当前位置:文档之家› 常见的调制方式

常见的调制方式

常见的调制方式
常见的调制方式

1.常见的调制方式

2.模拟调制系统

幅度调制(线性调制)的原理

幅度调制:用载波信号去控制高频载波的振幅,使其按照调制信号的规律而变化

的过程。

调制信号()t V t v ΩΩΩ=ωcos 载波信号()t V t v c c c ωcos = 调幅波(AM )信号

()()[]()()()t

KV t KV t V t

t K V t t v K V t S c c c c c c c c c a c AM ΩΩΩΩ-+++=+=+=ωωωωωωωωcos 2

1

cos 21cos cos cos 1cos 比例系数--a K ,调幅指数--c

a V V K K Ω

= 频域表达式

()()()[]()()[]c c c c AM M M S ωωωωωωδωωδπω-+++

-++=ΩΩΩΩ2

1

抑制载波双边带(DSB )调制

DSB 信号

()()()()ΩΩΩΩΩ-++=*=ωωωωωc c c c c c DSB V KV t V V t V t v t S cos 21

cos 21cos

频域表达式()()()[]c c DSB M M S ωωωωω-++=ΩΩ2

1

单边带(SSB )调制

SSB 信号,上边带 ()()t V V t v c c SSB ΩΩ+=ωωcos 21

频域表达式()()c SSB M S ωωω+=Ω2

1

下边带 ()()t V V t v c c SSB ΩΩ-=ωωcos 21

频域表达式()()c SSB M S ωωω-=Ω2

1

SSB 信号上下边带合起来()t V V t V V t v c c c c SSB ΩΩΩΩ±=ωωωωsin sin 2

1

cos cos 21合

通过相移法可得SSB 信号 相干解调与包络检波 2.4.1相干解调

相干解调也称同步检波。相干解调器的一半模型,它由相乘法器和LPF 组成

例如:DSB 信号()()t V t v t S c c DSB ωcos *=Ω ()()()()t V t v t V t v t t S c c c c c DSB ωωω2cos 12

1

cos cos 2+==*ΩΩ 2.4.2包络检波

,

包络检波器一般由半波或全波整流器和低通滤波器组成。包络检波属于非相干解调

设输入AM 信号()()[]t t v V t S c AM ωcos ΩO +=

在大信号检波时(一般大于),二极管处于受控的开关状态。选择RC 满足如下关系:C H f RC

f <<<<

1

H f 是调制信号的最高频率,C f 是载波频率,在满足C H f RC

f <<<<

1

的条件下,检波器的输出近似为

()t v V ΩO +

DSB 、SSB 、VSB 均是已抑制载波的已调信号,其包络不完全载有调制信号的信息,因而不能采用简单的包络检波方法解调。 非线性调制(角度调制)原理

频率调制(FM ),是指瞬时频率偏移随调制信号()t v ω作线性变化,即

()t v K dt

d f ω?=

f K 是调制灵敏度,单位是()V s rad

?这时相位偏移为

()()dt t v K t f ?Ω=?

调频信号()()[]

dt t v K t A t S f c FM ?Ω+=ωcos

相位调制(PM ),是指瞬时相位偏移随调制信号()t v ω作线性变化,即

()()t v K t p ω?=

p K 是调相灵敏度,单位是V

rad

调相信号()()[]

dt t v K t A t S p c PM ?Ω+=ωcos

常见的调制方式

1. 常见的调制方式 调制方式用途 常规双边带调幅AM 广播 抑制载波双边带调幅DSB 立体声广播 线性调制 单边带调幅SSB 载波通信、无线电台、数传连 残留边带调幅VSB 电视广播、数传、传真 续 频率调制FM 微波中继、卫星通信、广播载非线性调制 相位调制PM 中间调制方式 波 幅度键控ASK 数据传输 调 频率键控FSK 数据传输 制 数字调制相位键控PSK 、DPSK 、QPSK 等数据传输、数字微波、空间 通信 其他高效数字调制QAM 、MSK 等数字微波、空间通信 脉幅调制PAM 中间调制方式、遥测脉冲模拟调制脉宽调制PDM (PWM )中间调制方式 脉脉位调制PPM 遥测、光纤传输 冲脉码调制PCM 市话、卫星、空间通信 调增量调制DM 军用、民用电话 制脉冲数字调制差分脉码调制DPCM 电视电话、图像编码 其他语言编码方式ADPCM 、APC 、中低数字电话 LPC 2. 模拟调制系统

c 2.1 幅度调制(线性调制)的原理 幅度调制: 用载波信号去控制高频载波的振幅, 使其按照调制信号的规律而变化的过程。 调制信号 v t V cos t 载波信号 v c t V c cos c t 调幅波( AM )信号 S AM t V c K a v t cos c t V c 1 K cos t cos c t V c cos c t 1 KV 2 cos c t 1 KV 2 cos c t 比例系数 -- K a ,调幅指数 -- K 频域表达式 S AM c K a V V c 1 M M 2 2.2 抑制载波双边带( DSB )调制 DSB 信号 S DSB t v t V c cos c t 1 V V c 2 cos c t 1 KV 2 V c cos c 频域表达式 1 S DSB M 2 c M c 2.3 单边带( SSB )调制 SSB 信号,上边带 v SSB 上 t 1 V V c 2 cos c t 频域表达式 1 S SSB 上 M c 2 1 下边带 v SSB 下 t V V c cos c t 2 频域表达式 1 S SSB 下 M c 2 SSB 信 号 上 下 边 带 合 起 来 c c c c

不同方式解调下FSK、PSK、DPSK的误码率比较

不同方式解调下FSK、PSK、DPSK 的误码率比较 摘要一般来说,数字解调与模拟调制的基本原理相同,但是数字信号有离散取值的特点。因此数字调制技术有两种方法:1 利用模拟调制的方法去实现数字式调制,即数字调制看成是模拟调制的一个特例,把数字基带信号当做模拟信号的特殊情况处理;2 利用数字信号的离散取值特点通过开关键控载波,从而实现数字调制。这种方法通常称为键控法,比如对载波的振幅,频率和相位进行键控,便可获得振幅键控、频移键控、和相移键控三种基本的数字调制方式。这次为期一周的通信传输课程设计的实习,就是通过MATLAB编程仿真,来更好的理解FSK、PSK、DPSK的调制和解调过程。在这次的实习中,主要是应用MATLAB 进行编程仿真并显示结果。仿真的是

FSK的相干、非相干和过零解调,PSK 的相干解调及DPSK的相干和差分解调。并比较相同调制后的信号不同的解调方式和不同调制后的信号相同的解调方式。关键字:频移键控,相移键控,误码率,信噪比ABSTRACT Generally speaking, digital demodulation and analog modulation of the basic principles of the same, but the digital signal has the characteristics of discrete values. Therefore, digital modulation techniques, there are two methods: one using analog modulation methods to achieve digital modulation, digital modulation that is seen as a special case of analog modulation to digital baseband signal as an analog signal a special case; 2 using digital signal characteristics of discrete values by keying switch carrier in order to achieve digital modulation. This method is usually referred to as keying method, such as the

数字调制系统的性能比较

衡量一个数字通信系统性能优劣的最为主要的指标是有效性和可靠性,下面主要针对二进制频移键控(2FSK)、二进制相移键控(BPSK)、二进制差分相移键控(DBPSK)以及四进制差分相移键控(DQPSK)数字调制系统,分别从误码率、频带利用率、对信道的适应能力以及设备的可实现性大小几个方面讨论。 1. 误码率 通信系统的抗噪声性能是指系统克服加性噪声影响的能力。在数字通信系统中,信道噪声有可能使传输码元产生错误,错误程度通常用误码率来衡量。 在信道高斯白噪声的干扰下,各种二进制数字调制系统的误码率取决于解调器输入信噪比,而误码率表达式的形式则取决于解调方式:相干解调时为互补误 差函数erfc形式(k只取决于调制方式),非相干解调时为指数函数形式。 图1和图2是在下列前提条件下得到: ①二进制数字信号“1”和“0”是独立且等概率出现的; ②信道加性噪声n(t)是零均值高斯白噪声,单边功率谱密度为0n,信道参 恒定; ③通过接受滤波器后的噪声为窄带高斯噪声,其均值为零,方差为2nσ; ④由接收滤波器引起的码间串扰很小,忽略不计; ⑤接收端产生的相干载波的相位差为0。

图1 各种数字调制系统误码率 图2 二进制数字调制系统的误码率曲线 DBPSK ()erfc r 12r e - DQPSK (2sin )2erfc r M π —

图3a MDPSK 信号误码率曲线 图3b MPSK 信号的误码率曲线 (1) 通过图1从横向来看并结合图2得到: 对同一调制方式,采用相干解调方式的误码率低于采用非相干解调方式的误码率,相干解调方式的抗噪声性能优于非相干解调方式。但是,随着信噪比r 的增大,相干与非相干误码性能的相对差别越不明显,误码率曲线有所靠拢。 (2) 通过图1从纵向来看: ①若采用相干解调,在误码率相同的情况下,2224ASK FSK BPSK r r r ==,转化成分贝表示为22()3()6()ASK FSK BPSK r dB dB r dB dB r dB =+=+,即所需要的信噪比的要求为:BPSK 比2FSK 小3dB ,2FSK 比2ASK 小3dB ;BPSK 和DBPSK 相比,信噪比r 一定时,若 ()e BPSK P 很小,则()()/2e DBPSK e BPSK P P ≈,若()e BPSK P 很大,则有()()/1e DBPSK e BPSK P P ≈,意味着()e DBPSK P 总是大于()e BPSK P ,误码率增加,增加的系数在1~2之间变化,说明DBPSK 系统抗加性白噪音性能比BPSK 的要差;总之,使用相干解调时,在二进制数字调制系统中,BPSK 的抗噪声性能最优。 ②若采用非相干解调,在误码率相同的情况下,信噪比的要求为:DBPSK

数字调制概述

3.4.1数字调制概述 1934年美国学者李佛西提出脉冲编码调制(PCM)的概念,从此之后通信数字化的时代应该说已经开始了,但是数字通信的高速发展却是20世纪70年代以后才开始的。随着时代的发展,用户不再满足于听到声音,而且还要看到图像;通信终端也不局限于单一的电话机,而且还有传真机和计算机等数据终端。现有的传输媒介电缆、微波中继和卫星通信等将更多地采用数字传输。 1.数字调制概述 数字信号的载波调制是信道编码的一部分,之所以在信源编码和传输通道之间插入信道编码是因为通道及相应的设备对所要传输的数字信号有一定的限制,未经处理的数字信号源不能适应这些限制。由于传输信道的频带资源总是有限的,因此在充分得利用现有资源的前提下,提高传输效率就是通信系统所追求的最重要指标之一。 模拟通信很难控制传输效率,最常见到的单边带调幅(SSB)或残留边带调幅(VSB)可以节省近一半的传输频带。由于数字信号只有―0‖和―1‖两种状态,所以数字调制完全可以理解为像报务员用开关键控制载波的过程,因此数字信号的调制方式一般均为较简单的键控方式。 常用的数字调制技术有2ASK(Amplitude Shift Keying,幅移键控)、4ASK、8ASK、BIT/SK(Phase Shift Keying,相移键控)、QPSK、8PSK、2FSK、4FSK等,频带利用率从1bit/s/Hz~3bit/s/Hz。更有将幅度与相位联合调制的QAM(Quadrature Amplitude Modulation,正交振幅调制)技术,目前数字微波中广泛使用的256QAM,其频带利用率可达8bit/s/Hz,8倍于2ASK或BIT/SK。此外,还有可采用减小相位跳变的MSK等特殊的调制技术,为某些专门应用环境提供了强大的工具。近年来,四维调制等高维调制技术的研究也得到了迅速发展,并已应用于高速MODEM中,为进一步提高传输效率奠定了基础。总之,数字通信所能够达到的传输效率远远高于模拟通信,调制技术的种类也远远多于模拟通信,大大提高了用户根据实际应用需要选择系统配置的灵活性。 2.映射 信息与表示、承载它的信号之间存在着对应关系,这种关系称为―映射‖。接收端正是根据事先约定的映射关系从接收信号中提取发射端发送的信息的。信息与信号间的映射方式可以有很多种,不同的通信技术就在于它们所采用的映射方式不同。实际上,数字调制的主要目的在于控制传输效率,不同的数字调制技术正是由其映射方式区分的,其性能也是由映射方式决定的。 一个数字调制过程实际上是由两个独立的步骤实现的:映射和调制,这一点与模拟调制不同。映射将多个二元比特转换为一个多元符号,这种多元符号可以是实数信号(在ASK调制中),也可以是二维的复信号(在PSK和QAM调制中)。例如在QPSK调制的映射中,每两比特被转换为一个四进制的符号,对应着调制信号的4种载波。多元符号的元数就等于调制星座的容量。在这种多到一的转换过程中,实现了频带压缩。 3.4.2 调制方式 数字调制就是将数字符号变成适合于信道传输的波形。所用载波一般是余弦信号,调制信号为数字基带信号。利用基带信号去控制载波的某个参数,就完成了调制。 调制的方法主要是通过改变余弦波的幅度、相位或频率来传送信息。其基本原理是把数据信号寄生在载波的上述三个参数中的一个上,即用数据信号来进行幅度调制、频率调制或相位

基于决策论的通信信号调制方式的识别

基于决策论的通信信号调制方式的识别 采用基于决策论的方法,对7种通信调制信号进行识别。利用MATLAB对AM、DSB、SSB、2ASK、2FSK、2PSK、4PSK进行特征提取,根据不同信号在瞬时相位,瞬时幅度,瞬时频率上的不同特征识别出各种信号。 标签:调制识别;决策论;特征参数 1 引言 通信信号调制方式识别在信号的确认、干扰识别、无线电侦听和信号检测等领域得到了广泛的应用。而近几年,在通信技术快速发展的带动下,通信信号的体制与调制方式的样式将朝着多样化的方向发展,调制识别近年来逐渐成为信号处理领域的热点问题。其主要任务就是在未知调制信息内容的情况下,能够对通信信号的调制方式作出判断。 近年来,国内外有很多论文对通信信号调制方式识别的研究,提到了很多方法,如文献[1]提到了小波变换法,星座图分析法,周期普分期法等。可是这些方法的一个共同缺点就是计算量大,在低信噪比的环境下识别准确率不高。 文章针对几种常用通信调制信号在瞬时频率、瞬时幅度、瞬时相位的不同,提取特征参数,并对特征参数判决,进而准确识别出调制方式,并利用并且利用MATLAB软件进行了计算机仿真,直观的反映出通信信号的调制识别过程。利用基于决策理论的识别方法对多种通信信号进行调制方式的识别,该方法具有运算量相对较小,且在低信噪比条件下识别准确率高的特点。 2 决策论基本理论 决策论的原理就是以信息和评价准则为依据,通过数量方法的运用或选取最优决策方案的科学,属于运筹学的一个分支和决策分析的理论基础。在实际的生产生活当中,当一个问题面临不同的状况,出现多个可选方案时,就会构成一个决策,而决策者为对付这些情况所取的对策方案就组成决策方案或策略。 文章判决理论方法采用概率和假设检验理论来系统地表述调制识别问题。选取特征参数,对应每个特征参数都有一个判决门限值t(x)。 3 特征参数的选取与识别流程 3.1 特征参数的选取 决策理论算法需要从信号的离散瞬时幅度a(n)、瞬时相位?椎(n)和瞬时频率f(n)提取信号统计特征。离散瞬时幅度a(n)、瞬时相位?椎(n)和瞬时频率f(n)可以从数字化(A/D转换后)的I分量和Q分量信号中得到,

数字调制技术

数字调制技术 一般情况下,信道不能直接传输由信息源产生的原始信号,信息源产生的信号需要变换成适合信号,才能在信道中传输。将信息源产生的信号变换成适合于信道传输的信号的过程称为调制。在调制电路中,调制信号是数字信号,因此这种调制称为数字调制。数字调制是现代通信的重要方法,它与模拟调制相比有许多优点:数字调制具有更好的抗干扰性能、更强的抗信道损耗及更高的安全性。在数字调制中,调制信号可以表示为符号或脉冲的时间序列,其中每个符号可以有m种有限状态,而每个符号又可采用n比特来表示。主要的数字调制方式包括幅移键控(amplitude shift keying,ASK)、频移键控(frequency shift keying,FSK)、相移键控(phase shift keying,PSK)、多电平正交调幅(multi level quadrature amplitude modulation,mQAM)、多相相移键控(multiphase shift keying,mPSK),也包括近期发展起来的网格编码调制(trellis coded modulation,TCM)、残留边带(vestigial sideband,VSB)调制、正交频分复用(orthogonal frequency division multiplexing,OFDM)调制等。 1.幅移键控 幅移键控就是用数字信号控制高频振荡的幅度,可以通过乘法器和开关电路来实现。幅移键控载波在数字信号1或0的控制下通或断。在信号为1的状态下,载波接通,此时传输信道上有载波出现;在信号为0的状态下,载波被关断,此时传输信道上无载波传送。那么,在接收端就可以根据载波的有无还原出数字信号1和0。移动通信要求调制方式抗干扰能力强、误码性能好、频谱利用率高。二进制幅移键控的抗干扰能力和抗衰落能力差,误码率高于其他调制方式,因此一般不在移动通信中使用。 2. 频移键控 频移键控或称数字频率控制,是数字通信中较早使用的一种调制方式。频移键控广泛应用于低速数据传输设备中。它的调制方法简单、易于实现,解调不需要回复本地载波,可以异步传输,抗噪声和抗衰落能力强。因此,频移键控成为在模拟电话网上传输数据的低速、低成本异步调制解调器的一种主要调制方式。频移键控是用载波的频率来传送数字消息的,即用所传送的数字消息控制载波的

单载波调制和多载波调制优缺点比较

单载波调制和多载波调制优缺点比较 大家都知道,上海交大的ADTB-T方案和清华的DMB-T方案,双方争论的焦点就是,单载波调制性能优越还是多载波调制性能优越。因此,在这里还是有必要简单介绍一下,什么是单载波调制和多载波调制。 所谓单载波调制,就是将需要传输的数据流调制到单个载波上进行传送,如:4-QAM(QPSK)、8-QAM、16-QAM、32-QAM、64-QAM、128-QAM、256-QAM或8-VSB、16-VSB等都是单载波调制。 上海交大的ADTB-T方案选用的是单载波调制,在1999年50周年大庆试播的时候,上海交大的ADTB-T方案采用的是8-VSB数字调制,到后来才改为16-QAM数字调制。 QAM调制也叫正交幅度调制,简称正交调幅;因为正交调幅有很多种调制模式,如上面列出的就有7种,一般记为n-QAM,n表示各种调制映射到星座图上的模数。模数越低,调制和解调电路就越简单,但传输的码率也相应降低,例如:4-QAM的码率为2bit/S,而16-QAM的码率为4bit/S。一般,信号传输条件越差,选择的模式就越低,例如:卫星通信只能选择QPSK,而有线电视可选64-QAM和128-QAM,甚至256-QAM;对于地面电视广播,信号发送一般选8-QAM、16-QAM、32-QAM,最高只能选到64-QAM。 正交调幅就是把一序列需要传送的数字信号(2进制码)分成两组,并分别对两组数字信号进行幅度编码,使之变成幅度不同的调制信号,即I信号和Q信号,然后用I信号和Q信号分别对两个频率相同,但相位正好相差的两个载波进行调幅,最后再把两路调制过的信号合成在一起进行传送。由于在调制之前已经对输入信号进行过幅度编码,因此,这种调制也称为正交数字幅度调制。 我国的HDTV如选用MPGE-2编码,最高传送码率大约为20M bit/S,如果选用16-QAM调制模式,其频谱利用率是每赫芝传送4位数据,即码率为4bit/S。由此可知其载波最高频率约为6MHz,经高频调制后采用残留边带发送,其载频带宽大约为7点多MHz。 所谓多载波调制,就是将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,然后调制到在每个子信道上进行传输。如:n-COFDM,其中n为子载波数目。清华的DMB-T方案选用的是多载波调制,在DMB-T方案中采用3780-COFDM调制方式。多载波调制也叫编码正交频分复用调制。 就多载波调制中的各个载波而言,其调制的工作原理与n-QAM单载波调制的工作原理基本相同,只是把需要传送的数据分成很多组(这里为3780组),然后每组再分成两组,通过幅度编码以后便可生成两组I信号和Q信号,而后用3780组I信号和Q信号分别对3780个频率各不相同的载波进行正交调制,最后把所有的调制信号合在一起进行传送。 上面我们简单介绍了单载波调制和多载波调制的工作原理,下面我们进一步来分析单载波调制和多载波调制的优、缺点。 根据上面分析,采用16-QAM单载波调制,其最高码率为24Mbit/S,载波频率为6MHz;如果选用多载波调制,在码率同样为24Mbit/S 的情况下,采用3780-OFDM多载波调制,对于3780个载波平均下来,每个载波平均传送的码率大约只有6.3Kbit/S,这样,哪怕每个载波都选用QPSK调制,其载波的最高频率还是可以选得很低;如果选用16-QAM或64-QAM调制,其载波的最高频率还可以进一步降低。但这是在没有考虑解码以及图像信号处理需要时间的理想情况,实际并不是这样。 一方面,在数字电视机中,选用的载波频率也不能太低,因为,数字信号传送的速度一定要大于图像信号处理的速度,这样,最后输出信号才不会产生间断。例如,我国HDTV的行扫描频率大约为32KHz,如果不考虑MPEG解码电路以及图像信号处理电路对输入信号处理所需要的时间,那么,多载波的最低频率就不能低于32KHz,否则,行扫描电路就会出现没有信号可扫描的情况,图像显示就会出现间断。因此,MPEG解码电路以及图像信号处理电路对数字信号传送速度也有同样的要求。 另一方面,多载波解调制对数字信号进行分批处理时候,每次都需要等3780个载波传送的数据全部到齐以后,才能一次性地对数据

各种数字调制方法对比

调制是所有无线通信的基础,调制是一个将数据传送到无线电载波上用于发射的过程。如今的大多数无线传输都是数字过程,并且可用的频谱有限,因此调制方式变得前所未有地重要。 如今的调制的主要目的是将尽可能多的数据压缩到最少的频谱中。此目标被称为频谱效率,量度数据在分配的带宽中传输的速度。此度量的单位是比特每秒每赫兹(b/s/Hz)。现在已现出现了多种用来实现和提高频谱效率的技术。 幅移键控(ASK)和频移键控(FSK) 调制正弦无线电载波有三种基本方法:更改振幅、频率或相位。比较先进的方法则通过整合两个或者更多这些方法的变体来提高频谱效率。如今,这些基本的调制方式仍在数字信号领域中使用。 图1显示了二进制零的基本串行数字信号和用于发射的信号以及经过调制后的相应AM和FM信号。有两种AM信号:开关调制(OOK)和幅移键控(ASK)。在图1a中 ,载波振幅在两个振幅级之间变化,从而产生ASK调制。在图1b中,二进制信号关断和导通载波,从而产生OOK调制。 图1:三种基本的数字调制方式仍在低数据速率短距离无线应用中相当流行: 幅移键控(a)、开关键控(b)和频移键控(c)。在载波零交叉点发生二进制状态变化时,这些波形是相 干的。 AM在与调制信号的最高频率含量相等的载波频率之上和之下产生边带。所需的带宽是最高频率含量的两倍,包括二进制脉冲调制信号的谐波。 频移键控(FSK)使载波在两个不同的频率(称为标记频率和空间频率,即fm和fs)之间变换(图1c)。FM会在载波频率之上和之下产生多个边带频率。产生的带宽是最高调制频率(包含谐波和调制指数)的函数,即: m = Δf(T) Δf是标记频率与空间频率之间的频率偏移,或者: Δf = fs –fm T是数据的时间间隔或者数据速率的倒数(1/bit/s)。

SPWM调制方法对比分析

SPWM调制方法对比分析 浙江大学作者:李建林,李玉玲,张仲 摘要:对比分析了三种正弦波脉宽调制(SPWM)控制方法,指出各自的优缺点及应用,给 出了一些数学模型,并对基于载波相移的SPWM(CPS-SPWM)技术进行了较为详尽的分析。 关键词:正弦波脉宽调制;载波相移;载波相移正弦脉宽调制 1 引言 近年来,正弦脉宽调制技术(简称为SPWM技术)以其优良的传输特性成为电力电子装 置中调制技术的基本方式[5]。SPWM法就是以正弦波作为基准波(调制波),用一列等幅的 三角波(载波)与基准正弦波相交,由交点来确定逆变器的开关模式。这样产生的脉冲系列 可以使负载电流中的高次谐波成分大为减小。同时,根据调制波波形的不同,还可以派生出 许多方法,但着眼点都在于如何使变频器的输出电压更好地获得三相对称的正弦波。本文对 比分析了SPWM的三种控制方法,建立了各自的数学模型,并给出了一些仿真结果。 2 正弦波脉宽调制(SPWM)[1][2][3] 2.1 采样法SPWM SPWM法的实现方式有多种,可以由模拟或数字电路等硬件电路来实现,也可以由微处理器运用软硬件结合的办法来实现。用软件来实现SPWM法,实现起来简便,精度高,现在已经被广泛采用,此时所采用的采样型SPWM法,分为自然采样法和规则采样法。其中规则采样法又有对称规则采样法与不对称规则采样法两种。 2.1.1 自然采样法 图1所示的就是自然采样法。它是将基准正弦波与一个三角载波相比较,由两者的交点决定出逆变器开关模式的方法。图1中,T t为三角波的周期,U r为三角波的幅值,正弦波为U c sinωt,T s称为采样周期,T s=T t/2,t1及t2为正弦波与三角波两个相邻交点的时刻。由图1可以得出 (1) 式中:M=U c/U r为正弦波幅值对三角波幅值之比,0

数字微波常用调制技术

数字微波常用调制技术 2002-1-31 吴劲松 摘要:本文简要介绍了数字微波常用调制方式PSK和QAM的基本原理,提出在频谱利用率要求较高时应采用多相位PSK或多电平QAM调制方式,并对日常频率指配中对频段、调制方式的选择提出了建议。 一、前言 随着无线电通信事业的飞速发展,频谱资源的日益紧张,如何改进频谱利用技术就成为需要解决的紧迫课题。十几年来,数字调制技术的研究,主要是围绕着充分地节省频谱和高效率地利用可用频带这一中心展开的。前者指的是已调信号频谱占用率问题,后者指的是信道可用频带利用率问题。对于数字微波,要提高信道频带利用率,可通过多电平调制方法解决。如:采用8PSK、64QAM等方式。 二、移相键控PSK(phaseshiftkeying) 用基带数字信号控制载波的相位,称为移相键控。在恒参信道条件下,移相键控与移幅键控(ASK)和频移键控(FSK)相比,具有较高的抗噪声干扰性能,且能有效地利用所给定的信道频带。即使在有多径衰落的信道中也有较好的结果,所以PSK是一种较好的调制方式。 数字调相又分为绝对调相和差分调相两种方式。绝对调相利用载波相位(初相)的绝对值来表示基带数字信号。如,用0相位表示基带信号的1码,用π 相位表示基带信号的0码,称作PSK;差分调相是利用相邻码元的载波相位的相对变化来表示数字信号,即当数字信号为“1”码时,载波相位移相π(相对于前一码元相位),当数字信号为“0”码时,载波相位不变(相对于前一个码元)。 二相调制BPSK,即用载波的(0,π)两种相位传送二进制的数字(1,0),为了进一步提高传输速率,现代数字微波调相技术中,经常利用载波的一种相位去携带一组二进制信息码,如四相调制(QPSK),载波的四种相位(0,π/2,π,3π/2)对应四种二进制码元的组合(00,01,10,11),在发端一个码元周期内(双比特)传送了2位码,因此其信息传输速率是BPS

实用文档之64-QAM和256-QAM两种调制方式

实用文档之"" 目前应用的比较广泛的是基于有线电视网络的Cable Modem系统,其基本架构如图2所示。有线电视网络通过Cable Modem终端系统(CMTS)与互联网络连接。用户通过二路分离器将从CMTS得到的信号分为两路,一路直接接到用户的电视机中用于用户观看有线电视节目,另一路连接到用户的Cable Modem上,通过Cable Modem调制解调与用户的计算机连接,用户可以使用计算机通过Cable Modem浏览互联网络。 在这种工作模式下,Cable Modem通过正交调幅(QAM)的方式调制解调信号,通过有线电视同轴电缆上和下载数据。这种技术实际上是从有线电视同轴电缆的模拟信号带宽中分离出6MHz作为载频建立下行通道。根据采用的调制方式的不同以不同的速度传输数据。Cable Modem一般采用的是64-QAM和256-QAM两种调制方式,其特性如表1。

同样,为了抑制上行的噪声积累,一般采用16-QAM 或者QPSK 调制方式。其特性如表2所示:

由此可以看出这种工作模式其本质就是利用现有的有线网 络带宽来传递互联网络数据。在这种模式下工作时,Cable Modem终端系统(CMTS)在整个系统中起到非常重要的作用,它不但是Cable Modem的控制中心,而且它还是有线电视网络与互联网络的接口部分。用户通过CMTS与互连网络交换数据。

CMTS结构如图3所示。它其实与一般的互联网接入方案没有太大的区别,系统包括路由器、以太网交换机、用户账号管理服务器、数据缓存服务器。但与一般的互联网接入方案不同的是,它增加了Cable modem控制服务器和将与互联网络交互的数据转为RF信号并嵌入有线电视信号的部分。 这种工作方式所带来的好处是显而易见的,有线电视用户不用铺设新的数据通道,利用现有的有线电视线路,即可以与互连网络交互数据。并且根据表1所示,用户使用时的数据下载速率和现有的DSL、LAN等宽带接入方案不相上下。用户甚至可以无需缴纳网络使用费用,当然这要取决于有线电视网络服务商是否愿意提供这项服务。 但这种工作方式的缺点正如表2所示,由于信噪比的原因,数据上行的速度就远远慢于数据下行的速度。这从以浏览为主的用户而言并不是什么问题,但对一些需要大量上传数据的用户而言这种接入方式就不是很理想了。

常见的调制方式

1.常见的调制方式 2.模拟调制系统 幅度调制(线性调制)的原理 幅度调制:用载波信号去控制高频载波的振幅,使其按照调制信号的规律而变化的过程。 调制信号()t V t v ΩΩΩ=ωcos 载波信号()t V t v c c c ωcos =

调幅波(AM )信号 ()()[]()()()t KV t KV t V t t K V t t v K V t S c c c c c c c c c a c AM ΩΩΩΩ-+++=+=+=ωωωωωωωωcos 2 1 cos 21cos cos cos 1cos 比例系数--a K ,调幅指数--c a V V K K Ω = 频域表达式 ()()()[]()()[]c c c c AM M M S ωωωωωωδωωδπω-+++ -++=ΩΩΩΩ21 抑制载波双边带(DSB )调制 DSB 信号 ()()()()ΩΩΩΩΩ-++=*=ωωωωωc c c c c c DSB V KV t V V t V t v t S cos 21 cos 21cos 频域表达式()()()[]c c DSB M M S ωωωωω-++=ΩΩ2 1 单边带(SSB )调制 SSB 信号,上边带 ()()t V V t v c c SSB ΩΩ+=ωωcos 21 上 频域表达式()()c SSB M S ωωω+=Ω2 1 上 下边带 ()()t V V t v c c SSB ΩΩ-=ωωcos 21 下 频域表达式()()c SSB M S ωωω-=Ω2 1 下 SSB 信号上下边带合起来()t V V t V V t v c c c c SSB ΩΩΩΩ±=ωωωωsin sin 2 1 cos cos 21合 通过相移法可得SSB 信号 相干解调与包络检波 2.4.1相干解调 相干解调也称同步检波。相干解调器的一半模型,它由相乘法器和LPF 组成

移动通信下的数字调制技术开题报告

西安邮电大学 毕业设计(论文)开题报告通信与信息工程学院院(系)信息对抗技术专业12级02班课题名称:移动通信下的数字调制技术的研究 学生姓名:陈小楠学号:03126036 指导教师:刘晓慧 报告日期: 2015年11月4日

1.选题目的(为什么选该课题): 当今移动通信系统基本采用数字调制技术进行信息传递,相比于传统的模拟调制方式,数字调制具有极大优势。现代移动通信网络要求信息传输效率高精确度好,抗噪性强,数字调制技术相比于模拟调制技术在以上方面有着更好的使用价值,数字调制技术可以将信息进行多重复用,同时增设安全密钥,大大提高信息的安全性。随着调制技术的发展,数字调制应用于移动通信网络的成本也得到大大降低。数字调制技术通常分为线性调制技术和恒包络调制技术两大类。蜂窝移动通信是采用蜂窝无线组网方式,在终端和网络设备之间通过无线通道连接起来,进而实现用户在活动中可相互通信。其主要特征是终端的移动性,并具有越区切换和跨本地网自动漫游功能。蜂窝移动通信业务是指经过由基站子系统和移动交换子系统等设备组成蜂窝移动通信网提供的话音、数据、视频图像等业务。调制是对信号源的编码信息进行处理,使其变为适合传输的形式的过程。即是把基带信号(信源)转变为一个相对基带信号而言频率非常高的带通信号.带通信号叫做己调信号,而基带信号叫做调制信号。调制可以通过改变调制后载波的幅度,相位或者频率来实现。 信号的调制可分为模拟调制和数字调制。数字调制是指将用离散的数字信号对载波波形的某些参数(如幅度、相位和频率)进行控制,使这些参数随基带信号的变化而变化。与模拟调制相比,数字调制的优点是频谱利用率高、纠错能力强、抗信道干扰失真能力强,中继时噪声及色散的影响不积累,因此可实现长距离传输,以及高效的多址接入和更高的安全保密性等。 2.前期基础(已学课程、掌握的工具,资料积累、软硬件条件等): 拥有良好的信息对抗技术专业基础,学习了通信原理,信号与系统,移动无线通信原理等课程,对于BPSK,2FSK,2ASK,QPSK,OQPSK,QAM,GSM,频分复用(FDM)时分复用(TDM)码分复用(CDMA)等基础的理论知识有一定的掌握和了解。熟练掌握MATLAB,SIMULINK等通信工具包的使用,将在中国知网,中国文献期刊网查询有关资料及查阅有关图书资料。

常见的调制方式

2.模拟调制系统 幅度调制(线性调制)的原理 幅度调制:用载波信号去控制高频载波的振幅,使其按照调制信号的规律而变化的过程。 调制信号()t V t v ΩΩΩ=ωcos 载波信号()t V t v c c c ωcos = 调幅波(AM )信号

()()[]()()()t KV t KV t V t t K V t t v K V t S c c c c c c c c c a c AM ΩΩΩΩ-+++=+=+=ωωωωωωωωcos 2 1 cos 21cos cos cos 1cos 比例系数--a K ,调幅指数--c a V V K K Ω = 频域表达式 ()()()[]()()[]c c c c AM M M S ωωωωωωδωωδπω-+++ -++=ΩΩΩΩ21 抑制载波双边带(DSB )调制 DSB 信号 ()()()()ΩΩΩΩΩ-++=*=ωωωωωc c c c c c DSB V KV t V V t V t v t S cos 21 cos 21cos 频域表达式()()()[]c c DSB M M S ωωωωω-++=ΩΩ21 单边带(SSB )调制 SSB 信号,上边带 ()()t V V t v c c SSB ΩΩ+=ωωcos 21 上 频域表达式()()c SSB M S ωωω+=Ω2 1 上 下边带 ()()t V V t v c c SSB ΩΩ-=ωωcos 21 下 频域表达式()()c SSB M S ωωω-=Ω2 1 下 SSB 信号上下边带合起来()t V V t V V t v c c c c SSB ΩΩΩΩ±=ωωωωsin sin 2 1 cos cos 21合 通过相移法可得SSB 信号 相干解调与包络检波 2.4.1相干解调 相干解调也称同步检波。相干解调器的一半模型,它由相乘法器和LPF 组成 例如:DSB 信号()()t V t v t S c c DSB ωcos *=Ω ()()()()t V t v t V t v t t S c c c c c DSB ωωω2cos 12 1 cos cos 2+==*ΩΩ 2.4.2包络检波 包络检波器一般由半波或全波整流器和低通滤波器组成。包络检波属于非相

DC-DC的基本调制方式与控制模式的介绍与比较

DC-DC三种基本调制方式的比较 通常来说,DC-DC有三种最常见的调制方式,分别为脉冲宽度调制(PWM)、脉冲频率调制(PFM)和跨周期调制PSM)[17]。他们调制行为的示意图可以用如图2-8所表示,下面将分别介绍三种调制方式,以及他们各大自的优缺点。 时钟 PWM PFM PSM 图2-8 三种调制方式示意图 1)PWM方式 PWM方式,可称之为定频调宽,即开关频率保持恒定,而通过改变在每一个周期内的驱动信号的占空比来达到调制的目的,这是最常用的一种调制方式[18]。当输出电压发生变化时,通过环路的控制,便会使驱动信号的占空比发生改变,从而维持输出电压的恒定。 作为最常用的调制方式,PWM方式有以下优点:控制电路简单,易于设计与实现,输出纹波电压小,频率特性好,线性度高,并且在重负载的情况下有及高的效率。其缺点是随着负载的变轻,其效率也下降,尤其是轻负载的情况下,其效率很低。 2)PFM方式 PFM模式在正常工作时,驱动信号的脉冲宽度保持恒定,但脉冲出现的频率发生改变,即所谓的定宽调频。当输出电压发生变化时,通过环路的调整,而使脉冲出现的频率发生改变,从而实现对电路的控制与调整。PFM又可以分为恒定驱动信号的高电位时间以及恒定驱动信号的低电平时间两种方式。 在具有模式切换的DC-DC电路中,PFM也是很常见到的一种调制试。这种调制方式的优点是:在轻负载的情况下,效率很高,并且频率特性也十分好。但是在重负载的情况下,其效率会明显低于PWM方式,并且由于其纹波的频谱比较分散,没有多少规律,这使得滤波电路的设计变得十分复杂与困难。 3)PSM方式

PSM方式,可称之为定频定宽。其驱动信号的频率与宽度都保持恒定,只是,当负载为最重的情况时,驱动信号满频工作,当负载变轻时,驱动信号就会跳过一些开关周期,在被跨过的周期内,开关功率管一直保持为关断的状态。当负载发生变化时,通过改变跨过周期的数目以及跨周期出现的次数,来实现对系统的调整与控制。 相对于前面的两种控制方式,PSM方式在工业上的应用要晚一些。相比于PWM方式,在轻负载的情况下,PSM要有更高的效率,并且其开关损耗与系统的输出功率成正比,与负载的变化情况关系不大。但是这种调控方式,会使输出电压有着比较大的纹波电压,不适合用于为对电源电压精度要求很高的一些系统供电。 通过以上的分析,我们可以知道,三种调控方式各有优缺点,在使用时,我们应该根据电路的应用情况而进行合理的选择。很多电路中通常都选择PWM与PFM或者PSM相结合的方式,以保证系统在整个负载范围内都有比较高的效率。本论文由于负载情况相对变化不会太大,所以只采用的了PWM方式对电路进行调制。 DC-DC基本的控制模式式介绍 DC-DC有多种反馈控制方式,如电压模式、峰值电流模式(电流模式)、平均电流模式、相加模式和滞回电流模式等[19]。其中最常用的便是电压模式与电流模式,下面将对这两种控制方式进行介绍。 1)电压模式 电压模式是一种比较老,也是比较成熟的一种控制方式。其电路整体结构如图2-9所示。电路正常工作时,误差放大器直接采样输出信号,然后把输出信号与基准电压的误差信号经过误差放大器放大后,输入到PWM比较器,与振荡器输出的三角波信号进行比较,生成控制信号,来控制开关功率管的开启与关断。

数字通信系统的调制技术 翻译

引言 这个应用笔记介绍了数字解调的概念在如今许多通信系统中的应用。重点放在解释那些设计用来提高系统效率的设备。大多数通信系统涉及到这三个类别之一:带宽效率、电源效率和成本效益。带宽效率定义为一个调制方案将数据投放到有限的带宽上的能力。电源效率定义为通信系统在最低的实际功率下可靠地发送信息的水平。在大多数通信系统中,带宽效率放在很重要的位置上。要优化的参数取决于特定系统的要求,可以在下面两个例子见。 对于地面数字微波无线电的设计者来说,最重要的是优秀的带宽效率同是具有低的比特错误率。他们有足够的电源以供使用不用去担心电源效率。他们并不太关心接受者的费用或者容易程度因为他们不必建立庞大的数量。另一方面,手持蜂窝电话设计人员重视电源效率因为这些手机需要用电池运行。费用也同样放在很重要的位置因为蜂窝手机必须用低费用去吸引更多的消费者。所以,这些通信系统牺牲一些带宽效率去提高电源效率和降低成本。 每当这些关于效率的参数(带宽、电源和成本)其中之一增加的时候,另一个也会随之减少,或者变得更加复杂也可能在不好的环境下不能很好地工作。成本费用是系统中的重中之重。低成本无线电总是被需要的。在过去,通过牺牲电源和带宽效率来减低无线电成本是可能的。而如今情况已经改变了。无线电频谱是非常有价值的,而那些不能很好地运用频谱效率的设备将会没有市场或者在竞争中被

新产品所代替。这些权衡因素必须在数字射频通信系统设计中考虑清楚。 应用笔记介绍: ?用于移动数字调制的原因; ?信息如何调制到同相和正交信号上; ?不同种类的数字调制; ?过滤技术来节省带宽; ?在数字调制信号中的方法; ?复用技术用于共享传输信道; ?数字信道以及接受者如何工作; ?数字射频通信系统的测量; ?重要的数字通信系统的关键规格概述表; ?应用在数字射频系统中的一个术语表 这些概念在任何通信系统的建构中均存在。如果你明白了这些结构,那么你就能够明白现在或者未来的任何通信系统如何工作。 第一章为什们进行数字调制 移动数字调制提供了赋予更多信息的能力,更适合于数字数据服务,更高的数据安全性,更好品质的通信系统以及更快的系统可用性。通信系统的发展有以下几方面限制因素:

SPWM调制方法对比分析

SPWM调制方法对比分析 大学作者:建林,玉玲,仲 摘要:对比分析了三种正弦波脉宽调制(SPWM)控制方法,指出各自的优缺点及应用,给出了一些数学模型,并对基于载波相移的SPWM(CPS-SPWM)技术进行了较为详尽的分析。 关键词:正弦波脉宽调制;载波相移;载波相移正弦脉宽调制 1 引言 近年来,正弦脉宽调制技术(简称为SPWM技术)以其优良的传输特性成为电力电子装置中调制技术的基本方式[5]。SPWM法就是以正弦波作为基准波(调制波),用一列等幅的三角波(载波)与基准正弦波相交,由交点来确定逆变器的开关模式。这样产生的脉冲系列可以使负载电流中的高次谐波成分大为减小。同时,根据调制波波形的不同,还可以派生出许多方法,但着眼点都在于如何使变频器的输出电压更好地获得三相对称的正弦波。本文对比分析了SPWM的三种控制方法,建立了各自的数学模型,并给出了一些仿真结果。 2 正弦波脉宽调制(SPWM)[1][2][3] 2.1 采样法SPWM SPWM法的实现方式有多种,可以由模拟或数字电路等硬件电路来实现,也可以由微处理器运用软硬件结合的办法来实现。用软件来实现SPWM法,实现起来简便,精度高,现在已经被广泛采用,此时所采用的采样型SPWM法,分为自然采样法和规则采样法。其中规则采样法又有对称规则采样法与不对称规则采样法两种。 2.1.1 自然采样法 图1所示的就是自然采样法。它是将基准正弦波与一个三角载波相比较,由两者的交点决定出逆变器开关模式的方法。图1中,T t为三角波的周期,U r为三角波的幅值,正弦波为U c sinωt,T s称为采样周期,T s=T t/2,t1及t2为正弦波与三角波两个相邻交点的时刻。由图1可以得出 (1) 式中:M=U c/U r为正弦波幅值对三角波幅值之比,0

数字传输几种常用的调制方式

数字传输几种常用的调制方式 一、残留边带调制(VSB) 残留边带调制VSB是一种幅度调制法(AM),它是在双边带调制的基础上,通过设计适当的输出滤波器,使信号一个边带的频谱成分原则上保留,另一个边带频谱成分只保留小部分(残留)。该调制方法既比双边带调制节省频谱,又比单边带易于解调。 目前,美国ATSC数字电视地面传输采用的就是残留边带调制方式。根据调制电平级数的不同,VSB可分为4-VSB、8-VSB、16-VSB等。其中的数字表示调制电平级数。如8-VSB,表示有8种调制电平,即+7,+5,+3,+1,-1,-3,-5,-7。这样每个调制符号可携带3比特信息。 残留边带调制优点是技术成熟,便于实现,对发射机功放的峰均比要求低;不足的是抗多经和符号间干扰所需的均衡器相当复杂。 由于VSB抗多径,尤其是动态多径的能力差,迄今为止,A TSC只将其用于地面传输的固定接收和部分地区的便携接收。 二、编码正交频分复用调制(COFDM) 正交频分复用是一种多载波调制方式。编码的正交频分复用就是将经过信道编码后的数据符号分别调制到频域上相互正交的大量子载波上,然后将所有调制后信号叠加(复用),形成OFDM时域符号。 由于正交频分复用是采用大量(N个)子载波的并行传输,因此,在相等的传输数据率下,OFDM时域符号长度是单载波符号长度的N倍。这样其抗符号间干扰(ISI)的能力可显著提高,从而减轻对均衡的要求。 由于OFDM符号是大量相互独立信号的叠加,从统计意义上讲,其幅度近似服从高斯分布,这就造成OFDM信号的峰均功率比高。从而提高了对发射机功效线性度的要求,降低了发射机的功率效率。 目前,欧洲数字电视地面传输标准DVB-T中采用的就是COFDM。由于COFDM调制抗动态多径干扰能力强,使得其既可用于地面传输固定接收,而且可以用于便携和移动接收。在我国数字电视地面广播上海试验区,公交920路进行的测试表明,即使在城区多径丰富的地区,接收效果也良好。 三、正交幅度调制(QAM)

相关主题
文本预览
相关文档 最新文档