逆●此时,称矩阵A为非奇异矩阵●定理:若方阵A可逆,则.幻灯片152●推论:如果 n 阶方阵A、B可逆,那么、、●与AB也可逆,且幻灯片153●线性变换●的系数矩阵是一个n 阶方阵 A ,若记●则上述线性变换可记作 Y = AX .幻灯片154§4 矩阵分块法幻灯片155前言●由于某些条件的限制,我们经常会遇到大型文件无法上传的情况,如何解决这个问题呢?●这时我们可以借助WINRAR把文件分块,依次上传.●家具的拆卸与装配●问题一:什么是矩阵分块法?问题二:为什么提出矩阵分块法?幻灯片156问题一:什么是矩阵分块法?定义:用一些横线和竖线将矩阵分成若干个小块,这种操作称为对矩阵进行分块;每一个小块称为矩阵的子块;矩阵分块后,以子块为元素的形式上的矩阵称为分块矩阵.●这是2阶方阵吗?幻灯片157思考题伴随矩阵是分块矩阵吗?答:不是.伴随矩阵的元素是代数余子式(一个数),而不是矩阵.幻灯片158问题二:为什么提出矩阵分块法?答:对于行数和列数较高的矩阵 A,运算时采用分块法,可以使大矩阵的运算化成小矩阵的运算,体现了化整为零的思想.幻灯片159分块矩阵的加法幻灯片160●若矩阵A、B是同型矩阵,且采用相同的分块法,即●则有●形式上看成是普通矩阵的加法!幻灯片161分块矩阵的数乘幻灯片162●若l 是数,且●则有●形式上看成是普通的数乘运算!幻灯片163分块矩阵的乘法●一般地,设A为m l 矩阵,B为l n矩阵,把A、B 分块如下:幻灯片164按行分块以及按列分块m n 矩阵A 有m 行n 列,若将第i 行记作若将第j 列记作则幻灯片165于是设 A 为 m s 矩阵,B 为 s n 矩阵,若把 A 按行分块,把 B 按列块,则幻灯片166分块矩阵的转置若,则例如:●分块矩阵不仅形式上进行转置,●而且每一个子块也进行转置.幻灯片167分块对角矩阵●定义:设 A 是 n 阶矩阵,若● A 的分块矩阵只有在对角线上有非零子块,●其余子块都为零矩阵,●对角线上的子块都是方阵,●那么称 A 为分块对角矩阵.例如:幻灯片168分块对角矩阵的性质●| A | = | A1 | | A2 | … | As |●若| As | ≠0,则 | A | ≠0,并且幻灯片169第三章矩阵的初等变换与线性方程组幻灯片170知识点回顾:克拉默法则●设●结论 1 如果线性方程组(1)的系数行列式不等于零,则该线性方程组一定有解,而且解是唯一的.(P. 24定理4)●结论 1′如果线性方程组无解或有两个不同的解,则它的系数行列式必为零. (P.24定理4')●线性方程组的解受哪些因素的影响?●用克拉默法则解线性方程组的两个条件:●(1) 方程个数等于未知量个数;●(2) 系数行列式不等于零.幻灯片171§1 矩阵的初等变换●一、初等变换的概念●二、矩阵之间的等价关系●三、初等变换与矩阵乘法的关系●四、初等变换的应用幻灯片172一、矩阵的初等变换●引例:求解线性方程组幻灯片173●③÷2幻灯片174●②-③●③-2×①●④-3×①幻灯片175●②÷2●③+5×②●④-3×②幻灯片176●④-2×③幻灯片177●①●②●③●恒等式●④●取x3 为自由变量,则●令x3 = c ,则幻灯片178●三种变换:●交换方程的次序,记作;●以非零常数 k 乘某个方程,记作;●一个方程加上另一个方程的 k 倍,记作 .●结论:●由于对原线性方程组施行的变换是可逆变换,因此变换前后的方程组同解.在上述变换过程中,实际上只对方程组的系数和常数进行运算,未知数并未参与运算.●其逆变换是:幻灯片179●定义:下列三种变换称为矩阵的初等行变换:●对调两行,记作;●以非零常数 k 乘某一行的所有元素,记作;●某一行加上另一行的 k 倍,记作 .●其逆变换是:●初等行变换。