【高中数学】立体几何中的截面问题
- 格式:pdf
- 大小:6.08 MB
- 文档页数:14
专题13 立体几何中的截面【基本知识】1.截面定义:在立体几何中,截面是指用一个平面去截一个几何体(包括圆柱,圆锥,球,棱柱,棱锥、长方体,正方体等等),得到的平面图形,叫截面。
其次,我们要清楚立体图形的截面方式,总共有三种,分别为横截、竖截、斜截。
最后,我们要了解每一种立体图形通过上述三种截面方式所得到的截面图有哪些。
2、正六面体的基本斜截面:3、圆柱体的基本截面:正六面体斜截面是不会出现以下几种图形:直角三角形、钝角三角形、直角梯形、正五边形。
【基本技能】技能1.结合线、面平行的判定定理与性质性质求截面问题;技能2.结合线、面垂直的判定定理与性质定理求正方体中截面问题;技能3.猜想法求最值问题:要灵活运用一些特殊图形与几何体的特征,“动中找静”:如正三角形、正六边形、正三棱锥等;技能4.建立函数模型求最值问题:①设元②建立二次函数模型③求最值。
例1 一个正方体接于一个球,过这个球的球心作一平面,则截面图形不可能...是( )分析 考虑过球心的平面在转动过中,平面在球的接正方体上截得的截面不可能是大圆的接正方形,故选D 。
例2 如图,在透明的塑料制成的长方体ABCD-A 1B 1C 1D 1容器灌进一些水,固定容器底面一边BC 于地面上,再将容器倾斜,随着倾斜程度的不同,有下列四个命题:① 水的部分始终呈棱柱状; ② 水面EFGH 的面积不改变; ③ 棱A 1D 1始终与水面EFGH 平行;④ 当容器倾斜到如图5(2)时,BE·BF 是定值; 其中正确的命题序号是______________分析 当长方体容器绕BC 边转动时,盛水部分的几何体始终满足棱柱定义,故①正确;在转动过程中EH//FG ,但EH 与FG 的距离EF 在变,所以水面EFGH 的面积在改变,故②错误;在转动过程中,始终有BC//FG//A 1D 1,所以A 1D 1//面EFGH ,③正确;当容器转动到水部分呈直三棱柱时如图5(2),因为BC BF BE V ⋅⋅=21水是定值,又BC 是定值,所以BE·BF 是定值,即④正确。
高考数学:立体几何截面问题一、引言立体几何是高考数学的重要组成部分,其中截面问题是一个重要的考点。
截面问题涉及到三维空间中的几何形状、位置关系以及函数关系等多个方面,需要学生具备较高的空间想象能力和逻辑推理能力。
本文将从多个方面介绍截面问题的相关知识,以帮助考生更好地理解和掌握该知识点。
二、截面的定义与性质1.截面的定义:截面是指通过一个平面与三维空间中的几何体相交,所得到的交线或交面的几何形状。
2.截面的性质:截面具有与原几何体相同的形状和大小,但位置关系可能不同。
截面的形状和大小取决于平面与几何体的相对位置和方向。
三、截面与平面几何的关系1.平面几何的基本图形在三维空间中仍然适用,如线段、三角形、四边形等。
2.截面是平面几何图形在三维空间中的表现形式,可以通过平面的移动和旋转来改变截面的形状和大小。
四、截面与立体几何的关联1.立体几何的基本概念和定理在解决截面问题时同样适用,如平行、垂直、平行四边形等。
2.截面问题是立体几何中的一个特殊情况,可以通过特殊情况来推导一般情况,也可以通过一般情况来推导特殊情况。
五、截面的形状与大小1.截面的形状取决于平面与几何体的相对位置和方向。
不同的位置关系可以得到不同的截面形状,如圆形、椭圆形、长方形等。
2.截面的大小取决于平面与几何体的交线长度或交面积大小。
不同的平面位置可以得到不同的截面大小。
六、截面与空间几何的关系1.空间几何的基本概念和定理在解决截面问题时同样适用,如距离、角度、面积等。
2.截面问题是空间几何中的一个特殊情况,可以通过特殊情况来推导一般情况,也可以通过一般情况来推导特殊情况。
3.截面问题可以转化为空间几何问题来解决,也可以通过空间几何问题来推导截面问题的解决方法。
七、截面的对称性1.截面问题中常常涉及到对称性,如轴对称、中心对称等。
2.对称性可以帮助我们简化问题,找到解决问题的关键点。
3.对称性也可以帮助我们判断截面的形状和大小,以及确定平面与几何体的相对位置和方向。
立体几何中的截面【基本知识】1.截面定义:在立体几何中,截面是指用一个平面去截一个几何体(包括圆柱,圆锥,球,棱柱,棱锥、长方体,正方体等等),得到的平面图形,叫截面。
其次,我们要清楚立体图形的截面方式,总共有三种,分别为横截、竖截、斜截。
最后,我们要了解每一种立体图形通过上述三种截面方式所得到的截面图有哪些。
2、正六面体的基本斜截面:3、圆柱体的基本截面:正六面体斜截面是不会出现以下几种图形:直角三角形、钝角三角形、直角梯形、正五边形。
【基本技能】技能1.结合线、面平行的判定定理与性质性质求截面问题;技能2.结合线、面垂直的判定定理与性质定理求正方体中截面问题;技能 3.猜想法求最值问题:要灵活运用一些特殊图形与几何体的特征,“动中找静”:如正三角形、正六边形、正三棱锥等;技能4.建立函数模型求最值问题:①设元②建立二次函数模型③求最值。
例1 一个正方体内接于一个球,过这个球的球心作一平面,则截面图形不可能...是()例2 如图,在透明的塑料制成的长方体ABCD-A 1B 1C 1D 1容器内灌进一些水,固定容器底面一边BC 于地面上,再将容器倾斜,随着倾斜程度的不同,有下列四个命题:① 水的部分始终呈棱柱状; ② 水面EFGH 的面积不改变; ③ 棱A 1D 1始终与水面EFGH 平行;④ 当容器倾斜到如图5(2)时,BE·BF 是定值; 其中正确的命题序号是______________例3 有一容积为1 立方单位的正方体容器ABCD-A 1B 1C 1D 1,在棱AB 、BB 1及对角线B 1C 的中点各有一小AB C H A 1 B 1 C 1 D 1E F GDA B C DA 1B 1C 1D 1EF G H图(2)图(1)ACBD孔E 、F 、G ,若此容器可以任意放置,则该容器可装水的最大容积是()A .21B .87C .1211 D .4847例4 正四棱锥P ABCD -的底面正方形边长是3,O 是P 在底面上的射影,6, PO Q =是AC 上的一点,过Q 且与, PA BD 都平行的截面为五边形EFGHL ,求该截面面积的最大值.基本方法介绍①公理法:用平面基本性质中的公理来作平面; ②侧面展开法:将立体图形展开为平面图形进行研究;例5 能否用一个平面去截一个正方体,使得截面为五边形?进一步,截面能否为正五边形呢?C 1 A B CD A 1D 1 B 1EG F 图(1)例6 已知一个平面截一个棱长为1的正方体所得的截面是一个六边形(如图所示),证明:此六边形的周长≥一、单选题1.【江西省吉安市2019-2020学年高二上学期期末数学】在正方体1111ABCD A B C D -中,F 为AD 的中点,E 为棱1D D 上的动点(不包括端点),过点,,B E F 的平面截正方体所得的截面的形状不可能是() A .四边形B .等腰梯形C .五边形D .六边形2.【2020届辽宁省实验中学、大连八中、大连二十四中、鞍山一中、东北育才学校高三上学期期末】 如图圆锥PO ,轴截面PAB 是边长为2的等边三角形,过底面圆心O 作平行于母线PA 的平面,与圆锥侧面的交线是以E 为顶点的抛物线的一部分,则该抛物线的焦点到其顶点E 的距离为( )A .1B .12C .13D .144.如图,在正方体1111ABCD A B C D -中,点E ,F ,G 分别是棱AB ,BC ,1BB 的中点,过E ,F ,G 三点作该正方体的截面,则下列说法错误的是()A .在平面11BDDB 内存在直线与平面EFG 平行 B .在平面11BDD B 内存在直线与平面EFG 垂直C .平面1//AB C 平面EFGD .直线1AB 与EF 所成角为45︒5.【云南省昆明市2019-2020学年高三下学期1月月考数学】某同学在参加《通用技术》实践课时,制作了一个工艺品,如图所示,该工艺品可以看成是一个球被一个棱长为,若其中一个截面圆的周长为4π,则该球的半径是()A .2B .4C .D .6.美学四大构件是:史诗、音乐、造型(绘画、建筑等)和数学.素描是学习绘画的必要一步,它包括了明暗素描和结构素描,而学习几何体结构素描是学习素描最重要的一步.某中学2018级某同学在画“切面圆柱体”(用与圆柱底面不平行的平面去截圆柱,底面与截面之间的部分叫做切面圆柱体)的过程中,发现“切面”是一个椭圆,若“切面”所在平面与底面成45︒角,则该椭圆的离心率为()A .12B .2C D .137.如图,已知三棱锥V ABC -,点P 是VA 的中点,且2AC =,4VB =,过点P 作一个截面,使截面平行于VB 和AC ,则截面的周长为()A .12B .10C .8D .68.【2020届广东省东莞市高三期末调研测试理科数学试题】已知球O 是正四面体A BCD -的外接球,2BC =,点E 在线段BD 上,且3BD BE =,过点E 作球O 的截面,则所得截面圆面积的最小值是() A .89πB .1118πC .512π D .49π 9.【2020届福建省福州市高三适应性练习卷数学理科试题】在三棱锥P ABC -中,PA ⊥底面ABC ,,6,8AB AC AB AC ⊥==,D 是线段AC 上一点,且3AD DC =.三棱锥P ABC -的各个顶点都在球O 表面上,过点D 作球O 的截面,若所得截面圆的面积的最大值与最小值之差为16π,则球O 的表面积为() A .72πB .86πC .112πD .128π10.【2020届重庆南开中学高三第五次教学质量检测考试数学文科试题】正三棱锥P ABC -,Q 为BC 中点,PA =,2AB =,过Q 的平面截三棱锥P ABC -的外接球所得截面的面积范围为()A .13,45ππ⎡⎤⎢⎥⎣⎦B .12,23ππ⎡⎤⎢⎥⎣⎦C .[],2ππD .3,2ππ⎡⎤⎢⎥⎣⎦11.一个三棱锥的各棱长均相等,其内部有一个内切球,即球与三梭锥的各面均相切(球在三棱锥的内部,且球与三棱锥的各面只有一个交点),过一条侧棱和对边的中点作三棱锥的截面,所得截面是下列图形中的()A .B .C .D .12.【2020届湖北省部分重点中学高三第二次联考数学试卷理科试题】如图,已知四面体ABCD 的各条棱长均等于4,E ,F 分别是棱AD 、BC 的中点.若用一个与直线EF 垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为( )A .B .4C .D .613.【2020届辽宁省实验中学、大连八中、大连二十四中、鞍山一中、东北育才学校高三上学期期末】仿照“Dandelin 双球”模型,人们借助圆柱内的两个内切球完美的证明了平面截圆柱的截面为椭圆面.如图,底面半径为1的圆柱内两个内切球球心距离为4,现用与两球都相切的平面截圆柱所得到的截面边缘线是一椭圆,则该椭圆的离心率为( )A .12B C .2D 14.已知正方体1111ABCD A B C D -的边长为2,边AB 的中点为M ,过M 且垂直1BD 的平面被正方体所截的截面面积为()A B C .D .15.在棱长为2的正方体1111ABCD A B C D -中,P ,Q ,R 分别是AB ,AD ,11B C 的中点,设过P ,Q ,R 的截面与面11ADD A ,以及面11ABB A 的交线分别为l ,m ,则l ,m 所成的角为()A .90︒B .30C .45︒D .60︒16.在立体几何中,用一个平面去截一个几何体得到的平面图形叫截面,如图,在正方体ABCD ﹣A 1B 1C 1D 1中,点E 、F 分别是棱B 1B 、B 1C 中点,点G 是棱CC 1的中点,则过线段AG 且平行于平面A 1EF 的截面图形为( )A .矩形B .三角形C .正方形D .等腰梯形17.【2020届山西省吕梁市高三上学期第一次模拟考试数学(理)试题】如图四面体A BCD -中,2,AD BC AD BC ==⊥,截面四边形EFGH 满足//EF BC ;//FG AD ,则下列结论正确的个数为() ①四边形EFGH 的周长为定值 ②四边形EFGH 的面积为定值 ③四边形EFGH 为矩形④四边形EFGH 的面积有最大值1A .0B .1C .2D .318.【2018年全国普通高等学校招生统一考试理科数学(新课标I 卷)】已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为A B C .4D 19.【四川省内江市2019-2020学年高二上学期期末数学(文)试题】已知正三棱锥A BCD -的外接球是球O ,正三棱锥底边3BC =,侧棱AB =E 在线段BD 上,且BE DE =,过点E 作球O 的截面,则所得截面圆面积的取值范围是()A .9,34ππ⎡⎤⎢⎥⎣⎦B .[]2,3ππC .11,44ππ⎡⎤⎢⎥⎣⎦D .9,44ππ⎡⎤⎢⎥⎣⎦20.【云南省曲靖市2019-2020学年高三第一次教学质量检测数学文科试题】在四面体ABCD 中,3AB BD AD CD ====,4AC BC ==,用平行于AB ,CD 的平面截此四面体,得到截面四边形EFGH ,则四边形EFGH 面积的最大值为()A .43B .94C .92D .3二、填空题21.【山东省烟台市2019-2020学年高三上学期期末考试数学试题】已知三棱锥P ABC -的四个顶点都在球O 的表面上,PA ⊥平面ABC ,6PA =,AB =2AC =,4BC =,则:(1)球O 的表面积为__________;(2)若D 是BC 的中点,过点D 作球O 的截面,则截面面积的最小值是__________.22.【新疆维吾尔自治区乌鲁木齐市2019-2020学年高三第一次诊断性测试数学文试题】 如图,已知正方体1111ABCD A B C D -的棱长为2,E 、F 、G 分别为11,,AB AD B C 的中点,给出下列命题:①异面直线EF 与AG 所成的角的余弦值为6;②过点E 、F 、G 作正方体的截面,所得的截面的面积是 ③1A C ⊥平面EFG④三棱锥C EFG -的体积为1其中正确的命题是_____________(填写所有正确的序号)23.如图所示,在长方体1111ABCD A B C D -中,点E 是棱1CC 上的一个动点,若平面1BED 交棱1AA 于点F ,给出下列命题:①四棱锥11B BED F -的体积恒为定值;②对于棱1CC 上任意一点E ,在棱AD 上均有相应的点G ,使得//CG 平面1EBD ; ③O 为底面ABCD 对角线AC 和BD 的交点,在棱1DD 上存在点H ,使//OH 平面1EBD ;11 / 11④存在唯一的点E ,使得截面四边形1BED F 的周长取得最小值.其中为真命题的是____________________.(填写所有正确答案的序号)24.【2020届河南省驻马店市高三上学期期末数学(文科)试题】在棱长为2的正方体1111ABCD A B C D -中,E 是正方形11BB C C 的中心,M 为11C D 的中点,过1A M 的平面α与直线DE 垂直,则平面α截正方体1111ABCD A B C D -所得的截面面积为______.三、解答题25.【2015年全国普通高等学校招生统一考试文科数学(新课标Ⅱ带解析)】 如图,长方体1111ABCD A B C D -中,116,10,8AB BC AA ===,点,E F 分别在1111,A B D C 上,114A E D F ==,过点,E F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法与理由);(2)求平面α把该长方体分成的两部分体积的比值.。
高考数学立体几何截面问题在高考数学立体几何中,截面问题是一个重要的考点。
本文将从以下几个方面对截面问题进行讲解:截面的形状和性质、截面与几何体的关系、截面与投影的关系以及截面与面积的关系。
一、截面的形状和性质1.截面的形状截面是指通过一个平面与一个几何体相交,所得的交线。
截面的形状可能是一个点、一条直线、一个平面多边形或一个圆。
在解决立体几何问题时,我们需要根据题目所给的条件,判断出截面的形状,并进一步解决问题。
2.截面的性质截面的性质包括以下几点:(1)截面是平面图形,其形状取决于几何体和截面的位置关系。
(2)截面与几何体的边界相交,但不穿过几何体的内部。
(3)截面与几何体的表面平行,因此可以运用平行投影的知识来研究截面的性质。
二、截面与几何体的关系1.截面与正方体的关系正方体的截面有三种情况:三角形、矩形和五边形。
当截面与正方体的中心轴平行时,可以得到一个正方形;当截面与正方体的中心轴垂直时,可以得到一个三角形;当截面与正方体的中心轴斜交时,可以得到一个矩形或五边形。
长方体的截面也有三种情况:三角形、矩形和五边形。
当截面与长方体的中心轴平行时,可以得到一个矩形;当截面与长方体的中心轴垂直时,可以得到一个三角形;当截面与长方体的中心轴斜交时,可以得到一个梯形或不规则四边形。
三、截面与投影的关系1.投影的定义及性质投影是指将一个几何体投射到一个平面上的结果。
投影的性质包括以下几点:(1)投影是直线与平面相交的结果。
(2)投影的长度等于被投影线段的长度。
(3)投影的方向与被投影线段的方向相同或相反。
2.截面与投影的关系截面与投影之间存在一定的关系。
如果一个几何体在一个平面上的投影是一个多边形,那么这个多边形的形状就取决于该几何体的形状以及它与平面的相对位置。
因此,在解决立体几何问题时,我们需要通过判断几何体在某一平面上的投影来推断出它的形状和性质。
四、截面与面积的关系1.面积的定义及计算方法面积是指一个平面图形所占的面积大小。
立体几何中的截面问题本文档旨在介绍立体几何中的截面问题,包括截面的定义、性质、计算方法等方面的内容。
通过对截面问题的介绍和详细解析,读者可以更好地理解和应用相关知识。
1、截面的定义在立体几何中,截面是指一个平面和立体图形相交而形成的曲线或平面部分。
截面可以是二维的曲线,也可以是三维的平面。
截面问题主要研究在不同情况下的截面形状、面积、体积等性质。
2、截面的性质截面的性质取决于所截图形的性质以及截面的位置和方向。
主要包括以下几个方面:2.1 几何形状:截面可以是点、线段、圆、椭圆、抛物线等各种几何形状。
2.2 面积:截面的面积可能是有限的,也可能是无限的。
2.3 体积:截面可以用来计算图形的体积,从而解决与立体几何有关的问题。
2.4 位置和方向:不同位置和方向的截面可以得到不同的结果,需要根据具体问题进行分析和计算。
3、截面的计算方法根据截面的性质和具体问题的要求,有多种不同的计算方法可以用来求解截面问题。
常用的计算方法包括以下几种:3.1 几何分析法:通过几何分析截面的形状和性质,利用几何定理和方法计算截面的面积、体积等。
3.2 数学建模法:将截面问题转化为数学模型,利用数学方法和计算机技术进行计算和求解。
3.3 数值模拟法:通过数值模拟和计算机仿真,模拟和计算截面问题的解答。
3.4 实验测量法:通过实际测量和实验,获取截面的相关数据和性质进行计算和分析。
附件:本文档无附件。
法律名词及注释:1、立体几何:研究三维空间中点、线、面等几何图形的性质和变换的数学学科。
2、截面:一个平面和立体图形相交而形成的曲线或平面部分。
立体几何中的截面问题立体几何中的截面问题⒈简介立体几何是研究物体的形状、尺寸和空间关系的一门学科。
在立体几何中,截面问题是一个重要的研究方向。
截面问题指的是在一个立体物体中,通过给定的切割平面,研究切割所得的平面图形与原立体物体的关系。
⒉切割平面的表示方法在研究截面问题时,我们通常将切割所用的平面表示为一个方程。
常见的表示方法有点法式、一般式和截距式等。
⑴点法式点法式是通过给定平面上的一点和法向量来表示平面的方程。
设平面上一点为P(x0, y0, z0),法向量为n(n1, n2, n3),则平面的点法式为:n1(x ●x0) + n2(y ●y0) + n3(z ●z0) = 0⑵一般式一般式将平面的方程表示为一个二次齐次方程,形式为Ax +By + Cz + D = 0。
其中A、B、C是平面的法向量的坐标,D是一个与平面有关的常数。
⑶截距式截距式是通过平面与坐标轴交点的位置来表示平面的方程。
设平面与x轴、y轴、z轴的交点分别为(x0, 0, 0),(0, y0, 0),(0, 0, z0),则平面的截距式为:x/x0 + y/y0 + z/z0 = 1⒊平面与立体物体的相交及分类当给定切割平面后,它可能与立体物体相交于不同的方式。
根据相交情况的不同,我们将平面与立体物体的相交分为以下几类:⑴完全相交当切割平面与立体物体完全相交时,即切割平面穿过了立体物体的内部,并将其分成两个或多个部分。
⑵部分相交当切割平面与立体物体部分相交时,即切割平面与立体物体的边界相交。
⑶不相交当切割平面与立体物体不相交时,即切割平面与立体物体没有交点。
⒋截面图形的性质通过研究切割平面与立体物体的相交情况,可以得到截面图形的一些性质。
⑴形状截面图形的形状与切割平面的位置和方向有关。
在同一个立体物体中,不同位置和方向的切割平面可能得到不同形状的截面图形。
⑵面积截面图形的面积可以通过计算得到。
对于平面图形,常用的计算方法有面积公式和积分法。
立几截面问题的十大热门题型【题型一】 做截面的基本功:补全截面方法【典例分析】在长方体ABCD -A 1B 1C 1D 1中,AB=AA 1=2,AD=3,点E 、F 分别是AB 、AA 1的中点,点E 、F 、C 1∈平面α,直线A 1D 1⋂平面α=P ,则直线BP 与直线CD 1所成角的余弦值是3378 A 22 C B 3 D 3 99、、、、答案:B解析:如图,计算可得余弦值是223【提分秘籍】基本规律 截面训练基础:模型:如下图E 、F 是几等分点,不影响作图。
可以先默认为中点,等学生完全理解了,再改成任意等分点方法:两点成线相交法或者平行法特征:1、三点中,有两点连线在表面上。
本题如下图是EF (这类型的关键);2、“第三点”是在外棱上,如C1,注意:此时合格C1点特殊,在于它是几何体顶点,实际上无论它在何处,只要在棱上就可以。
方法一:相交法,做法如图方法二:平行线法。
做法如图【变式演练】1.如图,在正方体1111ABCD A B C D −中,M 、N 、P 分别是棱11C D 、1AA 、BC 的中点,则经过M 、N 、P 的平面与正方体1111ABCD A B C D −相交形成的截面是一个( )A .三角形B .平面四边形C .平面五边形D .平面六边形 【答案】D分别取11A D 、AB 、1C C 的中点、、F H E ,连接MF 、FN 、NH 、HP 、PE 、EM 、11A C 、AC 、NE 、1A B ,先证明、、、H P M F 四点共面,再证明N ∈平面HPMF ,P ∈平面HPMF 可得答案.【详解】如图,分别取11A D 、AB 、1C C 的中点、、F H E ,连接MF 、FN 、NH 、HP 、PE 、EM 、11A C 、AC 、NE 、1A B ,且M 、N 、P 分别是棱11C D 、1AA 、BC 的中点,所以11//A C FM 、//HP AC ,且11//A C AC ,所以//HP FM , 即、、、H P M F 四点共面,因为11//=,F BP F BP A A ,所以四边形1A FPB 是平行四边形,所以1//A B FP ,又因为1//A B NH ,得//NH FP ,且FP ⊂平面HPMF ,H ∈平面HPMF , 所以NH ⊂平面HPMF ,得N ∈平面HPMF ,因为11//=,M H MC B C BH ,所以四边形1C MHB 是平行四边形,所以1//C B MH , 又因为1//C B EP ,得//MH EP ,又MH ⊂平面HPMF ,P ∈平面HPMF ,所以PE ⊂平面HPMF ,得E ∈平面HPMF ,所以、、、、、H P E M F N 六点共面, 平面六边形HPEMFN 即为经过M 、N 、P 与正方体1111ABCD A B C D −相交形成的截面,故选:D.2.如图,在正方体1111ABCD A B C D −中,E 是棱1CC 的中点,则过三点A 、D1、E 的截面过( )A .AB 中点 B .BC 中点 C .CD 中点 D .BB1中点【分析】根据截面特点结合正方形结构性质求解. 【详解】取BC 的中点F ,连接EF ,AF ,如图,则1EF AD ∥,所以F 在截面上,故选:B3.如图正方体1111ABCD A B C D −,棱长为1,P 为BC 中点,Q 为线段1CC 上的动点,过A 、P 、Q 的平面截该正方体所得的截面记为Ω.若1CQ CC λ→→=,则下列结论错误的是( )A .当102λ∈⎛⎫⎪⎝⎭,时,Ω为四边形B .当12λ=时,Ω为等腰梯形C .当3,14λ⎛⎫∈ ⎪⎝⎭时,Ω为六边形D .当1λ=时,Ω6【答案】C 【分析】根据题意,依次讨论各选项,作出相应的截面,再判断即可. 【详解】 解:当102λ<<时,如下图1,Ω是四边形,故A 正确; 当12λ=时,如下图2,Ω为等腰梯形,B 正确: 当314λ<<时,如下图3,Ω是五边形,C 错误; 当1λ=时,Q 与1C 重合,取11A D 的中点F ,连接AF ,如下图4,由正方体的性质易得1////BM PC AF ,且=1PC AF ,截面Ω为1APC F 为菱形,其面积为1162AC PF ⋅=D 正确.【题型二】截面形状的判断【典例分析】一个三棱锥的各棱长均相等,其内部有一个内切球,即球与三棱锥的各面均相切(球在三棱锥的内部,且球与三棱锥的各面只有一个交点),过一条侧棱和对边的中点作三棱锥的截面,所得截面图形是()A.B.C.D.【答案】B【分析】根据题意可知,该三棱锥为正四面体,内切球与各面相切于各个面的中心,即可判断出选项B正确.【详解】如图所示:因为三棱锥的各棱长均相等,所以该三棱锥为正四面体,内切球与各面相切于各个面的中心,即可知过一条侧棱和对边的中点作三棱锥的截面,所得截面图形是.故选:B.【提分秘籍】基本规律一些容易出错误的地方1.截面与几何体表面相交,交线不会超过几何体表面个数。
§7.9立体几何中的截面、交线问题重点解读“截面、交线”问题是高考立体几何问题中最具创新意识的题型,它渗透了一些动态的线、面等元素,给静态的立体几何题赋予了活力.求截面、交线问题,一是与解三角形、多边形面积、周长、扇形弧长、面积等相结合求解,二是利用空间向量的坐标运算求解.题型一截面作图例1如图,在正方体ABCD-A1B1C1D1中,M是A1B1的中点,N在棱CC1上,且CN=2NC1.作出过点D,M,N的平面截正方体ABCD-A1B1C1D1所得的截面,写出作法.解如图所示,五边形DQMFN即为所求截面.作法如下:连接DN并延长交D1C1的延长线于点E,连接ME交B1C1于点F,交D1A1的延长线于点H,连接DH交AA1于点Q,连接QM,FN,则五边形DQMFN即为所求截面.思维升华作截面的几种方法(1)直接法:有两点在几何体的同一个面上,连接该两点即为几何体与截面的交线,找截面实际就是找交线的过程.(2)延长线法:同一个平面有两个点,可以连线并延长至与其他平面相交找到交点.(3)平行线法:过直线与直线外一点作截面,若直线所在的面与点所在的平面平行,可以通过过点找直线的平行线找到几何体与截面的交线.跟踪训练1如图,已知在正方体ABCD -A 1B 1C 1D 1中,M 是棱AA 1的中点,过C ,D 1,M 三点作正方体的截面,作出这个截面图,写出作法.解如图,连接CD 1,连接D 1M 并延长,交DA 的延长线于点N ,连接CN 交AB 于点P ,连接MP ,则四边形CD 1MP 为过C ,D 1,M 三点的正方体的截面.题型二截面图形的形状判断例2(多选)在正方体ABCD -A 1B 1C 1D 1中,点E 是线段DD 1上的动点,若过A ,B 1,E 三点的平面将正方体截为两个部分,则所得截面的形状可能为()A .等边三角形B .矩形C .菱形D .等腰梯形答案ABD解析当点E 与D 1重合时,过A ,B 1,E 三点的截面是等边三角形AB 1D 1,故A 正确;当点E 与D 重合时,过A ,B 1,E 三点的截面为矩形AB 1C 1D ,故B 正确;若截面为菱形,则必有AB 1=AE ,此时点E 与D 1重合,故C 错误;当点E 与DD 1中点重合时,记C 1D 1的中点为F ,连接EF ,FB 1,C 1D (图略),易知EF ∥DC 1,由正方体性质可知,AD ∥B 1C 1且AD =B 1C 1,所以四边形AB 1C 1D 为平行四边形,所以DC 1∥AB 1,所以EF ∥AB 1且EF =12AB 1,设正方体棱长为2,则AE =B 1F =22+12=5,所以过A ,B 1,E 三点的截面为等腰梯形AB 1FE ,故D 正确.思维升华判断几何体被一个平面所截的截面形状,关键在于弄清这个平面与几何体的面相交成线的形状和位置.跟踪训练2已知一个棱柱的底面是正六边形,侧面都是正方形,用至少过该棱柱三个顶点(不在同一侧面或同一底面内)的平面去截这个棱柱,所得截面的形状不可能是()A .等腰三角形B .等腰梯形C .五边形D .正六边形答案D解析如图①,由图可知,截面ABC 为等腰三角形,选项A 可能;截面ABEF 为等腰梯形,选项B 可能;如图②,截面AMDEN 为五边形,选项C 可能;因为侧面是正方形,只有平行于底面的截面才可能是正六边形,故过两底的顶点不可能得到正六边形,选项D 不可能.题型三截面图形的周长或面积例3(2024·朔州模拟)在正方体ABCD -A 1B 1C 1D 1中,棱长为3,E 为棱BB 1上靠近B 1的三等分点,则平面AED 1截正方体ABCD -A 1B 1C 1D 1的截面面积为()A .211B .411C .222D .422答案C解析延长AE ,A 1B 1交于点F ,连接D 1F 交B 1C 1于点G ,如图,在正方体ABCD -A 1B 1C 1D 1中,平面ADD 1A 1∥平面BCC 1B 1,∵平面AFD 1∩平面ADD 1A 1=AD 1,平面AFD 1∩平面BCC 1B 1=EG ,∴AD 1∥GE ,又∵AD 1=32,GE =2,∴四边形AEGD 1是梯形,且为平面AED 1截正方体ABCD -A 1B 1C 1D 1的截面.又∵D 1G =AE =13,在等腰梯形AEGD 1中,过G 作GH ⊥AD 1,∴GH =D 1G 2-D 1H 2=11,∴S =12·(AD 1+EG )·GH =12×(2+32)×11=222.思维升华几何体的截面的相关计算,关键在于根据公理作出所求的截面,再运用解三角形的相关知识得以解决.跟踪训练3(2023·新乡模拟)如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 是棱CC 1的中点,过A ,D 1,E 三点的截面把正方体ABCD -A 1B 1C 1D 1分成两部分,则该截面的周长为()A.32+25B.22+5+3C.9D.22+25+22答案A解析如图,取BC的中点F,连接EF,AF,BC1,E,F分别为棱CC1,BC的中点,则EF∥BC1,又在正方体中BC1∥AD1,则有EF∥AD1,所以平面AFED1为所求截面,因为正方体ABCD-A1B1C1D1的棱长为2,所以EF=2,D1E=AF=22+12=5,AD1=22,所以四边形AFED1的周长为32+25.课时精练一、单项选择题1.过正方体ABCD-A1B1C1D1的棱AB,BC的中点E,F作一个截面,使截面与底面ABCD 所成二面角为45°,则此截面的形状为()A.三角形或五边形B.三角形或四边形C.正六边形D.三角形或六边形答案D解析过棱AB,BC的中点E,F作正方体ABCD-A1B1C1D1的截面,∵二面角D1-EF-D,二面角B1-EF-B都大于45°,∴当截面为EFHJIG时,如图所示,为六边形;当截面为EFM 时,如图所示,为三角形.2.在长方体ABCD -A 1B 1C 1D 1中,若AB =2,AD =AA 1=4,E ,F 分别为BB 1,A 1D 1的中点,过点A ,E ,F 作长方体ABCD -A 1B 1C 1D 1的一个截面,则该截面的周长为()A .62B .65C .25+42D .45+22答案D解析如图,连接AF ,过点E 作EP ∥AF 交B 1C 1于点P ,连接FP ,AE ,即可得到截面AFPE ,因为E 为BB 1的中点,EP ∥AF ,所以B 1P =12A 1F =1,因为AB =2,AD =AA 1=4,则AF =42+22=25,所以EP =12AF =5,AE =22+22=22,FP =22+12=5,所以截面AFPE 的周长为25+5+22+5=45+2 2.3.(2023·承德模拟)在三棱锥P -ABC 中,AB +2PC =9,E 为线段AP 上更靠近P 的三等分点,过E 作平行于AB ,PC 的平面,则该平面截三棱锥P -ABC 所得截面的周长为()A .5B .6C .8D .9答案B解析如图所示,在三棱锥P -ABC 中,过E 分别作EF ∥AB ,EH ∥PC ,再分别过点H ,F 作HG ∥AB ,FG ∥PC ,可得E ,F ,G ,H 四点共面,因为AB ⊄平面EFGH ,EF ⊂平面EFGH ,所以AB ∥平面EFGH ,同理可证,PC ∥平面EFGH ,所以截面即为平行四边形EFGH ,又由E 为线段AP 上更靠近P 的三等分点,且AB +2PC =9,所以EF =13AB ,EH =23PC ,所以平行四边形EFGH 的周长为2(EF +EH )=23(AB +2PC )=6.4.已知正方体ABCD -A 1B 1C 1D 1的棱长为2,M ,N 分别为A 1B 1,B 1C 1的中点,过M ,N 的平面所得截面为四边形,则该截面的最大面积为()A .22B .25C.3102D.92答案D解析如图所示,面积最大的截面四边形为等腰梯形MNCA ,其中MN =2,AC =22,AM =CN =5,高为h =5-12=322,故面积为12×(2+22)×322=92.5.从一个底面圆半径与高均为2的圆柱中挖去一个正四棱锥(以圆柱的上底面为正四棱锥底面的外接圆,下底面圆心为顶点)而得到的几何体如图所示,用一个平行于底面且距底面为1的平面去截这个几何体,则截面图形的面积为()A .4π-4B .4πC .4π-2D .2π-2答案C解析截面图形应为圆面中挖去一个正方形,且圆的半径是2,则截面圆的面积为4π,设正四棱锥的底面正方形边长为a ,则2a 2=16,所以a =22,正四棱锥的底面正方形的面积为(22)2=8,由圆锥中截面的性质,可得圆面中挖去一个正方形与正四棱锥的底面正方形相似,设圆面中挖去一个正方形的面积为S ′,正四棱锥的底面正方形的面积为S ,则S ′S =S ′8=14,从而S ′=2,所以截面图形的面积为4π-2.6.在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为AD ,C 1D 1的中点,过M ,N ,B 1三点的平面截正方体ABCD -A 1B 1C 1D 1所得的截面形状为()A .六边形B .五边形C .四边形D .三角形答案B解析如图,在AB 上取点Q ,且BQ =3AQ ,取CD 的中点P ,连接QM ,BP ,NP ,B 1Q .在DD 1上取点R ,且D 1R =3DR ,连接NR ,MR .因为AQ CP =AM BC =12∠QAM =∠PCB ,所以△QAM ∽△PCB ,所以∠AQM =∠BPC .又AB ∥CD ,所以∠ABP =∠BPC ,所以∠ABP =∠AQM ,所以QM ∥BP .因为N ,P 分别为C 1D 1,CD 的中点,所以PN ∥CC 1,且PN =CC 1.根据正方体的性质,可知BB 1∥CC 1,且BB 1=CC 1,所以PN ∥BB 1,且PN =BB 1,所以四边形BPNB 1是平行四边形,所以B 1N ∥BP ,所以B 1N ∥QM .同理可得NR ∥B 1Q .所以五边形QMRNB 1即为所求正方体的截面.二、多项选择题7.用一个平面截正方体,则截面的形状不可能是()A .锐角三角形B .直角梯形C .正五边形D .正六边形答案BC解析对于A ,截面图形如果是三角形,只能是锐角三角形,不可能是直角三角形和钝角三角形.如图所示的截面为△ABC .设DA =a ,DB =b ,DC =c ,所以AC 2=a 2+c 2,AB 2=a 2+b 2,BC 2=b 2+c 2.所以由余弦定理得,cos ∠CAB =AB 2+AC 2-BC 22AB ·AC =2a 22a 2+b 2a 2+c2>0,所以∠CAB 为锐角.同理可求,∠ACB 为锐角,∠CBA 为锐角.所以△ABC 为锐角三角形,故A 不符合题意;对于B ,如图,截面图形如果是四边形,可能是正方形、矩形、菱形、一般梯形、等腰梯形,不可能是直角梯形,故B 符合题意;对于C ,如图,当截面为五边形时,不可能出现正五边形,故C 符合题意;对于D ,当截面过棱的中点时,如图,即截面为正六边形,故D 不符合题意.8.已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F ,H 是棱BC ,D 1C 1,AA 1上的动点(包含端点),且满足CE =D 1F =AH ,则下列结论正确的是()A .DB 1⊥平面EFHB .存在E ,F ,H ,使得点D 到平面EFH 的距离为1C .平面EFH 截此正方体所得截面面积的最大值为33D .平面EFH 截此正方体所得截面的周长为定值答案ACD解析如图所示,建立空间直角坐标系,设CE =D 1F =AH =m ,m ∈[0,2],则D (0,0,0),E (m ,2,0),F (0,m ,2),H (2,0,m ),B 1(2,2,2),DB 1—→·EF →=(2,2,2)·(-m ,m -2,2)=-2m +2m -4+4=0,故DB 1—→⊥EF →,即DB 1⊥EF ,同理可得DB 1⊥EH ,EF ∩EH =E ,EF ,EH ⊂平面EFH ,故DB 1⊥平面EFH ,故A 正确;平面EFH 的一个法向量为DB 1—→=(2,2,2),点D 到平面EFH 的距离为|DH →||cos 〈DH →,DB 1—→〉|=|DH →·DB 1—→||DB 1—→|=4+2m 23=1,解得m =3-2,不满足题意,故B 错误;设平面EFH 分别与A 1D 1,AB ,CC 1交于P ,Q ,R ,设P (p ,0,2),则PF →·DB 1—→=(-p ,m ,0)·(2,2,2)=-2p +2m =0,p =m ,即P (m ,0,2),同理可得,Q (2,m ,0),R (0,2,m ),故|HR →|=|PE →|=|FQ →|=22,PF ∥HR ∥QE ,如图,过点P 作PM ⊥HR 于M ,EN ⊥HR 于N ,则|PM →|=62(2-m ),|EN →|=62m ,截面面积为S =12(2m +22)×62(2-m )+12×(22+22-2m )×62m =-3(m -1)2+33,当m =1时有最大值为33,故C 正确;截面的周长为2m +2(2-m )+2m +2(2-m )+2m +2(2-m )=62,为定值,故D 正确.三、填空题9.(2024·曲靖模拟)“中国天眼”(如图1)是世界最大单口径、最灵敏的射电望远镜,其形状可近似地看成一个球冠(球冠是球面被平面所截的一部分,如图2所示,截得的圆叫做球冠的底,垂直于截面的直径被截得的线段叫做球冠的高.若球面的半径是R ,球冠的高度是h ,则球冠的面积S =2πRh ).已知天眼的球冠的底的半径约为250米,天眼的反射面总面积(球冠面积)约为25万平方米,则天眼的球冠高度约为________米参考数值:4π-1≈答案130解析由题意得(R -h )2+2502=R 2,则2Rh =h 2+2502,则S =2πRh =πh 2+2502π=250000,所以h 2=250000-2502ππ=250所以h =2504π-1≈250×0.52=130.10.如图,在直三棱柱ABC -A 1B 1C 1中,AB =1,BC =2,AC =5,AA 1=3,M 为线段BB 1上的一动点,则过A ,M ,C 1三点的平面截该三棱柱所得截面的最小周长为________.答案32+14解析由题意可知过A ,M ,C 1三点的平面截该三棱柱所得截面的周长即△AMC 1的周长,因为直三棱柱ABC -A 1B 1C 1的各侧面均为矩形,所以AC 1=AC 2+CC 12=14,直三棱柱ABC -A 1B 1C 1的侧面部分展开图如图所示,则在矩形ACC 1A 1中,AM +MC 1≥AC 1=AC 2+CC 21=32,所以过A ,M ,C 1三点的平面截该三棱柱所得截面的最小周长为32+14.。
高三二轮专题复习立体几何中截面问题重难考点归纳总结作空间几何体截面的常见方法:(1)直接连接法:有两点在几何体的同一个面上,连接该两点即为几何体与截面的交线,找截面就是找交线的过程;(2)作平行线法:过直线与直线外一点作截面,若直线所在的平面与点所在的平面平行,可以通过过点找直线的平行线找到几何体与截面的交线;(3) 作延长线找交点法:若直线相交但是立体图形中未体现,可通过作延长线的方法先找到交点,然后借助交点找到截面形成的交线;(4)辅助平面法:若三个点两两都不在一个侧面或者底面中,则在作截面时需要作一个辅助平面.考点一:截面形状的判断1.在立体几何中,用一个平面去截一个几何体得到的平面图形叫截面.平面以任意角度截正方体,所截得的截面图形不可能为() A .等腰梯形B .非矩形的平行四边形C .正五边形D .正六边形2.在立体几何中,用一个平面去截一个几何体得到的平面图形叫截面,如图,在正方体ABCD ﹣A 1B 1C 1D 1中,点E 、F 分别是棱B 1B 、B 1C 中点,点G 是棱CC 1的中点,则过线段AG 且平行于平面A 1EF 的截面图形为( )A .矩形B .三角形C .正方形D .等腰梯形3.如图所示的几何体是由一个圆柱挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得到的组合体,现用一个垂直于圆柱底面的平面去截这个组合体﹐则截面图形可能是______(填序号).4.(多选题)一个正方体内有一个内切球,用一个平面去截,所得截面图形可能是图中的( )A .AB .BC .CD .D5.在正方体中,M ,N ,Q 分别为棱AB ,的中点,过点M ,N ,Q 作该正方体的截面,则所得截面的形状是() A .三角形B .四边形C .五边形D .六边形考点二:求截面面积6.已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为16的正方形,则该圆柱的表面积为() A . B . C . D . 7.已知球O 的表面积为,则过球Q 一条半径的中点,且与该半径垂直的截面圆的面积为___________. 8.已知圆锥的侧面积为,若其过轴的截面为正三角形,则该圆锥的母线的长为___________. 9.已知正四棱柱中、的交点为,AC 、BD 的交点为,连接,点为的中点.过点且与直线AB 平行的平面截这个正四棱柱所得截面面积的最小值和最大值分别为1,则正四棱柱的体积为______________.111-ABCD A B CD 111,B B C D 1O 2O 12O O 24π20π8π29π11A C 11B D 1O 2O 12O O O 12O O O 1111ABCD A B C D -10.已知正四棱柱中,,,则该四棱柱被过点,C ,E 的平面截得的截面面积为______. 11.已知圆锥的侧面积为20π,底面圆O 的直径为8,当过圆锥顶点的平面截该圆锥所得的截面面积最大时,则点O 到截面的距离为______________.12.在立体几何中,用一个平面去截一个几何体得到的平面图形叫截面. 如图,在棱长为1的正方体中,点分别是棱的中点,点是棱的中点,则过线段且平行于平面的截面的面积为A . B. C . D13.已知棱长为的正四面体,,,分别是棱,,的中点,则正四面体的外接球被三角形所在的平面截得的截面面积是( )A .B .C .D . 14.已知三棱锥的所有棱长均相等,四个顶点在球的球面上,平面经过棱,,的中点,若平面截三棱锥和球所得的截面面积分别为,,则( ) ABC .D . 15.已知正方体的长为2,直线平面,下列有关平面截此正方体所得截面的结论中,说法正确的序号为______.①截面形状一定是等边三角形:②截面形状可能为五边形;③截面面积的最大值为④存在唯一截面,使得正方体的体积被分成相等的两部分.16.已知某圆锥轴截面的顶角为,过圆锥顶点的平面截此圆锥所得截面面积的最大值为,则该圆锥的1111ABCD A B C D -1124BE BB ==143AB AA =1A 1111ABCD A B C D -,E F 111,B B B C G 1CC AG 1A EF 198894ABCD E F N AB AC AD ABCD EFN 73π83π103π163πA BCD -O αAB AC AD αA BCD -O 1S 2S 12S S =38π364π1111ABCD A B C D -1AC ⊥αα120 2底面半径为() ABC .D .17.在长方体中,已知,,分别为,的中点,则平面被三棱锥外接球截得的截面圆面积为___________.考点三:求截面周长18.如图,在正方体中,,为棱的中点,为棱的四等分点(靠近点),过点作该正方体的截面,则该截面的周长是___________.19.已知在棱长为6的正方体ABCD -A 1B 1C 1D 1中,点E ,F 分别是棱C 1D 1,B 1C 1的中点,过A ,E ,F 三点作该正方体的截面,则截面的周长为________.20.正三棱柱ABC ﹣A 1B 1C 1中,所有棱长均为2,点E ,F 分别为棱BB 1,A 1C 1的中点,若过点A ,E ,F 作一截面,则截面的周长为( )1111ABCD A B C D -122AA AB AD ===E F 1BB 11D C 11A BCD 1C CEF -1111ABCD A B C D -4AB =E BC F 11A D 1D ,,A E FA .B .C .D .21.在三棱锥中,,截面与,都平行,则截面的周长等于( )A .B .C .D .无法确定考点四:截面最值问题22.已知三棱锥的四个顶点在球的球面上,,的正三角形,三棱锥的体积为,为的中点,则过点的平面截球所得截面面积的取值范围是( ) A . B . C . D . 23.正四面体ABCD 的棱长为4,E 为棱AB 的中点,过E 作此正四面体的外接球的截面,则该截面面积的取值范围是( ) A . B . C . D . 24.已知球O 是正三棱锥A -BCD (底面是正三角形,顶点在底面的射影为底面中心)的外接球,BC =3,AB =E 在线段BD 上,且BD =3BE .过点E 作球O 的截面,则所得截面面积的最小值是( ) A . B. C . D .25.如图,四边形为四面体的一个截面,若四边形为平行四边形,,,则四边形的周长的取值范围是___________.26.如图,设正三棱锥的侧棱长为,,分别是上的点,过作三棱锥的截面,则截面周长的最小值为________.+A BCD -AB CD a ==MNPQ AB CD MNPQ 2a 4a a P ABC -O PA PB PC ==ABC ∆P ABC -16Q BC Q O 13,24ππ⎡⎤⎢⎥⎣⎦12,23ππ⎡⎤⎢⎥⎣⎦13,44ππ⎡⎤⎢⎥⎣⎦12,43ππ⎡⎤⎢⎥⎣⎦[]46ππ,[]412ππ,[]4ππ,[]6ππ,2π3π4π5πEFGH ABCD EFGH 4AB =6CD =EFGH P ABC -240APB ∠=︒,E F ,BP CP ,,A E F AEF27.正三棱锥,点在棱上,且,已知点都在球的表面上,过点作球的截面,则截球所得截面面积的最小值为___________.考点五:有关截面的综合问题28.如图,在正方体中,点P 为线段上的动点(点与,不重合),则下列说法不正确的是( )A .B .三棱锥的体积为定值C .过,,三点作正方体的截面,截面图形为三角形或梯形D .DP 与平面所成角的正弦值最大为 29.(多选题)在棱长为2的正方体中,以下结论正确的有()A .三棱锥外接球的体积是B .当点在直线上运动时,的最小值是P ABC -AB ==E PA 3PE EA =P A B C 、、、O E O ααO 1111ABCD A B C D -11A C P 1A 1C BD CP ⊥C BPD -P C 1D 1111D C B A 131111ABCD A B C D -11B A DC -Q 1BC 1A Q QC +8+C .若棱,,的中点分别是,,,过,,三点作正方体的截面,则所得截面面积为D .若点是平面上到点和距离相等的点,则点的轨迹是直线30.(多选题)如图,正方体的棱长为1,P 为的中点,Q 为线段上的动点,过点A ,P ,Q 的平面截该正方体所得的截面多边形记为S ,则下列命题正确的是( )A .当时,S 为等腰梯形B .当时,S 与的交点R 满足C .当时,S 为六边形D .当时,S31.(多选题)在正方体中,,点E ,F 分别为,中点,点P 满足,,则( )A .当时,平面截正方体的截面面积为B .三棱锥体积为定值 AB 1AA 11CDEFG E F G M 1111D C B A D 1C M 11A D 1111ABCD A B C D -BC 1CC 12CQ =34CQ =11C D 113C R =314CQ <<1CQ =1111ABCD A B C D -2AB =AB BC 1AP AA λ= [0,1]λ∈1λ=PEF 941P ECC -C .当时,平面截正方体的截面形状为五边形D .存在点P ,二面角为45°10,3λ⎛⎤∈ ⎥⎝⎦PEF P EF A --Word 版见:高考高中资料无水印无广告word 群559164877详细解析1.C 【详解】画出截面图形如图:可以画出等腰梯形,故A 正确;在正方体中,作截面(如图所示)交,,,分别于点,,,,根据平面平行的性质定理可得四边形中,,且,故四边形是平行四边形,此四边形不一定是矩形,故B 正确;经过正方体的一个顶点去切就可得到五边形.但此时不可能是正五边形,故C 错误;正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,且可以画出正六边形,故D 正确. 故选:C1111ABCD A B C D EFGH 11C D 11A B AB CD E F G H EFGH //EF HG //EH FGEFGH高中数学教研群 QQ 群号929518278 精品资料每天更新2.D 【详解】取的中点,如图连接、、、,由题意得:,, 不在平面内,平面内,∴平面.不在平面内,平面内,∴平面.,平面,平面平面,过线段且平行于平面的截面图形为等腰梯形.故选:.3.①⑤【详解】由题意,当截面过旋转轴时,圆锥的轴截面为等腰三角形,此时①符合条件; 当截面不过旋转轴时,圆锥的轴截面为双曲线的一支,此时⑤符合条件, 综上可知截面的图形可能是①⑤.故答案为:①⑤4.AB 【详解】由组合体的结构特征可知:当截面过球与正方体切点时可知A 正确、C 错误;当截面过正方体的对角面时可知B 正确;此题是正方体的内切球,可知D 错误.故选:AB5.D 【详解】如图所示:分别为中点,M ,N ,Q 确定平面, 且,故,,故,同理可得,,,故截面为六边形.故选:D. BC H AH GH 1D G 1AD //GH EF 1//AH A F GH 1A EF EF ⊆1A EF ||GH 1A EF AH 1A EF 1A F ⊆1A EF ||AH 1A EF GH AH H = ,GH AH ⊆1AHGD ∴1//AHGD 1A EF AG AEF 1AHGDD ,,EF H 111,,AD DD B C αNH MQ ∥N α∈NH α⊂,Q H αα∈∈QH α⊂FQ α⊂EF α⊂EM α⊂6.B 【详解】根据题意,所得截面是边长为4的正方形,结合圆柱的特征,可知该圆柱的底面是半径为的圆,且高为4,所以其表面积.故选:B. 7.【详解】 设球的半径为,则,解得.设截面圆的半径为,由题知:, 所以截面圆的面积.故答案为: 8.【详解】 设圆锥的底面半径为r ,圆锥的母线为l ,又圆锥过轴的截面为正三角形,圆锥的侧面积为, ∴, ∴.故答案为:. 9.3【详解】设正四棱柱的底面边长为a ,高为h ,由题知当截面平行于平面时,截面面积最小;当截面为平面时,截面面积最大,2()22222424S =⨯+⨯⨯=πππ32ππR 248R ππ=R =r r ==232S ππ==32π2329π22,9l r rl ππ==23l =23ABCD 11A B CD因为过点且与直线AB 平行的平面截这个正四棱柱所得截面面积的最小值和最大值分别为1,所以, 于是正四棱柱的体积为.故答案为:3.10.由题意,正四棱柱中,,, 可得,在上取点,使得,连接,则有, 所以四边形是平行四边形,由勾股定理可得,所以所以, 所以四边形是平行四边形的面积为, 故答案为:O 21a ⎧=⎪⎨=⎪⎩13a h =⎧⎨=⎩1111ABCD A B C D -23a h =1111ABCD A B C D -1124BE BB ==143AB AA =1118,2AA BB CC BE ====1DD F 12D F =1,A F CF 11,//A F CE A F CE =1A ECF 11A E CE A C ====2221111cos 2A E CE A C A EC A E CE +-∠===⨯1sin A EC ∠=1A ECF 11sin A E EC A EC ⨯⨯∠==11设圆锥的底面圆的半径为r ,高为h ,母线长为l ,则,∴,h =3,由于h<r ,所以圆锥的轴截面为钝角三角形,所以过圆锥顶点的平面截该圆锥所得的截面为直角三角形时面积最大,如图,△SAB 为截面三角形,SO 为圆锥的高,设点O 到截面的距离为d ,则∴,即, ∴,即点O. 12.B 【详解】取BC 的中点H ,连接,4,20r rl ππ==5l =25,2SAB AB S == 14,2AOB OA OB S ===⨯= 1133SAB AOB S d S h ⋅=⋅ 12513323d ⨯⋅=d =,AH GH因为面AHGD1,面AHGD1,面AHGD1,同理,面AHGD1,又,则平面AHGD1∥平面A1EF,等腰梯形AHGD1,,故选B.13.D【详解】过点作平面的垂线,垂足为,交平面于点,设该四面体外接球球心为,连接,作图如下所示:因为四面体为正四面体,且面,故点为△的外心,则该四面体的球心一定在上,不妨设外接球球心为;因为分别为的中点,则//,//,又,且面,面,故平面//平面,故面,又为中点,故也为中点.因为正四面体的所有棱长为,故1,EF BC GH EF⊄GH⊂EF∴∥1A E∥1A E EF E⋂=98A BCD H EFN'O O,OB BHABCD AH⊥BCDH BCD AH O,,E F N,,AB AC AD EF BC FN CD,EF FN F BC CD C⋂=⋂= ,EF FN⊂EFN,BC CD⊂BCD EFN BCDAO'⊥EFN E AB'O AHABCD4243BH==则设该四面体的外接球半径为,即,则, 在△中,,即, 解得即外接球球心到平面, 设平面截外接球所得圆的半径为,则,解得,故截面圆的面积为.故选:D. 14.B 【详解】设平面截三棱锥所得正三角边长为a ,截面圆的半径为r ,则, 由正弦定理可得, ,故选:B15.④【详解】如图可知,截面形状可以是等边三角形、六边形、正六边形,∴①②明显错误;截面面积的最小值可以趋向于零,故③错误;当截面为正六边形时,截面过正方体的中心,此时正方体的体积被分成相等的两部分.故④正确.故答案为:④AH ===12O H AH ='=R OA OB R ==OH AH R R =-=Rt OHB 222OH BH OB +=222R R ⎫+=⎪⎪⎭R =OO R AO =-==''O EFN EFN r 222r +=2163r =163παA BCD -21S =sin 60a r ==︒22243πa S πr ∴==12S S =∴16.A 【详解】如图,由题可知,,又过圆锥顶点的平面截此圆锥所得截面面积的最大值为,∴,即, 在中,.故选:A. 17.【详解】 以点为原点建立空间直角坐标系如图所示:120APB ∠= 30ABP ∠= 22122l =2l =Rt POB cos302r l === 98πD依题意得:,,,则,,所以,则;设为中点,因为则,所以点为三棱锥外接球的球心,则设球心到平面的距离为,又因为为中点,所以点到平面的距离为,由于,所以故截面圆的半径为,所以截面圆面积为. 故答案为:18如图,取的中点,取上靠近点的三等分点,()0,2,0C ()1,2,1E ()0,1,2F ()1,0,1EC =-- ()111EF ,,=-- 1010EC EF ⋅=+-= EF EC ⊥O CF EF EC ⊥1EO OC FO C O ===O 1C CEF -12R CF ==O 11A BCD h O CF F 11A BCD 2h 111244h C D ==⨯=h =r ==98π98π11C D H 1CC 1C G连接,易证,则五边形为所求截面.因为,所以, 则, 故该截面的周长是.19.如图,延长EF ,A 1B 1,相交于点M ,连接AM ,交BB 1于点H ,延长FE ,A 1D1,相交于点N ,连接AN,交DD 1于点G ,连接FH,EG,可得截面为五边形AHFEG .因为ABCD-A 1B 1C 1D1是棱长为6的正方体,且E ,F 分别是棱C 1D 1,B 1C 1的中点,由中位线定理易得:EF =:AG =AH =EG =FH AH +HF +EF +EG +AG =故答案为:20.B 【详解】如图,在正三棱柱中,延长AF 与CC 1的延长线交于M ,连接EM 交B 1C 1于P ,连接FP ,则四边形AEPF 为所求截面.,,,,AE EG GH HF FA //,//AE HF AF EG AEGHF 4AB =111182,3,1,3BE CE C H D H A F D F CG =======143C G =103AE EG ==5,GH HF AF ===AE EG GH HF AF ++++=+111ABC A B C -过E 作EN 平行于BC 交CC 1于N ,则N 为线段CC 1的中点,由相似于可得MC 1=2,由相似于可得:, 在中,,则,在中,,则在中,,则在中,, 由余弦定理:,则故选:B.21.A 【详解】 设,因为平面,平面平面,平面,所以,同理可得,,,故四边形为平行四边形, 所以,. 因为,所以,, 1MFC MAC △1MPC △MEN 111242,2333PC PC B P =⇒==1Rt AA F 112,1AA A F ==AF ==Rt ABE △2,1AB BE ==AE ==1Rt B EP 1121,3B E B P ==PE ==1C FP 11141,,603C F C P FC P ==∠=︒2224413121cos 60339PF ⎛⎫=+-⨯⨯⨯︒= ⎪⎝⎭PF ==AM k CM=//AB MNPQ ABC MNPQ MN =AB ÌABC //MN AB //PQ AB //MQ CD //NP CD MNPQ 11MN PQ AB AB k ==+1MQ NP k CD CD k==+AB CD a ==1a MN PQ k ==+1ak MQ NP k==+所以四边形的周长为. 故选:A.22.A 【详解】设在底面上的射影为,因为,所以为的中心,由题可知,,由,解得 在正中,可得.从而直角在中解得. 进而可得,,,因此正三棱锥可看作正方体的一角, 正方体的外接球与三棱锥的外接球相同,正方体对角线的中点为球心. 记外接球半径为,则所以过的平面截球所得截面的面积最大为; 又为中点,由正方体结构特征可得 由球的结构特征可知,当垂直于过的截面时, MNPQ 2211a ak MN PQ MQ NP a k k ⎛⎫+++=+= ⎪++⎝⎭P ABC M PA PB PC ==M ABC ∆ABC S ∆1136P ABC ABC V PM S -∆=⨯⨯=PM =ABC ∆AM =ABC 1PA =PA PB ⊥PB PC ⊥PC PA ⊥P ABC -P ABC -O R R Q O 2max 34S R ππ==Q BC 1122OQ PA ==OQ Q截面圆半径最小为. 因此,过的平面截球所得截面的面积范围为. 故选:A.23.A 【详解】如图,将正四面体补为边长是ABCD 的外接球为正方体 的外接球,球心O在体对角线的中点,且球的半径;当OE 垂直于截面时,截面面积最小,截面圆的半径为面积为;当截面过球心O 时,截面面积最大,截面圆的半径为,面积为故选:A24.A【详解】解:如图,O 1是A 在底面的射影,由正弦定理得,△BCD 的外接圆半径r ==2min 12S r ππ==Q O 13,24ππ⎡⎤⎢⎥⎣⎦R =12r ==4π1r R =6π1031sin 602r =⨯=由勾股定理得棱锥的高AO 1;设球O 的半径为R ,则,解得,所以OO 1=1;在△BO 1E 中,由余弦定理得 所以O 1E =1;所以在△OEO 1中,OE;当截面垂直于OE. 故选:A25.【详解】解:四边形为平行四边形,;平面,平面, 平面;又平面,平面平面,,同理可得;设,, ,, ; 又,,, ,且; 四边形的周长为 ,;四边形周长的取值范围是.故答案为:26.将正三棱锥的三个侧面展开如图,由图可知,为使的周长最小,只需让四点共线即可,则当为与交点时,的周长最小,由题意,,∴,得的周长3==()223R R =-2R =2113211,O E =+-⨯==2π(8,12) EFGH //EH FG ∴EH ⊂/ ABD FG ⊂ABD //EH ∴ABD EH ⊂ ABC ABC ABD AB =//EH AB ∴//EF CD EH x =EF y =∴EH CE AB CA =EF AE CD AC =∴1EH EF CE AE AC AB CD CA AC AC+=+==4AB =Q 6CD =∴146x y +=614x y ⎛⎫∴=- ⎪⎝⎭04x <<∴EFGH 2()2[6(1)]4xl x y x =+=+-12x =-81212x ∴<-<∴EFGH (8,12)(8,12)AEF 1,,,A E F A ,E F 1AA ,BP CP AEF 140BPC CPA APB ∠=∠=∠=︒1120APA ∠=︒1AA ===AEF的最小值为故答案为:27.【详解】,,, 同理,故可把正三棱锥补成正方体(如图所示),其外接球即为球,直径为正方体的体对角线,故,设的中点为,连接,则.所以,当平面时,平面截球O 的截面面积最小,,故截面的面积为.故答案为:28.D 【详解】由题可知平面,所以,故A 正确; 由等体积法得为定值,故B 正确; 设的中点为,当时,如下图所示:3π4PA PC PB === AB AC BC ===222PA PC AC ∴+=2CPA π∴∠=2CPB BPA π∠=∠=O 2R =PA F OF OF =OF PA ⊥3OE ==OE ⊥αα=3π3πBD ⊥11ACC A BD CP ⊥113C BPD P BCD BCD V V S AA --==⋅⋅ 11A C M 1P MC ∈此时截面是三角形,当时,如下图所示:此时截面是梯形,故C 正确;选项D ,在正方体中,连接,则为在平面上的射影,则为与平面所成的角,设正方体的棱长为1,,则当取得最小值时,的值最大,即时,, 所以D 不正确. 故选:D.29.ACD 【详解】对于A :三棱锥的外接球即为正方体的外接球,因为正方体的外接球的直径即为正方体的体对角线,即所以外接球的体积是,故选项A 正确;1D QC 1PMA ∈1D QRC 1D P 1D P DP 1111D C B A 1D PD ∠DP 1111D C B A 1PD x =DP =1sin D PD ∠x 1sin D PD ∠111D P A C ⊥x 1sin D PD ∠11B A DC -1111ABCD A B C D -2R =R 34π3V =´=对于B :把沿翻折到与在同一个平面(如图所示),连接,则是的最小值,其中是边长为的等边三角形,是直角边为的等腰直角三角形,所以, 即故选项B 错误;对于C :分别取棱,,的中点,,,连接,,,,,,则易知过,,三点的截面是正六边形,1BCC 1BC 11A C B △1A C 1A C 1A Q QC +11A C B △1BCC 211A C A Q QC =+==1A Q QC +11A D 1CC BC H M N EF FH HG GM MN NE E F G EFHGMN所以截面面积为故选项C 正确;对于D :因为是平面上到点和距离相等的点,所以点的轨迹是平面与线段的垂直平分平面的交线,即点的轨迹是平面与平面的交线,所以点的轨迹是直线,即选项D 正确.故选:ACD.30.ABD 【详解】解:过点A ,P ,Q 的平面截正方体,当时,其截面形状为梯形如图1,特别地当时,截面形状为等腰梯形, 当时,其截面形状为五边形如图2. 若,则,所以. 当时,与重合,其截面形状为四边形如图3,此时,因为P 为的中点,且,所以为的中点,所以,同理,所以四边形为平行四边形,所以四边形为菱形,其面积为ABD 正确. 故选:ABD.31.BCD 【详解】A 选项中,当时,与重合,则截面为等腰梯形,其面积为,故A 选项错误; 1(62⨯=M 1111D C B A D 1C M 1111D C B A 1DC 11A BCD M 1111D C B A 11A BCD 11A D M 11A D 102CQ <≤12CQ =112CQ <<34CQ =1113C Q C R QC CM ==113C R =1CQ =Q 1C PQ AP =BC CP AD ∕∕Q MN PC AE ∕∕QE AP ∕∕APQE APQE 112AC PE ⋅==1λ=P 1A 92B 选项中,因为平面,故P 到平面的距离不变,故三棱锥体积为定值.故B 选项正确:C 选项中,当时,其截面刚好为五边形,时,截面为五边形;故C 选项正确;D 选项中,当点P 与重合时,其二面角正切值为,此时二面角大于45°, 所以存在点P ,二面角为45°,D 选项正确;故选:BCD .1//AA 1ECC 1ECC 1P ECC -13λ=103λ<<1A P EF A --。
立体几何中的截面问题一.基本原理:过正方体(长方体)上三点做截面.1.三点中有两点共面例1.如图,在正方体ABCD-A 1B 1C 1D 1中,E,F,G 分别在AB,BC,DD 1上,求作过E,F,G 三点的截面.思路:当三点中有两点共面时,做截面的思路就是先找共面两点所在直线与该平面所有的棱交点,而这些交点由同时在另外一个平面中,即该截面和正方体某个侧面的交点,这样利用公理1,逐次相连找到所有的交点,即可得到截面.解析:作法:①.由于F E ,共面,在底面AC 内,过F E ,作直线EF ,与DA 于L ,显然,此时L 即在侧面D A 1内,又在欲求截面内,而该截面与侧面D A 1又交于点G ,根据公理1,截面与侧面D A 1交于L .同理,过F E ,作直线EF 与DC 的延长线交于M ,此时M 即在侧面1DC 内,又在欲求截面内,根据公理1,截面与侧面1DC 交于M .②在侧面D A 1内,连接LG 交1AA 于K .③在侧面1DC 内,连接GM 交1CC 于H .④连接FH KE ,.则五边形EFHGK EFHGK 即为所求的截面.练习1.(三点两两共面)P,Q,R 三点分别在直四棱柱AC 1的棱BB 1,CC 1和DD 1上,试画出过P,Q,R 三点的截面作法.解析:作法:(1)连接QP,QR 并延长,分别交CB,CD 的延长线于E,F.(2)连接EF 交AB 于T,交AD 于S.(3)连接RS,TP.则五边形PQRST 即为所求截面.例2.(三点所在的棱两两异面)如图,长方体1111D C B A ABCD -中,R Q P ,,分别为111,,CC AB D A 上三点,求过这三点的截面.分析:此题的难点在于R Q P ,,三点均不在同一个侧面(底面)中,这样我们就暂时无法通过侧面(底面)中连线与棱的交点来找到截面的边界点,于是需要先做出一个平面来,让上面三点RQ P ,,中有两点共面,这就转化成例1的情形,从而解决问题.解:如图,作1//BB QE 交11B A 与E ,则1,RC QE 确定一个平面,转化为例1的情形.连接QR EC ,1,交于点F ;连接PF 交1111,B A D C 延长线于H G ,;连接HQ 交11,BB AA 延长线于J I ,;连接JR 交BC 于K .则KRGPIQK 为所作截面.例3.利用平行关系确定截面在三棱锥A BCD -中,AB CD a ==,截面MNPQ 与AB ,CD 都平行,则截面MNPQ 的周长等于()A.2a B.4a C.a D.无法确定解析:设AM k CM=,因为//AB 平面MNPQ ,平面ABC 平面MNPQ MN =,AB Ì平面ABC ,所以//MN AB ,同理可得//PQ AB ,//MQ CD ,//NP CD ,故四边形MNPQ 为平行四边形,所以11MN PQ AB AB k ==+,1MQ NP k CD CD k ==+.因为AB CD a ==,所以1a MN PQ k==+,1ak MQ NP k ==+,所以四边形MNPQ 的周长为2211a ak MN PQ MQ NP a k k ⎛⎫+++=+= ⎪++⎝⎭.故选:A.二.截面的的画法小结1.确定截面的主要依据有(1)平面的四个公理及推论.(2)直线和平面平行的判定和性质.(3)两个平面平行的性质.2.作截面的几种方法(1)直接法:有两点在几何体的同一个面上,连接该两点即为几何体与截面的交线,找截面实际就是找交线的过程。
立体几何中的截面问题傅钦志(浙江省衢州中专,324000) 收稿日期:2006-12-19 修回日期:2006-12-28 (本讲适合高中)截面问题涉及到截面形状的判定、截面面积和周长的计算、截面图形的计数、截面图形的性质及截面图形的最值.本文介绍此类问题的求解方法.1 判断截面图形的形状例1 过正方体ABCD -A 1B 1C 1D 1的棱AB 、BC 的中点E 、F 作一个截面,使截面与底面所成的角为45°.则此截面的形状为( ).(A )三角形或五边形(B )三角形或六边形(C )六边形(D )三角形或四边形(第六届希望杯全国数学邀请赛)图1讲解:如图1,显然,过点E 、F 必有一个截面与棱BB 1相交,此截面是三角形.设过点D 1的截面与底面所成的角为α,易求得tan α=tan ∠D 1G D=223<1.故α<45°.设过A 1C 1的截面与底面所成的角为β,易求得tan β=tan ∠O 1G O =22>1.故β>45°.于是,所求的另一截面应与A 1D 1、D 1C 1相交(不过其端点),为六边形.故选(B ).评注:先计算出特殊位置的截面与底面所成的角,再根据截面所处的位置确定截面的形状.若截面与棱DD 1相交,则截面为五边形;若截面与棱A 1D 1、D 1C 1都相交(但不过其端点),则截面为六边形;若截面与棱A 1B 1、B 1C 1都相交(但不过点B 1),则截面为四边形.2 截面面积和周长的计算 例2 如图2,正方体的三条棱为AB 、图2BC 、CD ,AD 是体对角线.点P 、Q 、R 分别在AB 、BC 、CD 上,A P =5,P B =15,BQ =15,CR =10.那么,平面PQR 向各方向延伸后与正方体的交线组成的多边形的面积是多少?(第16届美国数学邀请赛)讲解:因为B P =BQ ,所以,PQ ∥AC .这样,过点R 且平行于PQ 的直线交A F 于点U ,且AU =CR .因为过点R 且平行于PQ 的直线在平面PQR 上,所以,U 是相交得出的多边形的顶点.又UR 的中点是正方体的中心,故相交得出的多边形上的点关于正方体中心对称.因此,它的面积是梯形PQRU 面积的2倍.易知UR =202,PQ =152,PU =5 5.故所求面积为(UR +PQ )PU 2-UR -PQ22=35×2×2252=525.评注:解此题的关键是,正确画出平面PQR 与正方体相截的截面,并判断出它是关于正方体中心对称的.例3 一平面与正方体表面的交线围成的封闭图形称为正方体的“截面图形”.棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 是AB 的中点,F 是CC 1的中点.则过D 1、E 、F三点的截面图形的周长等于( ).(A )112(25+213+95)(B )112(15+413+95)(C )112(25+213+65)(D )112(15+413+65)(第十四届希望杯全国数学邀请赛)分析:要计算截面图形的周长,先要作出截面,其依据是平面的基本性质和确定平面的条件.作截面一般有两种方法:一是延长交线得交点;二是作平行线.图3解法1:如图3,分别延长D 1F 、DC 得交点P ,作直线EP 交BC 于点N ,交DA 的延长线于点S ,联结D 1S 交A 1A 于点M ,则五边形D 1MEN F 为截面图形.由相似三角形对应边成比例得A 1M =3MA ,CN =2NB .易得截面五边形D 1MEN F 的周长为112(25+213+95).故选(A ).图4解法2:如图4,作EM ∥A 1S ∥D 1F 交A 1A 于点M (S 为B 1B 的中点),作FN∥C 1T ∥D 1M 交BC于点N (B T =AM ),则五边形D 1MEN F为截面图形.同解法1知应选(A ).3 计算截面图形的个数例4 设四棱锥P -ABCD 的底面不是平行四边形,用平面α去截此四棱锥,使得截面四边形是平行四边形.则这样的平面α( ).(A )不存在(B )只有一个(C )恰有两个(D )有无数多个(2005,全国高中数学联赛江苏赛区初赛)图5讲解:如图5,延长BA 、CD 交于点M ,联结PM ,则PM 为侧面P AB 与侧面PCD 的交线.同理,PN 为侧面P AD 与侧面P BC 的交线.设由直线PM 、PN 所确定的平面为β.作与平面β平行的平面α与四棱锥的各个侧面相截,则截得的四边形是平行四边形(图5中的四边形A 1B 1C 1D 1).易知,这样的平面α有无数个.故选(D ).例5 过正四面体ABCD 的顶点A 作一个形状为等腰三角形的截面,且使截面与底面BCD 所成的角为75°.这样的截面共可作出个.(第六届希望杯全国数学邀请赛)讲解:设正四面体的棱长为1.过点A 作AO ⊥平面BCD 于点O ,则AO =63.以O 为圆心、63cot 75°为半径在平面BCD 上作圆.易知此圆在△BCD 内,且所求截面与平面BCD 的交线是该圆的切线.当切线与△BCD 的一边平行时,对应的截面△AMN 是等腰三角形,则这样的截面有6个.图6当CB 1=DC 1,且B 1C 1和圆相切时(如图6),对应的截面△AB 1C 1是等腰三角形,这样的截面也有6个.作BE 与圆相切,交CD 于点E .由△BCE △ACE ,可得B E =A E ,对应的截面△AB E 也是等腰三角形,这样的截面也有6个.综上,满足条件的截面一共有18个.评注:借助于圆,进行恰当地分类,使问题巧妙地获得解决.4 确定截面图形的性质图7 例6 如图7,已知正方体ABC D -A 1B 1C 1D 1.任作平面α与对角线AC 1垂直,使得平面α与正方体的每个面都有公共点.记这样得到的截面多边形的面积为S ,周长为l .则( ).(A )S 为定值,l 不为定值(B )S 与l 均为定值(C )S 不为定值,l 为定值(D )S 与l 均不为定值(2005,全国高中数学联赛)讲解:先考察特殊情形.不妨设正方体棱长为1.如图7,取E 、F 、G 、H 、I 、J 分别为六条棱的中点,显然,正六边形EFGHIJ 是符合要求的截面,它的周长l 1=32,面积S 1=334.当截面为正△A 1BD 时,其周长l 2=32,面积S 2=32.注意到l 1=l 2,S 1≠S 2,由此可以断定S 不为定值,而l 有可能为定值.再考察一般情形.设六边形J 1E 1F 1G 1H 1I 1为任意一个符合要求的截面,则此截面与前面两个特殊的截面平行.由相似三角形对应边成比例,得J 1E 1D 1B 1=A 1E 1A 1B 1,E 1F 1A 1B =B 1E 1A 1B 1.所以,J 1E 1=2A 1E 1,E 1F 1=2B 1E 1,J 1E 1+E 1F 1=2(A 1E 1+B 1E 1)=2A 1B 1= 2.同理,另四边之和为2 2.因此,六边形J 1E 1F 1G 1H 1I 1的周长为定值3 2.故选(C ).评注:解本题应用了由特殊到一般的思维方法,这是求解复杂问题的常用方法之一.5 求截面图形的最值 例7 如图8,四面体ABCD 的各面都是图8锐角三角形,且AB =CD =a ,AC =BD =b ,AD =BC =c ,平面π分别截棱AB 、BC 、CD 、DA 于点P 、Q 、R 、S .则四边形PQRS的周长的最小值是( ).(A )2a (B )2b (C )2c (D )a +b +c (第十三届希望杯全国数学邀请赛)讲解:如图9,将四面体的侧面展开成平面图形.由于四面体各个面均为锐角三角形,图9且AB =CD ,AC =BD ,AD =BC ,所以,在展开的平面图形中AD BC A ′D ′,ABCD ′,其中,A 与A ′、D 与D ′在四面体中是同一个点,故A 、C 、A ′,D 、B 、D ′分别三点共线,且AA ′=DD ′=2BD .又四边形PQRS 在展开图中变为折线S PQRS ′(S 与S ′在四面体中是同一点),因而,当P 、Q 、R 在SS ′上时,S P +PQ +QR +RS ′最小,即四边形PQRS 周长最小.因为SA =S ′A ′,所以,最小值为l =SS ′=DD ′=2BD =2b .故选(B ).评注:解本题的关键是应用降维的思维方法,化空间为平面.例8 在长方体ABCD -A 1B 1C 1D 1中,AB =a ,BC =b ,CC 1=c (a >b >c ).记过BD 1的截面的面积为S .求S 的最小值,并指出当S 取最小值时截面的位置(即指出截面与有关棱的交点的位置).(第五届希望杯全国数学邀请赛)分析:先考虑截面所有可能的情形(截面可能是矩形,可能是平行四边形),再比较各种情形下截面面积的大小.讲解:(1)截面ABC 1D 1、截面BCD 1A 1、截面DBB 1D 1均为矩形,它们的面积分别记为S 1、S 2、S 3,则S 1=a b 2+c 2,S 2=b c 2+a 2,S 3=ca 2+b 2.因a >b >c ,易证S 1>S 2>S 3.故只须考虑截面DBB 1D 1即可.(2)截面为平行四边形,有如图10(a )、(b )、(c )三种位置(截面B ED 1F 、截面B PD1Q 、截面BRD 1S ),设它们的面积分别为S 4、S 5、S 6.图10对于截面B ED 1F ,作EH ⊥BD 1于点H (如图10(a )),则S 4=EH ·BD 1.因为BD 1是定值,所以,当EH 取最小值时,S 4有最小值S ′4.当EH 是异面直线BD 1、AA 1的公垂线时,它有最小值,且最小值是点A 1到平面DBB 1D 1的距离,即为Rt △A 1B 1D 1斜边B 1D 1上的高ab a 2+b 2.故S ′4=aba 2+b2·a 2+b 2+c 2.同理,S ′5=aca 2+c2·a 2+b 2+c 2,S ′6=bc c 2+b2·a 2+b 2+c 2.易证S ′4>S ′5>S ′6且S ′6<S 3.故截面BRD 1S 面积最小,最小值为bcb 2+c2·a 2+b 2+c 2.此时,B 1R =OG =ac2b 2+c2(如图10(d )).练习题1.正方体的截平面不可能是:①钝角三角形;②直角三角形;③菱形;④正五边形;⑤正六边形.下述选项正确的是( ).(A )①②⑤ (B )①②④(C )②③④ (D )③④⑤图11 (2005,全国高中数学联赛浙江省预赛)(提示:正方体的截面可以是锐角三角形、等腰三角形、等边三角形,但不可能是钝角三角形、直角三角形;对四边形来讲,可以是等腰梯形、平行四边形、菱形、矩形,但不可能是直角梯形;对五边形来讲,可以是任意五边形,不可能是正五边形;对六边形来讲,可以是正六边形.答案:(B ).)2.已知正四面体ABCD 的棱长为2,所有与它的四个顶点距离相等的平面截这个四面体所得截面的面积之和为( ).(A )4 (B )3 (C )3 (D )3+3(2003,全国高中数学联赛山东省预赛)(提示:截面分两类:(1)截面的一侧有1个点,另一侧有3个点,这种截面共有4个;(2)截面的两侧各有2个点,这种截面共有3个.答案:(D ).)3.过正方体ABCD -A 1B 1C 1D 1的对角线BD 1的截面面积为S ,记S 1和S 2分别为S 的最大值和最小值.则S 1S 2为( ).(A )32(B )62(C )233(D )263(2004,湖南省数学竞赛)(答案:(C ).)4.证明:经过正方体中心的任一截面的面积不小于正方体一个侧面的面积.(第18届全苏数学奥林匹克)(提示:易知截面为四边形或六边形.若截面为四边形,那么,它与正方体某两相对侧面不相交,且截面在这两个侧面上的射影为整个侧面.若截面为六边形,考察正方体侧面展开图,知截面周长p ≥32a ,截面面积S >12p ×a2≥324a 2>a 2.)5.如图11,棱锥S -ABCD 的底面是中心为O的矩形ABCD ,AB =4,AD =12,SA =3,SB =5,SO =7.过顶点S 、底面中心O 和棱BC 上一点N 作棱锥的截面.问BN 为何值时,所得的截面△SMN 的面积取得最小值?这个最小值是多少?(1996,北京市数学竞赛复赛(高一))(提示:由条件易知SA ⊥平面ABCD .又OM =ON ,故S △SMN =2S △SMO .易知,当点M 到SO 的距离为异面直线AB 、SO 的距离时,S △SMO 最小.此时,S △SMO =421313,BN =71113.)●命题与解题●一类分式不等式的一种统一证法张友意 张 (湖南师范大学数学与计算机科学学院,410081) 收稿日期:2006-09-07 修回日期:2006-12-26 文[1]给出了赫尔德(H lder )不等式的等价形式:设{a i },{b i },…,{l i }(i =1,2,…,n )为正数列,α,β,…,λ为正数,且δ=α-(β+…+λ)≥1,n ≥2,则∑ni =1a αibβi…l λi≥(∑ni =1a i )αnδ-1(∑ni =1b i )β…(∑ni =1l i )λ.①式①等号成立的充要条件是,当δ=1时,各数列中对应的各项成比例,而当δ>1时,各数列均为常数列.特别地,当n ≥2且α=m +1,β=m (m >0)或 α=-m ,β=-(m +1)(m <-1)时,可得下面的权方和不等式.权方和不等式:若a i >0,b i >0(i =1,2,…,n ),m >0或m <-1,则。
立体几何中截面问题-高考数学微专题突破一、单选题1.下列命题错误的是( )A .圆柱的轴截面是过母线的截面中面积最大的一个B .圆锥的轴截面是所有过顶点的截面中面积最大的一个C .圆台的所有平行于底面的截面都是圆D .圆锥所有的轴截面都是等腰三角形2.一正四面体木块如图所示,点P 是棱VA 的中点,过点P 将木块锯开,使截面平行于棱VB 和AC ,则下列关于截面的说法正确的是( ).A .满足条件的截面不存在B .截面是一个梯形C .截面是一个菱形D .截面是一个三角形3.已知正方体1111ABCD A B C D -,直线1AC ⊥平面α,平面α截此正方体所得截面中,正确的说法是( )A .截面形状可能为四边形B .截面形状可能为五边形C .截面面积最大值为D .截面面积最大值为24.球O 的截面把垂直于截面的直径分成1:3O 的体积为( )A .16πB .163πC .323πD .5.如图,在棱长为2的正方体1111ABCD A B C D -中,11A B 的中点是P ,过点1A 作与截面1PBC 平行的截面,则该截面的面积为( )A .B .C .D .46V ABC -中,40AVB BVC CVA ︒∠=∠=∠=,过点A 作截面则截面AEF ,则截面AEF 的周长的最小值为( )A B .2 C .3 D .47.已知正方体1111ABCD A B C D -的棱长为2,1AC ⊥平面α.平面α截此正方体所得的截面有以下四个结论:①截面形状可能是正三角形①截面的形状可能是正方形①截面形状可能是正五边形①截面面积最大值为则正确结论的编号是( )A .①①B .①①C .①①D .①① 8.已知长方体1111ABCD A B C D -各个顶点都在球面上,8AB AD ==,16AA =,过棱AB 作该球的截面,则当截面面积最小时,球心到截面的距离为( )A .3B .4C .5D .69.过半径为2的球O 表面上一点A 作球O 的截面,若OA 与该截面所成的角是30,则截面的面积是( )A .πB .2πC .3πD .10.直三棱柱111ABC A B C -中,若22BC AB ==,1AA AC ==M 是11B C 中点,过AM 作这个三棱柱的截面,当截面与平面ABC 所成的锐二面角最小时,这个截面的面积为( )A .2BC D11.在直三棱柱111ABC A B C -中,M 是1BB 上的点,3AB =,4BC =,5AC =,17CC =,过三点A 、M 、1C 作截面,当截面周长最小时,截面将三棱柱分成的两部分的体积比为( ).A .34B .45C .910D .101112.已知球O 是正三棱锥P ABC -的外接球,3,AB PA ==点E 在线段AC 上,且3AC AE =,过点E 作球O 的截面,则所得截面中面积最小的截面圆的面积是( ) A .2π B .π C .94π D .74π 13.下列说法正确的是A .平行于圆锥某一母线的截面是等腰三角形B .平行于圆台某一母线的截面是等腰梯形C .过圆锥顶点的截面是等腰三角形D .过圆台上底面中心的截面是等腰梯形14.已知圆锥的底面半径和高相等,侧面积为,过圆锥的两条母线作截面,截面为等边三角形,则圆锥底面中心到截面的距离为( )A B C .2 D 15.用一个平面截半径为25cm 的球,截面面积是2225cm π,则球心到截面的距离是( )A .5cmB .10cmC .15cmD .20cm 16.如图1-1-4所示的几何体:将它们按截面的形状分成两类时,下面分类方法正确的是( )A .截面可能是圆和三角形两类B .截面可能是圆和四边形两类C .截面可能是圆和五边形两类D .截面可能是三角形和四边形两类 17.在侧棱长为的正三棱锥中,,过 作截面,则截面的最小周长为( )A .B .4C .6D .1018.如图,三棱柱111ABC A B C -的所有棱长都为4,侧棱1AA ⊥底面ABC ,P ,Q ,R 分别在棱1AA ,AB ,11B C 上,2AP AQ ==,13B R =,过P ,Q ,R 三点的平面将三棱柱分为两部分,下列说法错误的是( )A.截面是五边形B .截面面积为C .截面将三棱柱体积平分D .截面与底面所成的锐二面角大小为π3 19.过正四面体ABCD 的顶点A 作一个形状为等腰三角形的截面,且使截面与底面BCD 所成的角为75︒,这样的截面有( )A .6个B .12个C .16个D .18个 20.如图,正四棱锥S ABCD -的所有棱长都等于a ,过不相邻的两条棱,SA SC 作截面SAC ,则截面的面积为A .232a B .2a C .212a D .213a 21.棱长为a 的正方体,过上底面两邻边中点和下底面中心作截面,则截面图形的周长等于( )A .2a + BC +D +b 22.在棱长为2的正方体1111ABCD A B C D -中,M 是棱11A D 的中点,过1C ,B ,M 作正方体的截面,则这个截面的面积为( )A .35B .35C .92D .98 23.棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应截面面积为S 1、S 2、S 3,则( )A .S 1<S 2<S 3B .S 1>S 2>S 3C .S 2<S 1<S 3D .S 2>S 1>S 324.一个正方体内接于一个球,过球心作一个截面,如图所示,则截面的可能图形是( )A .①①①B .①①C .①①①D .①①① 25.如图是某几何体的三视图,则过该几何体顶点的所有截面中,最大截面的面积是( )A .2BCD .126.如图是某几何体的三视图,则过该几何体顶点的所有截面中,最大的截面面积是( )A .2BC .4D .32π 27.已知球O 是正三棱锥A BCD -的外接球,底边3BC =,侧棱AB =E 在线段BD 上,且3BD DE =,过点E 作球O 的截面,则所得截面圆面积的取值范围是( )A .5,44ππ⎡⎤⎢⎥⎣⎦B .[]2,4ππC .9,44ππ⎡⎤⎢⎥⎣⎦D .11,44ππ⎡⎤⎢⎥⎣⎦28.如图所示,在棱长为 6的正方体1111ABCD A B C D -中,点,E F 分别是棱1111,C D B C 的中点,过,,A E F 三点作该正方体的截面,则截面的周长为( )A .18+B .C .D .10++二、多选题 29.正方体1111ABCD A B C D -的棱长为2,已知平面1AC α⊥,则关于α截此正方体所得截面的判断正确的是( )A .截面形状可能为正三角形B .截面形状可能为正方形C .截面形状可能为正六边形D .截面面积最大值为30.如图所示,有一正四面体形状的木块,其棱长为a ,点P 是ACD △的中心.劳动课上,需过点P 将该木块锯开,并使得截面平行于棱AB 和CD ,则下列关于截面的说法中正确的是( )A .截面与侧面ABC 的交线平行于侧面ABDB .截面是一个三角形C .截面是一个四边形D .截面的面积为24a 31.如图,已知四棱锥P ABCD -所有棱长均为4,点M 是侧棱PC 上的一个动点(不与点,P C 重合),若过点M 且垂直于PC 的截面将该四棱锥分成两部分,则下列结论正确的是( )A .截面的形状可能为三角形、四边形、五边形B .截面和底面ABCD 所成的锐二面角为4πC .当1PM =时,截面的面积为D .当2PM =时,记被截面分成的两个几何体的体积分别为()1212,>V V V V ,则123=V V32.如图,设正方体1111ABCD A B C D -的棱长为2,E 为11A D 的中点,F 为1CC 上的一个动点,设由点A ,E ,F 构成的平面为α,则( )A .平面α截正方体的截面可能是三角形B.当点F 与点1C 重合时,平面α截正方体的截面面积为C .点D 到平面α D .当F 为1CC 的中点时,平面α截正方体的截面为五边形33.正方体的截面可能是( )A .钝角三角形B .直角三角形C .菱形D .正六边形三、双空题34.正方体1111ABCD A B C D -的棱长为1,点K 在棱11A B 上运动,过,,A C K 三点作正方体的截面,若K 为棱11A B 的中点,则截面面积为_________,若截面把正方体分成体积之比为2:1的两部分,则11A K KB =_______35.正方体1111ABCD A B C D -的棱长为2,点K 在棱11A B 上运动,过,,A C K 三点作正方体的截面,若K 与1B 重合,此时截面把正方体分成体积之比为(01)λλ<<的两部分,则λ=______;若K 为棱11A B 的中点,则截面面积为________.36.正方体1111ABCD A B C D -的棱长为2,M ,N ,E ,F 分别是11A B ,AD ,11B C ,11C D 的中点,则过EF 且与MN 平行的平面截正方体所得截面的面积为______,CE 和该截面所成角的正弦值为______.37.已知三棱锥P ABC -的四个顶点都在球O 的表面上,PA ⊥平面ABC ,6PA =,AB =2AC =,4BC =,则球O 的表面积为________;若D 是AB 的中点,过点D 作球O 的截面,则截面面积的范围是________.四、填空题38.如图所示,在棱长为2的正方体1111ABCD A B C D -中,11A B 的中点是P ,过点1A 作与截面1PBC 平行的截面,则截面的面积为__________.39.过半径为2的球O 表面上一点A 作球O 的截面,截面的面积为3π,则球心O 到该截面的距离为______40.已知正方体1111ABCD A B C D -的棱长为2,直线1AC ⊥平面α.平面α截此正方体所得截面有如下四个结论:①截面形状可能为正三角形;①截面形状可能为正方形;①截面形状不可能是正五边形;①截面面积最大值为其中所有正确结论的编号是______.41.体积为12的四面体ABCD 中,E F G 、、分别是棱AB BC AD 、、上的点,且2AE EB =,BF FC =,2AG GD =.过点E F G 、、作截面EFHG ,且点C 到此截面的距离为1.则此截面的面积是______.42.已知圆锥的底面半径和高相等,侧面积为4π,过圆锥的两条母线作截面,截面为等边三角形,则圆锥底面中心到截面的距离为____.43.在侧棱长为S ABC -中,40ASB BSC CSA ∠=∠=∠=︒,过点A 作截面AEF ,则截面最小的周长为______.44.过正四面体ABCD 的顶点A 作一个形状为等腰三角形的截面,且使截面与底面BCD 所成的角为75。