对数函数与反三角函数
- 格式:doc
- 大小:60.50 KB
- 文档页数:3
基本初等函数幂函数(1)幂函数(2)指数函数(1)指数函数(2)指数函数(3)对数函数(1)对数函数(2)三角函数(1)三角函数(2)三角函数(3)三角函数(4)三角函数(5)反三角函数(1)反三角函数(2)反三角函数(3)反三角函数(4)反三角函数(5)反三角函数(6)反三角函数(7)反三角函数(8)双曲函数(1)双曲函数(2)双曲函数(3)双曲函数(4)双曲函数(5)双曲函数(6)双曲函数(7)反双曲函数(1)反双曲函数(2)反双曲函数(3)反双曲函数(4)反双曲函数(5)反双曲函数(6)y=sin(1/x) (1)y=sin(1/x) (2)y=sin(1/x) (3)y=sin(1/x) (4)y = [1/x](1)y = [1/x](2)y=21/xy=21/x (2)y=xsin(1/x)y=arctan(1/x)y=e1/xy=sinx (x->∞)绝对值函数 y =|x| 符号函数y = sgnx 取整函数 y=[x]极限的几何解释 (1)极限的几何解释 (2)极限的几何解释 (3)极限的性质 (1) (局部保号性)极限的性质 (2) (局部保号性)极限的性质 (3) (不等式性质)极限的性质 (4) (局部有界性)极限的性质 (5) (局部有界性)两个重要极限y=sinx/x (1)y=sinx/x (2)limsinx/x的一般形式y=(1+1/x)^x (1)y=(1+1/x)^x (2)lim(1+1/x)^x 的一般形式(1)lim(1+1/x)^x 的一般形式(2)lim(1+1/x)^x 的一般形式(3)e的值(1)e的值(2)等价无穷小(x->0)sinx等价于xarcsinx等价于x1-cosx等价于x^2/2数列的极限的几何解释海涅定理渐近线水平渐近线铅直渐近线y=(x+1)/(x-1)y=sinx/x (x->∞)夹逼定理(1)夹逼定理(2)数列的夹逼性 (1)数列的夹逼性 (2)pi 是派的意思(如果你没有切换到公式版本)^是次方的意思,$是公式的标记符,切换到公式版(安装mathplayer)就看不到$了1.诱导公式sin(-a)=-sin(a)cos(-a)=cos(a)$sin(pi/2-a)=cos(a)$$cos(pi/2-a)=sin(a)$$sin(pi/2+a)=cos(a)$$cos(pi/2+a)=-sin(a)$$sin(pi-a)=sin(a)$$cos(pi-a)=-cos(a)$$sin(pi+a)=-sin(a)$$cos(pi+a)=-cos(a)$2.两角和与差的三角函数$sin(a+b)=sin(a)cos(b)+cos(α)sin(b)$$cos(a+b)=cos(a)cos(b)-sin(a)sin(b)$$sin(a-b)=sin(a)cos(b)-cos(a)sin(b)$$cos(a-b)=cos(a)cos(b)+sin(a)sin(b)$$tan(a+b)=(tan(a)+tan(b))/(1-tan(a)tan(b))$$tan(a-b)=(tan(a)-tan(b))/(1+tan(a)tan(b))$3.和差化积公式$sin(a)+sin(b)=2sin((a+b)/2)cos((a-b)/2)$$sin(a)−sin(b)=2cos((a+b)/2)sin((a-b)/2)$$cos(a)+cos(b)=2cos((a+b)/2)cos((a-b)/2)$$cos(a)-cos(b)=-2sin((a+b)/2)sin((a-b)/2)$4.积化和差公式 (上面公式反过来就得到了)$sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]$$cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]$$sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]$5.二倍角公式$sin(2a)=2sin(a)cos(a)$$cos(2a)=cos^2(a)-sin^2(a)=2cos^2(a)-1=1-2sin^2(a)$ 6.半角公式$sin^2(a/2)=(1-cos(a))/2$$cos^2(a/2)=(1+cos(a))/2$$tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))$7.万能公式$sin(a)= (2tan(a/2))/(1+tan^2(a/2))$$cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))$$tan(a)= (2tan(a/2))/(1-tan^2(a/2))$8.其它公式(推导出来的 )$a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c)$ 其中 $tan(c)=b/a$ $a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c)$ 其中 $tan(c)=a/b$ $1+sin(a)=(sin(a/2)+cos(a/2))^2$$1-sin(a)=(sin(a/2)-cos(a/2))^2$其他非重点$csc(a)=1/sin(a)$$sec(a)=1/cos(a)$1 三角函数的定义1.1 三角形中的定义图1 在直角三角形中定义三角函数的示意图 在直角三角形ABC,如下定义六个三角函数:•正弦函数•余弦函数•正切函数•余切函数•正割函数•余割函数1.2 直角坐标系中的定义图2 在直角坐标系中定义三角函数示意图在直角坐标系中,如下定义六个三角函数: •正弦函数•余弦函数•正切函数•余切函数•正割函数•余割函数2 转化关系2.1 倒数关系2.2 平方关系2 和角公式3 倍角公式、半角公式 3.1 倍角公式3.2 半角公式3.3 万能公式4 积化和差、和差化积 4.1 积化和差公式4.2 和差化积公式。
基本初等函数知识总结含义:常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数统称为基本初等函数1.常数函数(y=C)(1)定义域: D(f)=(-∞,+∞)(2)值域: Z(f)=C(3) 性质: 它的图像是一条平行于x轴并通过点(0,C)在y轴上截距为C的直线(4 )图像:(5)周期性:常值函数是一个周期函数. 因对于任何x∈(-∞,+∞)和实数T,f(x+T)=f(x)=T,但并无最小正周期【注】常值函数不含自变量且不存在反函数2.幂函数(1)定义:形如y=x^a(a为常数)的函数,即以底数为自变量,幂为因变量,指数为常量的函数称为幂函数.(2)性质:在(0,+∞)内总有意义①当α>0时函数图像过点(0,0)和(1,1),在(0,+∞)内单调增加且无界②当α<0时函数图像过点(1,1),在(0,+∞)内单调减少且无界(3)图像:3.指数函数y=a^x(a>0且a≠1)(1)定义域:x∈R(2)值域:(0,+∞)(3)性质:①单调性:1.当0<a<1时,在(-∞,+∞)内单调减少 2.当a >1时,在(-∞,+∞)内单调增加②奇偶性:非奇非偶函数③周期性:非周期函数④有界性:无界函数(4)图像:①由指数函数y=a^x与直线x=1相交于点(1,a)可知:在y轴右侧,图像从下到上相应的底数由小变大。
②由指数函数y=a^x与直线x=-1相交于点(-1,1/a)可知:在y轴左侧,图像从下到上相应的底数由大变小。
③指数函数的底数与图像间的关系可概括的记忆为:在y轴右边“底大图高”;在y轴左边“底大图低” 如图:(5)运算法则:①②③④4.对数函数y=logax(a>0 且a≠1)(1)定义:如果a^x=N(a>0,且a ≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数一般地,函数y=logax(a>0,且a ≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数(2)定义域:(0,+∞),即x>0(3)值域:R(4)性质:①单调性:1.当0<a<1时,在(0,+∞)内单调减少 2.当a >1时,在(0,+∞)内单调增加②奇偶性:非奇非偶函数③周期性:非周期函数④有界性:无界函数(5)图像:【注】①负数和零没有对数②1的对数是零③底数的对数等于1(6)常用法则/公式:5.三角函数⑴正弦函数y=sin x(1)定义:对边与斜边的比(2)定义域:R(3)值域:【-1,1】(4)最值:1.当X=2Kπ(K∈Z)时,Y 取最大值1 2.当X=2Kπ+3π/2(K∈Z时,Y取最小值-1(5)性质:①周期性:最小正周期都是2πT=2π②奇偶性:奇函数③对称性:对称中心是(Kπ,0),K ∈Z;对称轴是直线x=Kπ+π/2,K ∈Z④单调性:在[2Kπ-π/2,2Kπ+π/2],K∈Z上单调递增;在[2Kπ+π/2,2Kπ+3π/2],K∈Z上单调递减⑤有界性:有界函数(6)图像:(2)余弦函数y=cos x(1)定义:邻边与斜边之比(2)定义域:R(3)值域:【-1,1】(4)最值:1.当X=2Kπ +π /2(K∈Z)时,Y取最大值1 2.当X=2Kπ +π (K∈Z)时,Y取最小值-1(5)性质:①周期性:最小正周期都是2πT=2π②奇偶性:偶函数③对称性:对称中心是(Kπ+π/2,0),K∈Z;对称轴是直线x=Kπ,K∈Z④单调性:在[2Kπ,2Kπ+π],K∈Z上单调递减;在[2Kπ+π,2Kπ+2π],K∈Z上单调递增⑤有界性:有界函数(6)图像:(3)正切函数y=tan x(1)定义:对边与邻边之比(2)定义域:{x∣x≠Kπ+π/2,K∈Z}(3)值域:R(4)最值:无最大值和最小值(5)性质:①周期性:最小正周期都是πT=π②奇偶性:奇函数③对称性:对称中心是(Kπ/2,0),K∈Z④单调性:在[Kπ-π/2,Kπ+π/2],K∈Z上单调递增⑤有界性:无界函数(6)图像:(4)余切函数y=cot x(1)定义:在直角三角形中,某锐角的相邻直角边和相对直角边的比,叫做该锐角的余切。
高等数学求导公式高等数学中的求导公式主要包括常数函数的求导、幂函数的求导、指数函数的求导、对数函数的求导、三角函数的求导、反三角函数的求导、双曲函数的求导、双曲函数的求导、复合函数的求导、隐函数的求导以及参数方程的求导等。
1.常数函数的求导:若f(x)=C,其中C是常数,则f'(x)=0。
2.幂函数的求导:若f(x)=x^n,其中n是任意实数,则f'(x)=n*x^(n-1)。
3.指数函数的求导:若 f(x) = a^x ,其中 a 是正实数(a ≠ 1),则 f'(x) = a^x * ln(a)。
4.对数函数的求导:若 f(x) = loga(x) ,其中 a 是正实数(a ≠ 1),则 f'(x) =1/(x*ln(a))。
5.三角函数的求导:若 f(x) = sin(x) ,则 f'(x) = cos(x)。
若 f(x) = cos(x) ,则 f'(x) = -sin(x)。
若 f(x) = tan(x) ,则 f'(x) = sec^2(x)。
6.反三角函数的求导:若 f(x) = arcsin(x) ,则 f'(x) = 1/sqrt(1-x^2)。
若 f(x) = arccos(x) ,则 f'(x) = -1/sqrt(1-x^2)。
若 f(x) = arctan(x) ,则 f'(x) = 1/(1+x^2)。
7.双曲函数的求导:若 f(x) = sinh(x) ,则 f'(x) = cosh(x)。
若 f(x) = cosh(x) ,则 f'(x) = sinh(x)。
若 f(x) = tanh(x) ,则 f'(x) = sech^2(x)。
8.反双曲函数的求导:若 f(x) = arcsinh(x) ,则 f'(x) = 1/sqrt(x^2+1)。
若 f(x) = arccosh(x) ,则 f'(x) = 1/sqrt(x^2-1) (x > 1)。
分部积分法顺序口诀对于分部积分法,很多小伙伴在学习时感到很烦恼,老是记不住,小编整理了口诀,希望能帮助到你。
一、口诀“反对不要碰,三指动一动”(这是对两个函数相乘里面含有幂函数而言),反——反三角函数对——对数函数三——三角函数指——指数函数(幂函数)。
将分部积分的顺序整理为口诀:“反对幂指三”。
(分别代指五类基本函数:反三角函数、对数函数、幂函数、指数函数、三角函数的积分。
)反>对>幂>三>指就是分部积分法的要领当出现两种函数相乘时指数函数必然放到( )中然后再用分部积分法拆开算而反三角函数不需要动再具体点就是:反*对->反(对)反*幂->反(幂)对*幂->对(幂)二、相关知识(一)不定积分的公式1、∫a dx = ax + C,a和C都是常数2、∫x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且a ≠-13、∫1/x dx = ln|x| + C4、∫a^x dx = (1/lna)a^x + C,其中a > 0 且a ≠15、∫e^x dx = e^x + C6、∫cosx dx = sinx + C7、∫sinx dx = - cosx + C8、∫cotx dx = ln|sinx| + C = - ln|cscx| + C(二)求不定积分的方法:第一类换元其实就是一种拼凑,利用f'(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果。
分部积分,就那固定的几种类型,无非就是三角函数乘上x,或者指数函数、对数函数乘上一个x这类的,记忆方法是把其中一部分利用上面提到的f‘(x)dx=df(x)变形,再用∫xdf(x)=f(x)x-∫f(x)dx这样的公式,当然x可以换成其他g(x)。
第一章 极限连续五种基本初等函数:(缺少定义域) 1.幂函数为实数)μμ(x y = 2.指数函数)1,0(≠>=a a a y x 3.对数函数 )1,0(log ≠>=a a x y a4.三角函数x y x y x y x y x y x y csc ,sec ,cot ,tan ,cos ,sin ====== 5.反三角函数x arc y x y x y x y cot ,arctan ,arccos ,arcsin ====一、函数的极限:f(x)在x 0处极限存在的充分必要条件是f(x)在点x 0处的左极限与右极限都存在且相等,此时三者值相同。
是否有极限与在x 0处有无定义无关。
两个重要极限公式:⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧=+=+=→∞→→e x e x x x x x x x x )11(lim ,)1(lim 1sin lim 100 ⎪⎪⎩⎪⎪⎨⎧<∞>==++++++--→∞→∞nm n m n m ba b x b x b a x a x a x Q x P m m m n n n x x ,,0,......lim ,)()(lim 00110110可利用公式对于二、无穷小量:零可以作为无穷小量的唯一的数。
无穷小之商不一定无穷小。
无穷小量比较:设0lim ,0lim 0==→→βαx x x x。
不能在加减运算中使用除中使用注意:只能在乘存在,则且时性质:当时,当。
记为为等价无穷小量与时为同阶无穷小量。
与时则称在若为低阶无穷小量。
较时则称在若记为为高阶无穷小量较时则称在若,! ''limlim ''lim ,'~,'~~1,2~cos 1,~)1ln(,~tan ,~sin 0~,1A ,,0A lim ,,lim )(,,,0lim00000002000βαβαβαββααβαβαβαβαβαβαβοαβαβαx x x x x x xx x x x x x x x xe x x x x x x x x x x x x x x x →→→→→→=→--+→=→≠=→∞==→=三、函数连续的三要素1〉f(x)在x 0处有定义;2〉0x x →时f(x)有极限;3〉极限值等于该点的函数值。
反函数基本公式大全反函数是指对于一个函数f(x),如果存在另一个函数g(x),使得f(g(x)) = x,且g(f(x)) = x成立,那么g(x)就是f(x)的反函数。
在数学中,反函数是一个非常重要的概念,它在解方程、求导、积分等数学问题中都有着重要的应用。
因此,了解反函数的基本公式是十分必要的。
1. 一次函数的反函数。
对于一次函数y = kx + b,它的反函数可以通过以下公式来求解:x = ky + b。
y = (x b) / k。
其中k为一次函数的斜率,b为截距。
通过这个公式,我们可以很容易地求出一次函数的反函数。
2. 二次函数的反函数。
对于二次函数y = ax^2 + bx + c,它的反函数的求解就稍微复杂一些。
我们可以通过以下步骤来求解二次函数的反函数:首先,将y = ax^2 + bx + c中的y替换为x,然后解出关于x的二次方程;接着,将得到的解中的x和y互换位置,得到的表达式就是二次函数的反函数。
3. 对数函数的反函数。
对数函数y = loga(x)的反函数是指数函数y = a^x。
其中,a为对数函数的底数。
这两个函数是互为反函数的关系,它们的图像关于y=x对称。
4. 指数函数的反函数。
指数函数y = a^x的反函数是对数函数y = loga(x)。
同样地,这两个函数也是互为反函数的关系,它们的图像关于y=x对称。
5. 三角函数的反函数。
对于三角函数y = sin(x)、y = cos(x)、y = tan(x)等,它们的反函数分别是反正弦函数y = arcsin(x)、反余弦函数y = arccos(x)、反正切函数y = arctan(x)等。
这些反函数在三角函数的求解中具有重要的作用。
6. 复合函数的反函数。
对于复合函数f(g(x)),它的反函数可以通过以下公式来求解:g(f(x)) = x。
f(g(x)) = x。
通过这些公式,我们可以求解复合函数的反函数,从而在数学问题中得到更加简洁的表达式。
六大基本初等函数图像及其性质一、常值函数(也称常数函数)y =C(此中 C 为常数);常数函数( y C )C 0C0y yy Cx y 0xO O平行于x 轴的直线y 轴自己定义域R定义域R 二、幂函数 y x ,x是自变量,是常数;1y y x1.幂函数的图像:2y x2y xy x3y x1O x2.幂函数的性质;性质y x y x231y x1y x y x2函数定义域R R R[0,+ ∞ ){x|x ≠ 0}值域R[0,+ ∞ )R[0,+ ∞ ){y|y ≠ 0}奇偶性奇偶奇非奇非偶奇单一性增[0,+∞) 增增增(0,+∞ )减(-∞ ,0] 减(-∞ ,0)减公共点( 1,1)1)当α为正整数时,函数的定义域为区间为x ( , ),他们的图形都经过原点,并当α>1 时在原点处与x 轴相切。
且α为奇数时,图形对于原点对称;α为偶数时图形对于y 轴对称;2)当α为负整数时。
函数的定义域为除掉x=0 的全部实数;3)当α为正有理数m时,n为偶数时函数的定义域为(0, +∞),n为奇数时函数的定义域为(-n∞ ,+∞),函数的图形均经过原点和( 1 ,1);4)假如 m>n 图形于 x 轴相切,假如m<n,图形于 y 轴相切,且m 为偶数时,还跟y 轴对称; m, n均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一确实数;n 为奇数时,定义域为去除 x=0 之外的一确实数。
三、指数函数 y a x(x是自变量,a是常数且a0, a1),定义域是 R ;[ 无界函数 ]1.指数函数的图象:yy a x y a xy(a 1)(0a1)(0,1)y1(0,1)y1 O x O x2.指数函数的性质;性质y a x(a1)y a x(0 a 1)函数定义域R值域(0,+∞)奇偶性非奇非偶公共点过点 (0,1),即 x0 时,y 1单一性在(,)是增函数在(,)是减函数1 )当a 1时函数为单调增 , 当0a 1时函数为单调减;2 )不论x为何值 ,y 总是正的,图形在 x 轴上方;3 )当x 0时 , y 1, 所以它的图形通过 (0,1) 点。
对数函数与反三角函数
大家应该都知道,这两个函数是高中里的重要的反函数。
然而呢,这两个反函数又与一般的反函数不一样。
因为原函数是代数函数,一般的反函数是属于代数函数,而指数函数和三角函数都是超越函数,所以对数函数与反三角函数也是超越函数。
在学习的时候,不难发现,对数函数与反三角函数这两个函数很多类似点。
首先,这两个函数都是出于逆向研究而建立的。
一个是要研究全体实数和指数的关系,一个是要研究三角函数值与弧度的关系。
而且两个都引入了新的数学符号,都有一系列的恒等公式和反演式。
当然,它们也有许多不同点,因为值域和定义域的不同,反三角函数常常在化简时要非常小心。
而且反三角函数有周期性,一般都取一个周期来算。
对数函数则全体一一对应。
对于代数函数,我曾经推导过导数。
那么对数函数和反三角函数的导数又如何求呢?
首先,用一般的极限法来对对数函数x x f ln )(=求导:
x x x x
x x x x x f x x f x y x f x x x x ∆∆+=∆-∆+=∆-∆+=∆∆=→∆→∆→∆→∆)1ln()ln()ln()()()('0
0000000lim lim lim
lim
接下来的就感觉无从入手了,无法将x ∆消去。
用同样的方法对反三角函数)sin(arc )(x x f =求导:
x x x x x x x x x x x x x x x x x x x x x x x x f x x f x y x f x x x x x x ∆--∆+-∆+=∆-∆+∆+=∆-∆+=∆-∆+=∆-∆+=∆∆=→∆→∆→∆→∆→∆→∆)
1)(1)arcsin(()))(cos(arcsin ))(sin(arcsin ))(cos(arcsin ))(arcsin(arcsin(sin )))arcsin()(arcsin(arcsin(sin )arcsin()arcsin()()()('2002000
000000000000000lim lim
lim
lim
lim
lim
很显然,遇到了和对数函数差不多的情况。
对数函数与反三角函数的加减相当的麻烦,几乎如果不是凑好的数据,很难进行运算。
那么反三角函数和对数函数有没有什么另外的方法求导呢?
在前面求导过程中,反三角函数的反演公式的运用给了我启发。
既然x e x =)(ln ,那么令)ln()(,x x f e y x ==
则=)('x e f 1 (1为x 求导后的结果)
那么)('y f 又等于什么呢? 很明显,这是一个复合函数的求导,那么要用到链式法则
)()(')('x x e y f e f ⨯=的导数
而x e 的导数刚好也是x e
1)('-=∴=y y f y
e x
那么一般的对数函数一样可以这样求,不过略微复杂一些
1log )(',log )(-⨯==x e x f x x f a a
反三角函数是不是也可以这样求导呢?
既然x x =)(sin arcsin ,那么令)arcsin()(,sin x x f x y ==
则=)(sin 'x f 1 (1为x 求导后的结果)
链式法则(CHAIN RULE) 若H(X)=F(G(X)) 则H'(X)=F'(G(X))G'(X)
x y f x f cos )(')(sin '⨯=
2211
)('cos 1y y f x
y -=∴-=
一样的方法,所以对数和反三角函数很多时候是可以互相参照一下的。