人教版八年级上册整式的乘法及因式分解单元总结与归纳(供参考)
- 格式:doc
- 大小:764.00 KB
- 文档页数:17
八年级数学上册第十四章整式的乘法与因式分解重点知识点大全单选题1、下列多项式中,能运用平方差公式分解因式的是()A.a2+b2B.2a−b2C.−a2+b2D.−a2−b2答案:C分析:根据平方差公式的定义判断即可;A、原式不能利用平方差公式进行因式分解,不符合题意;B、原式不能利用平方差公式进行因式分解,不符合题意;C、原式=(b−a)(b+a),能利用平方差公式进行因式分解,符合题意;D、原式不能利用平方差公式进行因式分解,不符合题意,故选:C.小提示:本题主要考查了平方差公式分解因式,准确判断是解题的关键.2、要使多项式(x+p)(x−q)不含x的一次项,则p与q的关系是()A.相等B.互为相反数C.互为倒数D.乘积为−1答案:A分析:计算乘积得到多项式,因为不含x的一次项,所以一次项的系数等于0,由此得到p-q=0,所以p与q 相等.解:(x+p)(x−q)=x2+(p−q)x−pq∵乘积的多项式不含x的一次项∴p-q=0∴p=q故选择A.小提示:此题考查整式乘法的运用,注意不含的项即是该项的系数等于0.3、下列分解因式正确的是()A.a3−a=a(a2−1)B.x3+4x2y+4xy2=x(x+2y)2C.−x2+4xy−4y2=−(x+2y)2D.16x2+16x+4=(4x+2)2答案:B分析:根据分解因式的方法进行分解,同时分解到不能再分解为止;A、a3−a=a(a2−1)=a(a+1)(a−1),故该选项错误;B、x3+4x2y+4xy2=x(x2+4xy+4y2)=x(x+2y)2,故该选项正确;C、−x2+4xy−4y2=−(x2−4xy+4y2)=−(x−2y)2,故该选项错误;D、16x2+16x+4=4(4x2+4x+1)=4(2x+1)2,故该选项错误;故选:B.小提示:本题考查了因式分解,解决问题的关键是掌握因式分解的几种方法,注意因式分解要分解到不能再分解为止;4、已知(x-m)(x+n)=x2-3x-4,则m-n的值为( )A.1B.-3C.-2D.3答案:D分析:把原式的左边利用多项式乘多项式展开,合并后与右边对照即可得到m-n的值.(x-m)(x+n)=x2+nx-mx-mn=x2+(n-m)x-mn,∵(x-m)(x+n)=x2-3x-4,∴n-m=-3,则m-n=3,故选D.小提示:此题考查了多项式乘多项式,熟练掌握法则是解本题的关键.5、下列式子中,正确的有( )①m3∙m5=m15;②(a3)4=a7;③(-a2)3=-(a3)2;④(3x2)2=6x6A.0个B.1个C.2个D.3个答案:B分析:根据同底数幂的乘法、幂的乘方、积的乘方逐一分析判断即可.解:①m3⋅m5=m8,故该项错误;②(a3)4=a12,故该项错误;③(−a2)3=−a6,−(a3)2=−a6,故该项正确;④(3x2)2=9x4,故该项不正确;综上所述,正确的只有③,故选:B.小提示:本题考查同底数幂的乘法、幂的乘方、积的乘方,掌握运算法则是解题的关键.6、在下列各式中,一定能用平方差公式因式分解的是().A.−a2−9B.a2−9C.a2−4b D.a2+9答案:B分析:直接利用平方差公式:a2−b2=(a+b)(a−b),进而分解因式判断即可.A、−a2−9,无法分解因式,故此选项不合题意;B、a2−9=(a+3)(a−3),能用平方差公式分解,故此选项符合题意;C、a2−4b,无法分解因式,故此选项不合题意;D、a2+9,无法分解因式,故此选项不合题意.故选B.小提示:此题主要考查了公式法分解因式,正确应用乘法公式是解题关键.7、若x2+2(k+1)x+4是完全平方式,则k的值为()A.+1B.﹣3C.﹣1或3D.1或﹣3答案:D分析:利用完全平方公式的结构特征判断即可确定出k的值.解:∵x2+2(k+1)x+4是完全平方式,∴2(k+1)=±4,解得:k=1或-3,故D正确.故选:D.小提示:本题主要考查了完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式,注意积的2倍的符号,避免漏解.8、下列因式分解正确的是()A.a2+b2=(a+b)2B.a2+2ab+b2=(a−b)2C.a2−a=a(a+1)D.a2−b2=(a+b)(a−b)答案:D分析:根据因式分解的方法,逐项分解即可.A. a2+b2,不能因式分解,故该选项不正确,不符合题意;B. a2+2ab+b2=(a+b)2故该选项不正确,不符合题意;C. a2−a=a(a−1),故该选项不正确,不符合题意;D. a2−b2=(a+b)(a−b),故该选项正确,符合题意.故选D.小提示:本题考查了因式分解,掌握因式分解的方法是解题的关键.9、计算(x+1)(x+2)的结果为( )A.x2+2B.x2+3x+2C.x2+3x+3D.x2+2x+2答案:B解:原式=x2+2x+x+2=x2+3x+2.故选B.10、已知a2+14b2=2a−b−2,则3a−12b的值为()A.4B.2C.−2D.−4答案:A分析:根据a2+14b2=2a−b−2,变形可得:a2−2a+1+14b2+b+1=(a−1)2+(12b+1)2=0,因此可求出a=1,b=−2,把a和b代入3a−12b即可求解.∵a2+14b2=2a−b−2∴a2−2a+1+14b2+b+1=(a−1)2+(12b+1)2=0即(a−1)2=0,(12b+1)2=0∴求得:a=1,b=−2∴把a和b代入3a−12b得:3×1−12×(−2)=4故选:A小提示:本题主要考查了完全平方公式因式分解,熟记完全平方公式,通过移项对已知条件进行配方是解题的关键.填空题11、多项式2x4﹣(a+1)x3+(b﹣2)x2﹣3x﹣1,不含x3项和x2项,则ab=_____.答案:﹣2分析:根据题意只要使含x3项和x2项的系数为0即可求解.解:∵多项式2x4﹣(a+1)x3+(b﹣2)x2﹣3x﹣1,不含x2、x3项,∴a+1=0,b﹣2=0,解得a=﹣1,b=2.∴ab=﹣2.所以答案是:﹣2.小提示:本题主要考查多项式的系数,关键是根据题意列出式子计算求解即可.12、分解因式:x2y+xy2=______.答案:xy(x+y)分析:利用提公因式法即可求解.x2y+xy2=xy(x+y),所以答案是:xy(x+y).小提示:本题考查了用提公因式法分解因式的知识,掌握提公因式法是解答本题的关键.13、已知ab=a+b+1,则(a﹣1)(b﹣1)=_____.答案:2分析:将(a﹣1)(b﹣1)利用多项式乘多项式法则展开,然后将ab=a+b+1代入合并即可得.(a﹣1)(b﹣1)= ab﹣a﹣b+1,当ab=a+b+1时,原式=ab﹣a﹣b+1=a+b+1﹣a﹣b+1=2,故答案为2.小提示:本题考查了多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则及整体代入思想的运用.14、观察下列等式:①32−12=4×2;②42−22=4×3;③52−32=4×4;④62−42=4×5;…,第n(n为正整数)个等式为________.答案:(n+2)2−n2=4(n+1)分析:利用已知数据得出变化规律,进而得出答案即可.解:由32−12=4×2,42−22=4×3,52−32=4×4,62−42=4×5,…,可得:(n+2)2−n2=(n+2+n)(n+2−n)=4(n+1),即:(n+2)2−n2=4(n+1).故答案是:(n+2)2−n2=4(n+1).小提示:此题主要考查了数字变化规律以及平方差公式,得出数字变化规律是解题关键.15、若(m+2022)2=10,则(m+2021)(m+2023)=______.答案:9分析:先将m+2021变形为m+2022−1,m+2023变形为m+2022+1,然后把(m+2022)看作一个整体,利用平方差公式来求解.解:∵(m+2022)2=10,∴(m+2021)(m+2023)=(m+2022−1)(m+2022+1)=(m+2022)2−1=10-1=9.所以答案是:9.小提示:本题考查了平方差公式,代数式求值,解题的关键是熟练掌握平方差公式:(a+b)(a−b)=a2−解答题16、先化简,再求值:(3x +2)(3x −2)−5x (x −1)−(2x −1)2,其中x =−13. 答案:9x -5,−8分析:先计算乘法,再计算加减,然后把x =−13代入化简后的结果,即可求解. 解:(3x +2)(3x −2)−5x (x −1)−(2x −1)2=9x 2−4−5x 2+5x −4x 2+4x −1=9x −5当x =−13时,原式=−13×9−5=−8小提示:本题主要考查了整式的混合运算——化简求值,熟练掌握整式的混合运算法则是解题的关键.17、化简:3(a ﹣2)(a +2)﹣(a ﹣1)2.答案:2a 2+2a -13分析:根据平方差公式和完全平方公式去括号,再计算加减法.解:3(a ﹣2)(a +2)﹣(a ﹣1)2=3(a 2-4)-(a 2-2a +1)=3a 2-12-a 2+2a -1=2a 2+2a -13.小提示:此题考查了整式的乘法计算公式,整式的混合运算,正确掌握平方差公式和完全平方公式的计算法则是解题的关键.18、爱动脑筋的小明在学习《幂的运算》时发现:若a m =a n (a >0,且a ≠1,m 、n 都是正整数),则m =n ,例如:若5m =54,则m =4.小明将这个发现与老师分享,并得到老师确认是正确的,请您和小明一起用这个正确的发现解决下面的问题:(1)如果2×4x ×32x =236,求x 的值;(2)如果3x+2+3x+1=108,求x 的值.答案:(1)x =5分析:(1)利用幂的乘方的法则及同底数幂的乘法的法则对式子进行整理,从而可求解;(2)利用同底数幂的乘法的法则及幂的乘方的法则对式子进行整理,即可求解.(1)因为2×4x×32x=236,所以2×22x×25x=236,即21+7x=236,所以1+7x=36,解得:x=5;(2)因为3x+2+3x+1=108,所以3×3x+1+3x+1=4×27,4×3x+1=4×33,即3x+1=33,所以x+1=3,解得:x=2.小提示:本题主要考查幂的乘方,同底数幂的乘法,解答的关键是对相应的运算法则的掌握与运用.。
整式的乘法同底数幂的乘积为正整数)n m a a a n m n m ,(+=∙注意点:(1)必须清楚底数、指数、幂这三个基本概念的涵义。
(2)前提必须是同底数,指数才可以相加(3)底可以是一个具体的数或字母,也可以是一个单项式或多项式,(4)指数都是正整数(5)三个或三个以上的同底数幂相乘,即为正整数)p n m a a a a p n m p n m ,,(++=∙∙(6)不要与整式加法相混淆。
(7)这个公式是可逆的为正整数)n m a a a n m n m ,(∙=+类型一:x 3·x 4 = x n ·x 4= ________3=⋅a a________32=⋅⋅a a a ; 3x 2·x n ·x 4==⨯⨯252222 =∙+12n n y y ;类型二:(1) 已知xm-n ·x 2n+1=x 11,且y m-1·y 4-n =y 5,求mn 2的值。
(2)若22m ·8=2n,则n=类型三:(1)、 (- )(- )2(-)3 (2)、 -a 4·(-a)4·(-a)5(3)、 (x-y)3(y-x)(y-x)6 (4)、 201220112-)-2()(+类型四:已知2a =3, 2b =6, 2c=12,试探究a 、b 、c 之间的关系;1. 幂的乘方为正整数)n m a a mn n m ,()(=注意点:(1)幂的底数a 可以是具体的数也可以是多项式。
(2)不要和同底数幂的乘法法则相混淆(3)公式的可逆性:为正整数)n m a a n m n m ,()(=+;为正整数)n m a a a m n m n n m ,()()(=(4)公式的扩展:为正整数)p n m a a m np p n m ,,(])[(=为正整数),,()(])[(n m b a b a m n n m +=+类型一:(a 3)5 = ; =-3)(3m x ; =∙n a a 32)( ;[(a+b )2]3= ; [(a 2)5]3= ;类型二:【例1】若3y 2x 5,35,25+==求y x【例2】若,510,410==m n 求,101032m n +的值;【例3】已知3344555,4b ,3a ===c ,试比较a,b,c 的大小;2. 积的乘方()为正整数)n b a n n (ab n =注意点:(1)注意与前二个法则的区别: (2)积的乘方推广到3个以上因式的积的乘方()为正整数)n a a a a a a a nm n n m (a 321n 321 =∙∙ (3)每个因式可以是单项式,多项式,或者其他代数式(4)每个因式都要乘方,然后将所得的幂相乘(5)公式的可逆性:()为正整数)n b a n n (ab n= (6) 幂的乘方,积的乘方的可逆性: a mn =(a m )n =(a n )m类型一:________)(3=ab ;________)2(32=-b a ;________)5(223=-b a类型二:【例1】当ab=,m=5, n=3, 求(a m b m )n的值。
人教版八年级数学上册《第十四章 整式的乘除与分解因式》知
识点总结
1.基本运算:
⑴同底数幂的乘法:m n m n a a a +⨯=
⑵幂的乘方:()n
m mn a a = ⑶积的乘方:()n
n n ab a b =
2.整式的乘法:
⑴单项式⨯单项式:系数⨯系数,同字母⨯同字母,不同字母为积的因式. ⑵单项式⨯多项式:用单项式乘以多项式的每个项后相加.
⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加.
3.计算公式:
⑴平方差公式:()()22a b a b a b -⨯+=-
⑵完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+
4.整式的除法:
⑴同底数幂的除法:m n m n a a a -÷=
⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式. ⑶多项式÷单项式:用多项式每个项除以单项式后相加.
⑷多项式÷多项式:用竖式.
5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式 子因式分解.
6.因式分解方法:
⑴提公因式法:找出最大公因式.
⑵公式法:
①平方差公式:()()22a b a b a b -=+-
②完全平方公式:()2222a ab b a b ±+=± ③立方和:3322()()a b a b a ab b +=+-+
④立方差:3322()()a b a b a ab b -=-++
⑶十字相乘法:()()()2x p q x pq x p x q +++=++ ⑷拆项法
⑸添项法。
一、整式的乘法1.几个常用公式:(a+b)² = a² + 2ab + b²(a-b)² = a² - 2ab + b²(a+b)(a-b)=a²-b²(a+b)³ = a³ + 3a²b + 3ab² + b³(a-b)³ = a³ - 3a²b + 3ab² - b³2.整式的乘法法则:(a+b)(c+d) = ac + ad + bc + bd加减混合运算:(a+b)(c-d) = ac - ad + bc - bd3.多项式的乘法:(a₁+a₂+...+aₙ)(b₁+b₂+...+bₙ)=a₁b₁+a₁b₂+...+a₁bₙ+a₂b₁+a₂b₂+...+a₂bₙ+...+aₙb₁+aₙb₂+...+aₙb ₙ4.整式的乘法性质:交换律:a·b=b·a结合律:(a·b)·c=a·(b·c)分配律:a·(b+c)=a·b+a·c5.整式的乘法应用:展开、计算、化简等二、因式分解1.因式分解的基本概念:将一个整式分解为两个或多个因式的乘积的过程。
2.因式分解的方法:a.公因式提取法:找出整个整式和各项中的公因式,并提取出来。
b.公式法:利用已知的一些公式对整式进行因式分解。
c.分组法:将整式中各项按一定的规则分组,然后在每组内部进行因式分解。
d.辗转相除法:若整式中存在因式公共因式,可以多次使用辗转相除法进行因式分解。
3.一些常见的因式分解公式:a.二次差平方公式:a²-b²=(a+b)(a-b)b. 平方差公式:a² + 2ab + b² = (a+b)²c. 平方和公式:a² - 2ab + b² = (a-b)²d. 三次和差公式:a³+b³ = (a+b)(a²-ab+b²)、a³-b³ = (a-b)(a²+ab+b²)e. 四次和差公式:a⁴+b⁴ = (a²+b²)(a²-ab+b²)、a⁴-b⁴ = (a+b)(a-b)(a²+b²)4.因式分解的应用:简化计算、寻找整式的根、列立方程等。
一、单元学习主题本单元是“数与代数”领域“数与式”主题中的“整式的乘法与因式分解”.1.课标分析《标准2022》指出初中阶段“数与代数”领域是数学知识体系的基础之一,是学生认知数量关系、探索数学规律、建立数学模型的基石,可以帮助学生从数量的角度清晰准确地认识、理解和表达现实世界.数与代数领域的学习,有助于学生形成抽象能力、推理能力和模型观念,发展运算能力,是感悟用数学语言表达现实世界的重要载体.“数与式”主题是代数的基本语言,初中阶段关注用字母表述代数式,以及代数式的运算,字母可以像数一样进行运算和推理,通过字母运算和推理得到的结论具有一般性,培养学生抽象能力.本单元的课标要求是会用文字和符号语言表述整数指数幂的基本性质,能根据整数指数幂的基本性质进行幂的运算;理解整式的概念,能进行整式的乘法运算(多项式的乘法仅限于一次式之间和一次式与二次式的乘法);知道平方差公式、完全平方公式的几何背景,并能运用公式进行简单计算和推理;能用提公因式法、公式法(对二次式直接利用平方差公式或完全平方公式)进行因式分解(指数为正整数).整式的乘法运算和因式分解是基本而重要的代数初步知识,这些知识是以后进一步学习分式、根式运算和函数等知识的基础,在后续的数学学习中具有重要的意义.同时,这些知识也是学习物理、化学等学科的基础.在数与式的教学中要把握数与式的整体性,帮助学生进一步感悟数是对数量的抽象;通过代数式与代数运算的教学,让学生进一步理解字母表示数的意义;通过基于符号的运算和推理,建立符号意识,感悟数学结论的一般性,理解运算方法与运算律的关系,提升运算能力.2.本单元教学内容分析人教版教材八年级上册第十四章“整式的乘法与因式分解”,本章包括三个小节:14.1整式的乘法;14.2乘法公式;14.3因式分解.首先强调重要数学思想方法的渗透,由于整式中的字母表示数,因此数的运算律和运算性质在整式的运算中仍然成立,强调了“类比”的思想方法的渗透;由数的运算引出式的运算规律,体现了数学知识之间具体与抽象的内在联系和内在统一性.对于整式乘法法则的教学,要渗透“转化”的思想方法.例如,多项式乘多项式的法则,第一步是转化为多项式与单项式相乘,第二步则是转化为单项式与单项式相乘,而单项式与单项式相乘则转化为有理数的乘法与同底数幂的乘法.在整式除法的教学中,也要渗透“转化”的思想方法,多项式与单项式相除的第一步是转化为单项式与单项式相除,第二步是转化为有理数的除法与同底数幂的除法.由上可知,整式的乘、除法教学要循序渐进,打好各项知识的基础,并运用好“转化”的思想方法,这样才能够很好地完成后面的教学内容,取得较好的教学效果.此外,本章教材中强调了代数与几何之间的联系,整式乘法和乘法公式部分体现了数形结合的重要数学思想和方法,借助几何图形对运算法则及公式做了直观解释,体现了代数和几何之间的内在联系和统一,能让学生更好地理解有关知识,培养学生几何直观和抽象能力的数学核心素养.充分体现从具体到抽象再到具体的认知过程,从具体的实际问题出发,归纳出相关的数学概念,或抽象出隐含在具体问题中的数学思想,这是本章的一个突出特点.培养学生用数学眼光观察世界.以第14.1节为例,无论同底数幂相乘、幂的乘方还是积的乘方,都是从具体的问题出发,然后归纳出运算性质,最后再用归纳得出的结果进一步指导比较复杂的实际问题.整式的乘法也是从具体的问题出发,归纳出运算法则,再进一步用于解决实际问题.这种从具体到抽象,再由抽象到具体的编排方式,可以循序渐进地向学生呈现教学内容,有助于学生的理解和掌握,符合现阶段学生的认知水平.根据数学知识的逻辑关系循序渐进地安排教学内容,本章所涉及的数学教学内容之间不仅具有密切的联系,且具有很强的逻辑关系.在整式的乘法中,多项式的乘法要利用分配律转化为单项式的乘法,而单项式的乘法要利用交换律和结合律转化为幂的运算.整式的除法与乘法互为逆运算,乘法公式是具有特殊形式的整式乘法问题,因式分解是与整式乘法方向相反的恒等变形,在这些内容中,幂的运算是基础,单项式的乘法是关键,学好一般整式乘法的运算是进一步学习本章其他知识的前提.教学中要注重培养学生的逻辑思维、知识体系的形成和思想方法的渗透.对选学内容的学习进行分层教学,提升学生的理解能力,教学中除了要关注学生在数学知识和数学能力方面的提高外,还要考虑在传承数学史知识及数学文化修养方面做出努力,以使学生在获得数学知识的同时人文精神也得到陶冶.本章安排了两个“阅读与思考”的选学栏目,这些选学内容是本章有关内容的拓展与延伸.不失时机地安排学生阅读这些材料,可以开阔他们的视野,拓展他们的知识面.“阅读与思考”中的“杨辉三角”,不但可以使学生了解一些二项展开式中各项系数的知识,增强他们的数学修养,还可以潜移默化地培养他们的爱国情怀.“阅读与思考”中的“x2+(p+q)x+pq型式子的因式分解”,可以让学生初步感受分解因式的另一种方法:十字相乘法,这也有利于学生理解必修内容.三、单元学情分析本单元是人教版数学教材八年级上册第十四章“整式的乘法与因式分解”,学生在学习了有理数、代数式、整式的概念的基础上研究了有理数的加减乘除乘方混合运算和整式的加减运算,学生掌握了研究问题的方法,类比数的研究知道要学习整式的乘除运算.根据乘方意义和运算来研究幂的运算,学生有了一定基础学起来便顺理成章.但是和整式加减法相比,整式乘除法无论是次数和项数都在增加,容易出现错误,这是在教学中要重点关注的地方,对学生的运算能力、理解能力、交流归纳能力及对数学方法的掌握能力要求较高.尤其平方差公式和完全平方公式的变形和灵活应用更是难点,因式分解和乘法公式的关系以及正确因式分解也是重点和易错点,对学生来说仍会有困难.四、单元学习目标1.掌握正整数幂的乘、除运算性质,能用代数式和文字语言正确地表述这些性质,培养学生语言表达能力和抽象概括能力,并能灵活运用这些性质进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的运算法则,并运用它们进行运算,培养学生的运算能力和应用意识.2.经历猜测、推理、验证,会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,培养学生几何直观,能利用公式进行乘法运算,体会公式的简洁性,培养学生的思维能力和运算能力.3.掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算,体会数学运算的简便性,培养学生的模型观念.4.理解因式分解的意义,并感受因式分解与整式乘法是相反方向的运算,培养学生类比的思想;掌握提公因式法和公式法(直接运用公式不超过两次)这两种分解因式的基本方法,了解因式分解的一般步骤,培养数据观念和模型观念;能够熟练地运用这些方法进行多项式的因式分解.五、单元学习内容及学习方法概览六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所获.重视过程与方法,发展数学的应用意识和创新意识.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。
《整式的乘法及因式分解》单元总结与归纳【知识网络】【要点梳理】要点一、因式分解把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算.要点二、提公因式法 把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式m,另一个因式是,即,而正好是除以m 所得的商,提公因式法分解因式实际上是逆用乘法分配律.要点三、公式法1.平方差公式两个数的平方差等于这两个数的和与这两个数的差的积,即:()()22a b a b a b -=+-2.完全平方公式两个数的平方和加上这两个数的积的2倍,等于这两个数的和(差)的平方.即()2222a ab b a b ++=+,()2222a ab b a b -+=-. 形如222a ab b ++,222a ab b -+的式子叫做完全平方式.要点诠释:(1)平方差公式的特点:左边是两个数(整式)的平方,且符号相反,右边是两个数(整式)的和与这两个数(整式)的差的积.(2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍. 右边是两数的和(或差)的平方.(3)套用公式时要注意字母a 和b 的广泛意义,a 、b 可以是字母,也可以是单项式或多项式.要点四、十字相乘法和分组分解法十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.对于二次三项式2x bx c ++,若存在pq c p q b =⎧⎨+=⎩ ,则()()2x bx c x p x q ++=++ 分组分解法对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式.要点五、因式分解的一般步骤因式分解的方法主要有: 提公因式法, 公式法, 分组分解法, 十字相乘法, 添、拆项法等.因式分解步骤(1)如果多项式的各项有公因式,先提取公因式;(2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解.(4)结果要彻底,即分解到不能再分解为止.【典型例题】类型一、提公因式法分解因式1、已知21x x +-=0,求3223x x ++的值.【答案与解析】解:依题意得:21x x +=,∴3223x x ++,=3223x x x +++,=22()3x x x x +++,=23x x ++,=4;类型二、公式法分解因式2、已知2x -3=0,求代数式()()2259x x x x x -+--的值. 【答案与解析】解:()()2259x x x x x -+--, =322359x x x x -+--,=249x -.当2x -3=0时,原式=()()2492323x x x -=+-=0.3、在日常生活中,如取款、上网需要密码,有一种因式分解法产生密码,例如()()()4422x y x y x y x y -=-++,当x =9,y =9时,x y -=0,x y +=18,22x y +=162,则密码018162.对于多项式324x xy -,取x =10,y =10,用上述方法产生密码是什么?【答案与解析】解:()()()32224422x xy x x y x x y x y -=-=+-, 当x =10,y =10时,x =10,2x +y =30,2x -y =10,故密码为103010或101030或301010.4、因式分解:(1)()()269a b a b ++++;(2)222xy x y --- (3)()()22224222x xy y x xy y -+-+.【答案与解析】 解:(1)()()()22693a b a b a b ++++=++(2)()()2222222xy x y xy x yx y ---=-++=-+ (3)()()22224222x xy y x xy y -+-+=()()24222x xy y x y -+=- 5、先阅读,再分解因式:()24422224444(2)2x x x x x x +=++-=+-()()222222x x x x =-+++,按照这种方法把多项式464x +分解因式.【答案与解析】解:442264166416x x x x +=++-=()222816x x +-=()()228484x x x x +++-.类型三、十字相乘法或分组分解法分解因式6、将下图一个正方形和三个长方形拼成一个大长方形,请观察这四个图形的面积与拼成的大长方形的面积之间的关系.(1)根据你发现的规律填空:2x px qx pq +++=()2x p q x pq +++=______;(2)利用(1)的结论将下列多项式分解因式:①2710x x ++;②2712y y -+.【答案与解析】解:(1)()()x p x q +⨯+(2)①()()271025x x x x ++=++ ②()()271234y y y y -+=--。
14.1.1同底数幂的乘法课时目标1.理解同底数幂的乘法法则并运用法则解决一些实际问题,培养学生运算、推理能力,发展应用意识.2.会用数学的思维推导“同底数幂的乘法法则”,使学生初步理解从特殊到一般、从一般到特殊的认知规律,发展学生观察、归纳、类比等能力.3.在小组合作交流中,培养协作精神、探究精神,增强学习信心.学习重点理解并掌握同底数幂的乘法法则.学习难点运用同底数幂的乘法法则进行相关计算.课时活动设计情境引入教师简述我国超级计算机的发展历程,引出课本问题:一种电子计算机每秒可进行1千万亿(1015)次运算,它工作103s可进行多少次运算?解:103×1015=1018设计意图:通过探究问题激发学生的民族自豪感,也让学生体会生活中存在着大量的较大的数据,激发学生的学习兴趣.探究新知问题1:对于上一教学活动中提出的问题,应如何列式?学生动笔列式,大部分学生可以列出.追问:其中1015中“10”“15”“1015”分别叫做什么?“1015”表示的意义是什么?问题2:1015×103等于多少?学生小组讨论,展示计算过程.1015×103=(10×…×10) 15个10×(10×10×10)=10×10×…×10 18个10=1018.追问1:根据乘方的意义计算23×22.学生快速计算,展示结果.解:23×22=2×2×2×2×2=25追问2:请同学们观察上面各算式的左右两边底数、指数的关系,猜一猜:a m ·a n 的结果(m ,n 都是正整数)师生根据乘方的意义共同验证结论的正确性.教师把结论板书在黑板上:a m ·a n =a m +n (m ,n 都是正整数).师生活动:教师引导学生试着用文字概括这个性质.同底数幂相乘,底数不变,指数相加.追问3:当三个或三个以上同底数幂相乘时,是否也具有这一性质呢?小组合作,验证结论,并点名展示.a m ·a n ·a p =a m +n +p (m ,n ,p 都是正整数)设计意图:让学生根据幂的意义,通过计算得到结果.再观察、比较得到等号左右两边底数、指数的关系.通过猜想、验证,抽象概括出同底数幂的乘法运算的本质特征,发展学生观察、归纳、类比能力,体现了从特殊到一般的认知规律.让学生在计算过程中明白算法和算理.适当拓展,为发展学生思维助力.典例精讲例1计算:(1)x 2·x 5;(2)a ·a 6.解:(1)x 2·x 5=x 2+5=x 7.(2)a ·a 6=a 1+6=a 7.教师总结点拨:不要忽略指数是“1”的因式,如a ·a 6≠a 0+6.例2计算:(1)(b +2)3(b +2)4(b +2);(2)-x 6·(-x )10.解:(1)原式=(b +2)3+4+1=(b +2)8.(2)原式=-x 6+10=-x 16.小组合作完成,并选小组代表上台板演.教师讲解,并让学生理解:底数是单项式,也可以是多项式,通常把底数看成一个整体来运算.把不同底数幂转化为同底数幂时要注意符号的变化.例3已知:a m=4,a m+n=20,求a n的值.解:a m+n=a m·a n(逆运算)=4×a n=20,所以a n=5.师生共同解答,并总结:当幂的指数是和的形式时,可以逆运用同底数幂乘法法则,将幂指数和转化为同底数幂相乘,然后把幂作为一个整体,带入变形后的幂的运算式中求解.设计意图:师生共同完成,教师板书过程并着重让学生说明是不是同底数幂相乘,底数是多少,指数是多少,引导学生用运算法则进行计算.通过计算,让学生积累解题经验的同时,体会从一般到特殊的认知规律,将同底数幂的乘法转化为指数相加运算的思想.巩固训练1.x3·x2的运算结果是(C)A.x2B.x3C.x5D.x62.若a n-2·a n+1=a11,则n=6.3.计算:(1)x n·x n+1;(2)(x+y)3·(x+y)4.解:(1)原式=x n+n+1=x2n+1.(2)原式=(x+y)3+4=(x+y)7.设计意图:通过巩固训练,进一步巩固所学新知,同时检测学习效果.课堂小结今天我们学了哪些内容:同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.a m·a n=a m+n(m,n都是正整数).设计意图:使学生能够对本课时所学知识进行整理,同时明确学习重点.课堂8分钟.1.教材第104页习题14.1第1题(1)(2)和第2题(1).2.七彩作业.教学反思14.1.2幂的乘方课时目标1.理解幂的乘方法则并运用法则解决一些实际问题,发展运算、推理能力和应用意识.2.类比同底数幂的乘法法则学习幂的乘方的法则,发展学生观察、归纳、类比等能力,体验数学的化归思想.3.培养学生合作交流意识和探索精神,让学生体会数学的应用价值.学习重点理解幂的乘方性质.学习难点幂的乘方运算法则及灵活应用.课时活动设计回顾引入问题1:叙述同底数幂的乘法法则,并用字母表示.问题2:请口答下列各题:(1)33×35;(2)y2·y;(3)a m·a2.设计意图:通过点名学生回答,复习同底数幂的乘法法则,加深对所学知识的巩固和理解.通过口算,既检验了上节课的学习效果,也为学习本节课知识打下基础.探究新知问题3:请根据乘方的意义及同底数幂的乘法填空.(1)(32)3=32×32×32=3(6).(2)(a2)3=a2·a2·a2=a(6).(3)(a m)3=a m·a m·a m=a(3m)(m是正整数).追问1:(a m)3底数是a,底数是什么形式?追问2:观察计算的结果,你能发现什么规律?根据规律猜想幂的乘法法则.学生口述规律,教师引导学生得到(a m)n=a mn(m,n都是正整数).即幂的乘方,底数不变,指数相乘.教师讲述:规律的正确性需要严谨的证明,如何把特殊一般化,常用的方法是用字母去表示数.追问3:试着证明你的猜想.设计意图:问题3引导学生根据幂的意义,将幂的乘方转化为同底数幂的乘法.追问1、2让通过观察底数、指数的变化,猜想幂的乘方法则.追问3让学生类比问题3计算,并小组内交流.通过问题推进探索规律,让学生自主构建获得新知,培养学生的语言表达能力和符号意识.典例精讲例1计算:(1)(103)5;(2)(a2)4;(3)(a m)2;(4)-(x4)3.解:(1)原式=103×5=1015.(2)原式=a2×4=a8.(3)原式=a m·2=a2m.(4)原式=-x4×3=-x12.例2计算:(1)[(x+y)2]2;(2)[(-x)4]3.解:(1)原式=(x+y)2×3=(x+y)6.(2)原式=(-x)4×3=(-x)12.设计意图:运用幂的乘方法则进行计算时,一定不要将幂的乘方与同底数幂的乘法混淆.在幂的乘方中,底数可以是单项式,也可以是多项式.在运算时,注意把底数看成一个整体,同时注意“负号”.将底数由单项式变式为多项式,在思考过程中实现了知识的迁移,训练了学生的思维,进一步感悟整体思想.巩固训练1.计算:(1)(x4)3·x6;(2)(y4)2+(y2)3·y2.解:(1)原式=x4×3·x6=x12·x6=x18.(2)原式=y4×2+y2×3+2=y8+y8=2y8.教师点拨:与幂的乘方有关的混合运算中,一般先算幂的乘方,再算乘除,最后算加减.2.已知10m=3,10n=2,求下列各式的值.(1)103m;(2)102n;(3)103m+2n.解:(1)原式=(10m)3=33=27.(2)原式=(10n)2=22=4.(3)原式=103m ×102n =27×4=108.3.已知2x +5y -3=0,求4x ·32y 的值.解:∵2x +5y -3=0,∴2x +5y =3.∴4x ·32y =(22)x ·(25)y =22x ·25y =22x +5y =23=8.教师点拨:此类题的关键是逆用幂的乘方及同底数幂的乘法公式,将所求值的式子正确变形,然后代入已知条件求值即可.4.比较3500,4400,5300的大小.解:3500=35×100=(35)100=2431004400=44×100=(44)100=2561005300=53×100=(53)100=125100∵256100>243100>125100,∴4400>3500>5300.教师点拨:比较底数大于1的幂的大小的方法有两种:1.底数相同,指数越大,幂就越大;2.指数相同,底数越大,幂就越大.设计意图:使帮助学生巩固刚刚学习的新知识,在此基础上加深知识的应用,培养学生的逆向思维,增强学生思维的灵活性.课堂小结运算种类公式法则中运算计算结果底数指数同底数幂乘法a m ·an =a m +n 乘法不变指数相加幂的乘方(a m )n =a mn乘方不变指数相乘设计意图:使学生能够对本课时所学知识进行整理,同时明确学习重点.课堂8分钟.1.教材第104页习题14.1第1题(3)(4)(6)第2题(4).2.七彩作业.14.1.3积的乘方1.利用几何图形,探索积的乘方运算性质,进一步体会幂的意义,发展学生的空间观念、推理能力和有条理语言、符号表达能力,掌握转化的数学思想.2.能用积的乘方的运算法则解决问题,提高学生的应用意识.3.通过探究学习过程,激发学习数学的兴趣,培养学习数学的信心,感受数学的内在美.积的乘方运算法则的理解及其应用.积的乘方推导过程的理解和灵活运用.课时活动设计回顾引入在前面的学习中,我们知道了同底数幂的乘法和幂的乘方运算法则,你能分别用字母表示出来吗?教师总结,课件展示.设计意图:学生口答同底数幂的乘法和幂的乘方运算法则,为学习本节课的内容做好知识储备,要注意语言的准确性.探究新知问题1:如图,正方形的边长为2a,求该正方形的面积.学生展示结果.教师记录:有学生列式(2a)2,有学生列式2a×2a.追问1:根据正方形面积的意义,判断(2a)2与2a×2a的数量关系.学生回答:(2a)2=2a×2a.问题2:2a×2a=2×2×a×a依据(乘法交换律)=22×a2依据(乘法结合律)=4a2.所以(2a)2=4a2.师生共同探索,用几何图形验证上面等式.(2a)2=4a2.猜想:(3×4)2和32×42相等吗?学生通过计算,发现(3×4)2=32×42.追问2:观察(2a)2和(3×4)2,它们底数分别是什么?学生口答:2a和3×4.追问3:接着观察(2a)2=4a2,(3×4)2=32×42,你发现什么规律?学生小组讨论,每个小组派代表口述规律.追问4:你能用符号表示你发现的规律吗?师生活动:学生独立思考并书写,教师板书在黑板上:(ab)n=a n b n(n是正整数).追问5:你能将上述发现的规律推导出来吗?师生活动:学生独立证明,并小组交流,教师板书证明过程.(ab)n=(ab)·(ab)…(ab)=a·a…a·b·b…b=a n b n.设计意图:学生计算正方形的面积,预设得到两种不同的形式.通过设置问题,让学生判断每一步的依据,使学生明白算理.通过两个例子,学生初步获得结论,用符号概括出所发现的规律.通过学生自己观察、概括总结,既培养了学生的参与意识,也为学生探索类似知识提供了研究方法.典例精讲例1计算:(1)(3x)2;(2)(-2b)5;(3)(-2xy)4;(4)(3a2)n.解:(1)原式=32x2=9x2.(2)原式=(-2)5b5=-32b5.(3)原式=(-2)4x4y4=16x4y4.(4)原式=3n(a2)n=3n a2n.例2用简便方法计算:(1)23×53;(2)(0.125)2023×82024.解:(1)原式=(2×5)3=103=1000.(2)原式=(0.125)2023×82023×8=(0.125×8)2023×8=8.教师点拨:逆用积的乘方公式a n·b n=(ab)n,要灵活运用,对于不符合公式的形式,要通过恒等变形,转化为公式的形式.设计意图:师生共同解答,通过针对性练习,让学生直观地理解各知识点,实现陈述性知识向程序性知识的转化.用学生熟悉的数之间的关系引导学生感受简便方法,使学生初步感知积的乘方的逆运算,形成简便运算意识,有效培养思维的灵活性.巩固训练1.计算(-x2y)2的结果是(A)A.x4y2B.-x4y2C.x2y2D.-x2y22.下列运算正确的是(C)A.x·x2=x2B.(xy)2=xy2C.(x2)3=x6D.x2+x2=x43.计算:(1)2(x3)2·x3-(3x3)3+(-5x)2·x7;(2)(3xy2)2+(-4xy3)·(-xy).解:(1)原式=2x6·x3-27x9+25x2·x7=2x9-27x9+25x9=0.(2)原式=9x2y4+4x2y4=13x2y4.设计意图:进一步巩固所学新知,同时检测学生的学习成果,及时查漏补缺.课堂小结今天我们学了哪些内容?积的乘方法则:(ab)n=a n·b n(n是正整数).注意点:(1)注意防止符号上的错误;(2)三个或三个以上的因式的积的乘方也具有这一性质;(3)积的乘方法则也可以逆用.设计意图:使学生能够对本课时所学知识进行整理,同时明确学习重点.课堂8分钟.1.教材第104页习题14.1第1题(5)第2题(2)(3).2.七彩作业.教学反思14.1.4整式的乘法第1课时单项式与单项式相乘课时目标1.理解单项式乘以单项式的算理,会进行简单的运算.2.经历探索单项式乘以单项式的过程,体会从特殊到一般、从具体到抽象的认识过程和转化思想.3.培养学生推理能力、计算能力,通过小组合作与交流,增强协作精神.学习重点单项式与单项式相乘的运算法则及其应用.学习难点灵活地进行单项式与单项式相乘的运算.课时活动设计回顾引入教师讲述:同学们,在七年级我们学习了整式加减的运算方法,今天我们继续学习整式的乘法.整式包含单项式和多项式,什么是单项式?出示课件展示:回答问题-2xy的系数是-2,次数是2.设计意图:通过回顾单项式的概念,指出单项式的系数和次数,为学习单项式乘以单项式做好知识储备.探究新知问题1:光的速度约为每秒3×105千米,太阳光照射到地球上需要的时间约是5×102秒,求地球与太阳的距离约是多少千米?如何列式?学生独立思考列出算式:(3×105)×(5×102)km.追问1:怎样计算(3×105)×(5×102)呢?计算过程中运用哪些运算律和运算性质?师生活动:学生计算结束后,教师黑板书写计算过程:(3×105)×(5×102)=(3×5)×105+2=15×107=1.5×108km教师引导学生发现计算过程中运用了乘法交换律、结合律及同底数幂的运算性质.追问2:将上式中的数字改为字母ac5·bc2,类比上面的运算方法计算这个式子.学生独立计算,选一名学生在黑板上书写计算过程:ac5·bc2=(a·b)·(c5·c2)=abc5+2=abc7.追问3:这是什么运算?如何进行运算?教师引导学生试着用文字概括这个性质:这是单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.设计意图:教师引导学生观察、分析两个单项式如何相乘,使学生能运用乘法交换律、结合律和同底数幂的运算性质等知识探索单项式乘单项式.在此基础上,教师引导归纳,最后得出单项式乘单项式法则.让学生在自主探究中掌握解决这类问题的一般方法,体会了从特殊到一般的认识规律.通过小组交流讨论归纳法则,培养学生的归纳总结能力.典例精讲例1计算:(1)(-5a2b)(-3a);(2)(2x)3(-5xy2).解:(1)原式=[(-5)×(-3)](a2·a)b=15a3b.(2)原式=8x3·(-5xy2)=[8×(-5)](x3·x)y2=-40x4y2.例2计算:(1)-2a3bc·(-ab2)·(-ab2)2;(2)-9x2y·(a-b)3·13xy2·(b-a)2.解:(1)原式=-2a3bc·(-ab2)·a2b4=2a6b7c.(2)原式=-9x2y·13xy2·(a-b)3·(a-b)2=-3x3y3(a-b)5.设计意图:本着循序渐进原则逐步增加运算类型,由单一到综合.通过练习使学生在实际应用中掌握法则及三点注意.通过教师点评使学生掌握解题过程及书写格式,使学生完成知识迁移从而提高综合运用知识的能力.巩固训练1.计算3a2·2a3的结果是(B)A.5a5B.6a5C.5a6D.6a62.若(a m b n)·(a2b)=a5b3,则m+n=(D)A.8B.7C.6D.53.已知-2x3m+1y2n与7x n-6y-3-m的积与x4y是同类项,求m2+n的值.解:∵-2x3m+1y2n与7x n-6y-3-m的积与x4y是同类项,∴2t3-=1,3+1+t6=4.解得=3,=2.∴m2+n=7.设计意图:进一步巩固所学新知,同时检测学习效果,及时查漏补缺.课堂小结今天我们学了哪些内容?单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.设计意图:通过课堂小结,对本节课内容进行梳理,加深学生对本节课所学内容的理解和掌握,为接下来的学习打好基础.课堂8分钟.1.教材第104页习题14.1第3题.2.七彩作业.教学反思第2课时单项式与多项式相乘课时目标1.探索并了解单项式与多项式相乘的法则,会运用法则进行简单计算.2.经历探索单项式与多项式相乘的运算过程,体会分配律的作用和转化思想,感受运算法则和相应的几何模型之间的联系,发展数形结合的思想.3.让学生逐步形成独立思考、主动探索的习惯,培养思维的严密性和初步解决问题的能力.学习重点单项式与多项式相乘的法则.学习难点整式乘法法则的推导与应用.课时活动设计复习回顾计算.(1)(-2ac)2(-3ab2c);23+设计意图:学生独立完成两个计算题.第一题复习了单项式乘以单项式,第二题复习了乘法分配律.这两个知识点是研究单项式乘多项式的基础,为这节课的学习做了知识准备.探究新知问题:为了扩大绿地的面积,要把街心花园的一块长p米,宽b米的长方形绿地,向两边分别加宽a米和c米,你能用几种方法表示扩大后的绿地的面积?分四人小组,与同伴交流,寻求不同的表示方法.教师根据学生讨论情况适时点拨启发.在同学讨论的基础上,分小组展示不同方法.教师记录并总结:1.把它看成三个小长方形,扩大后绿地的面积为pa+pb+pc.2.把它看成一个大长方形,则面积为p(a+b+c).追问1:p(a+b+c)和pa+pb+pc之间有着怎样的关系?为什么?学生观察可知p(a+b+c)=pa+pb+pc,因为它们都表示的是同一个量:扩大后长方形绿地的面积.追问2:你能用乘法分配律证明这个等式吗?学生回答:由乘法分配律的公式推出结论p(a+b+c)=pa+pb+pc.追问3:观察等式左边是什么与什么相乘?学生回答:单项式和多项式.追问4:你能总结单项式与多项式相乘的法则吗?教师引导学生在不同代数式的呈现中,找到规律:单项式与多项式相乘,就是用单项式去乘多项式中的每一项,再把所得的积相加.教师鼓励学生用自己的语言概括单项式乘以多项式的法则.设计意图:用几何图形的面积验证了两个整式相等,发展了学生的几何直观.类比前面的知识,还可以通过代数方法验证,即乘法分配律来验证.两种方法是学习本章知识的主要方法,体现了数形结合思想.在解决问题过程中,学生观察、总结规律,探究法则,总结出单项式乘以多项式的法则,培养学生的概括能力和语言的严谨性.典例精讲例1计算:(1)(-4x2)(3x+1);232-2B·12ab.解:(1)原式=(-4x2)·(3x)+(-4x2)×1=(-4×3)(x2·x)+(-4x2)=-12x3-4x2.(2)原式=23ab2·12ab+(-2ab)·12ab=13a2b3-a2b2.教师点拨:在计算过程中要注意符号,多项式的每一项都包含前面的符号.用单项式去乘多项式的每一项,结果是一个多项式,项数与因式中多项式的项数相同.例2先化简,再求值:3a(2a2-4a+3)-2a2(3a+4),其中a=-2.解:3a(2a2-4a+3)-2a2(3a+4)=6a3-12a2+9a-6a3-8a2=-20a2+9a.当a=-2时,原式=-20×(-2)2+9×(-2)=-20×4-9×2=-98.教师点拨:在整式乘法的混合运算中,要注意运算顺序.按运算法则进行化简,然后代入求值,特别注意的是代入“负数”要用括号括起来.例3如果(-3x)2(x2-2nx+2)的展开式中不含x3项,求n的值.解:(-3x)2(x2-2nx+2)=9x2(x2-2nx+2)=9x4-18nx3+18x2∵展开式中不含x3项,∴n=0.教师总结点拨:注意当要求多项式中不含有哪一项时,则表示这一项的系数为0.设计意图:通过例题的讲解,巩固单项式乘以多项式的运算法则.适当增加题目类型,拓展学生思维,培养学生对所学知识的综合应用能力.巩固训练1.如果(x+a)x-2(x+a)的结果中不含x项,那么a的值为(A)A.2B.-2C.0.5D.-0.52.计算:(1)4(a-b+1)=4a-4b+4;(2)3x(2x-y2)=6x2-3xy2;(3)(2x-5y+6z)(-3x)=-6x2+15xy-18xz;(4)(-2a2)2(-a-2b+c)=-4a5-8a4b+4a4c.设计意图:进一步巩固所学新知,同时检测学生的学习成果.课堂小结1.单项式与多项式相乘的法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.2.单项式与多项式相乘,实质上是转化为单项式与单项式相乘.3.单项式与多项式相乘,应注意(1)“不漏乘”;(2)注意“符号”.设计意图:使学生能够对本课时所学知识进行整理,同时明确学习重点,进一步巩固强化.课堂8分钟.1.教材第105页习题14.1第4题.2.七彩作业.教学反思第3课时多项式与多项式相乘课时目标1.理解多项式乘以多项式的运算法则,能够按多项式乘法法则进行简单的计算,发展运算、推理能力和应用意识.2.经历探索多项式乘法法则的过程,用数学的思维体会乘法分配律的作用与转化思想,体会数形结合思想.3.应用多项式与多项式相乘的法则解决实际问题,发展应用意识.学习重点多项式乘法法则的理解及运用.学习难点探索多项式乘法的法则,注意多项式的乘法运算中“漏项”“符号”的问题.课时活动设计回顾引入请口算下列练习中的(1)、(2):(1)3x(x+y)=3x2+3xy.(2)(a+c)c=ac+bc.(3)(a+n)(m+b)=am+nm+ab+nb.比较(3)与(1)、(2)在形式上有何不同?设计意图:学生口算(1)、(2),复习了单项式乘多项式.通过与(3)式比较发现式子形式不同,引导学生从对单项式乘多项式的认识过渡到对多项式乘多项式的认识,从而激发学生对学习新知识的欲望.探究新知拿出准备好的硬纸板,画出如图所示的图形,并标上字母.要求学生根据图中的数据,求一下这个长方形的面积.与同伴交流,表示出它的面积为(m+b)(n+a).问题1:请同学们将纸板上的长方形沿中间的竖线剪开,分成两部分,如图.剪开之后,分别求一下这两部分的面积,再求一下它们的和.学生分成小组,合作探究,求出第一块的面积为m(n+a),第二块的面积为b(n+a),它们的和为m(n+a)+b(n+a).组织学生继续沿着横的线段剪开,将图形分成四部分,如图,求这四块长方形的面积.求出S1=mn;S2=nb;S3=am;S4=ab,它们的和为S=mn+nb+am+ab.追问:依据上面的操作求得的图形面积,那么(m+b)(n+a)应该等于什么?解:(m+b)(n+a)=m(n+a)+b(n+a)=mn+nb+am+ab.学生分成小组讨论交流自己的看法.学生能够发现,因为以上三次计算是按照不同的方法对同一个长方形的面积进行的计算,那么,每次的计算结果应该是相同的,所以(m+b)(n+a)=m(n+a)+b(n+a)=mn+nb+am+ab.问题2:你能类比单项式与多项式相乘的法则,叙述多项式与多项式相乘的法则吗?师生共同归纳:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.字母呈现:.设计意图:让学生用几何图形探究代数公式,体现数形结合思想;利用环环相扣的问题,为学生设置了思考与探索空间;通过归纳多项式乘多项式的法则,培养了学生归纳、概括的能力,让学生体会转化、类比和整体的数学思想.典例精讲例1计算:(1)(3x+1)(x+2);(2)(x-8y)(x-y);(3)(x+y)(x2-xy+y2).解:(1)原式=3x·x+2·3x+1·x+1×2=3x2+6x+x+2=3x2+7x+2.(2)原式=x·x-xy-8xy+8y2=x2-9xy+8y2.(3)原式=x·x2-x·xy+xy2+x2y-xy2+y·y2=x3-x2y+xy2+x2y-xy2+y3=x3+y3.例2已知ax2+bx+1(a≠0)与3x-2的积不含x2项,也不含x项,求系数a,b的值.解:(ax2+bx+1)(3x-2)=3ax3-2ax2+3bx2-2bx+3x-2=3ax3+(-2a+3b)x2+(-2b+3)x-2.∵积不含x2的项,也不含x的项,∴-2+3=0, -2+3=0.∴=94,=32.设计意图:通过例题的讲解,巩固多项式乘以多项式的运算法则,使教材呈现的知识慢慢内化为学生的认知结构,加深对知识的理解和掌握.巩固训练1.计算(x-1)(x-2)的结果为(D)A.x2+3x-2B.x2-3x-2C.x2+3x+2D.x2-3x+22.计算:(1)(x-3y)(x+7y);(2)(2x+5y)(3x-2y).解:(1)原式=x2-3xy+7xy-21y2=x2+4xy-21y2.(2)原式=6x2+15xy-4xy-10y2=6x2+11xy-10y2.3.化简求值:(4x+3y)(4x-3y)+(2x+y)(3x-5y),其中x=1,y=-2.解:原式=16x2-12xy+12xy-9y2+6x2-10xy+3xy-5y2=22x2-7xy-14y2.把x=1,y=-2代入,得22×12-7×1×(-2)-14×(-2)2=-20.设计意图:进一步巩固所学新知,同时检测学生的学习成果,及时查漏补缺.课堂小结今天我们学了哪些内容?1.多项式与多项式相乘法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.2.(a+b)(m+n)=am+an+bm+bn.3.多项式与多项式相乘,实际上是转化为单项式与多项式相乘的运算.设计意图:以填空的形式回顾本节课所学知识,加深学生对本节课所学知识的理解和掌握.课堂8分钟.1.教材第105页习题14.1第5题.2.七彩作业.第4课时同底数幂的除法1.经历探索同底数幂除法公式的推导过程,发展学生的推理能力和表达能力.2.进一步体会幂的意义,理解零指数幂.3.理解同底数幂的除法运算性质,能解决实际问题,培养学生的应用意识.同底数幂的除法运算法则及其应用.探索同底数幂的除法法则的过程.课时活动设计回顾同底数幂的乘法、幂的乘方、积的乘方公式内容及推导套路,引出课题,并让学生小组合作探究结果,教师适时适当点拨.如何解决两个整式相除的问题?方法一:除法意义或除法与分数的关系;方法二:乘除互逆.设计意图:让学生有迹可寻,运用套路,体会数学公式学习的一般方法步骤.一个问题既可自然引出课题,又可继续探索公式推导的方法.探究新知问题1:我们如何计算a m÷a n(a≠0,m,n都是正整数,并且m>n)?学生小组讨论,教师引导学生运用乘法的逆运算解决问题.根据除法是乘法的逆运算,计算被除数除以除数所得的商,也就是求一个数,使它与除数的积等于被除数.学生完成后,教师在黑板上写出解题过程:∵a m-n·a n=a(m-n)+n=a m,∴a m÷a n=a m-n.师生活动:教师引导学生试着用文字概括这个性质.同底数幂相除,底数不变,指数相减.问题2:底数a可以是什么样的数,不能是什么样的数?根据多位学生的回答,教师总结得出结论:同底数幂相除的运算中,相同底数可以是不为0的数字或字母,也可以是单项式、多项式.问题3:根据除法的意义和问题1的内容,探讨a0=?师生共同解答,并总结:同底数幂相除,如果被除式的指数等于除式的指数,例如a m÷a m,根据除法的意义可知所得的商为1.另一方面,如果按照同底数幂的除法来计算,又有a m÷a m=a m-m=a0.于是规定a0=1(a≠0).任何不等于0的数的0次幂都等于1.设计意图:从学生已有的知识和经验出发,引导学生探索发现同底数幂的除法的运算规律,遵循循序渐进的认知规律.通过学生小组讨论,根据以往学习的经验,自主学习新知识,培养探究能力.典例精讲例计算:(1)x8÷x2;(2)(ab)5÷(ab)2.解:(1)原式=x8-2=x6.(2)原式=(ab)5-2=(ab)3=a3b3.设计意图:通过练习使学生掌握同底数幂相除的运算法则.通过教师点评使学生掌握解题过程及书写格式,使学生完成知识迁移从而提高综合运用知识的能力.巩固训练1.下列运算正确的是(D)A.(-a)6÷a2=a3B.(-a)3÷(-a)2=aC.a8÷a2=a4D.(-a)2÷a2=12.计算:(1)(mn)7÷(mn)5;1212解:(1)原式=(mn)7-5=(mn)2.(2)原式12=12=14.设计意图:通过设置巩固训练,进一步巩固所学新知,同时检测学习效果.课堂小结通过这节课的学习,你有哪些收获?1.同底数幂相除,底数不变,指数相减.2.任何不等于0的数的0次幂都等于1.设计意图:小结新课内容,及时梳理,使学生对前后的知识有所串联,让新知识与旧知识得到同化,并且内化成自身的数学体系,提高学生的数学素质.课堂8分钟.。
整式的乘法同底数幂的乘积为正整数)n m a a a nm n m ,(+=•注意点:(1)必须清楚底数、指数、幂这三个基本概念的涵义。
(2)前提必须是同底数,指数才可以相加(3)底可以是一个具体的数或字母,也可以是一个单项式或多项式, (4)指数都是正整数(5)三个或三个以上的同底数幂相乘,即为正整数)p n m a a a a pn m pnm,,(++=••(6)不要与整式加法相混淆。
(7)这个公式是可逆的为正整数)n m a a an m nm ,(•=+类型一:x 3·x 4= x n·x 4= ________3=⋅a a________32=⋅⋅a a a ; 3x 2·x n ·x 4==⨯⨯252222 =•+12n ny y;类型二:(1) 已知x m-n·x2n+1=x 11,且ym-1·y4-n=y 5,求mn 2的值。
(2)若22m·8=2n ,则n=类型三:(1)、 (- )(-)2(-)3 (2)、 -a 4·(-a)4·(-a)5(3)、 (x-y)3(y-x)(y-x)6(4)、 201220112-)-2()(+类型四:已知2a =3, 2b =6, 2c =12,试探究a 、b 、c 之间的关系;1. 幂的乘方为正整数)n m a a mnnm ,()(= 注意点:(1)幂的底数a 可以是具体的数也可以是多项式。
(2)不要和同底数幂的乘法法则相混淆 (3)公式的可逆性:为正整数)n m a a n m n m ,()(=+;为正整数)n m aa a mnm n n m ,()()(=(4)公式的扩展:为正整数)p n m aa mnppnm ,,(])[(=为正整数),,()(])[(n m b a b a mnnm +=+类型一:(a 3)5= ; =-3)(3m x ; =•na a 32)( ;[(a+b )2]3= ; [(a 2)5]3= ;类型二:【例1】若3y 2x 5,35,25+==求y x【例2】若,510,410==m n 求,101032mn +的值;【例3】已知3344555,4b ,3a ===c ,试比较a,b,c 的大小;2. 积的乘方()为正整数)n b a nn(ab n= 注意点:(1)注意与前二个法则的区别:(2)积的乘方推广到3个以上因式的积的乘方()为正整数)n a a a a a a a nm nnm (a 321n321 =••(3)每个因式可以是单项式,多项式,或者其他代数式 (4)每个因式都要乘方,然后将所得的幂相乘(5)公式的可逆性:()为正整数)n b a nn (ab n=(6) 幂的乘方,积的乘方的可逆性:a mn =(a m )n =(a n )m类型一:________)(3=ab ;________)2(32=-b a ;________)5(223=-b a类型二:【例1】当ab=,m=5, n=3, 求(a m b m )n的值。
【例2】若a 3b 2=15,求-5a 6b 4的值。
【例3】如果3m+2n=6,求8m ·4n的值。
【例4】 (1)解方程3-2x 1x 1x 623=•++ (2)解方程1167431-x =+⎪⎭⎫⎝⎛【例5】已知a x=5,a x+y=25,求a x+a y的值.【例6】已知:2x=4y+1,27y=3x-1,求x ﹣y 的值类型三:【例】计算:20102011)99001(10099(⨯-) 31515)2(0.125⨯4.单项式乘法法则:【例】y x 32⋅ )5)(2(22xy y x - )2()3(22xy xy -⋅ 2232)()(b a b a ⋅-5.单项式与多项式相乘的乘法法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.【例】6.多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.【例1】)6)(2(-+x x )12)(32(+--y x y x ))((22b ab a b a +-+【例2】:解方程与不等式18)1)(9()2)(3(-++=--a a a a (4+3y)(4-3y)>9(y-2)(y+3)【例3】确定参数a 的值.36)18)(2(2++=--ax x x x 36))((2++=-+ax x q x p x题型一:确定参数的值【例】若()()n x x mx +-++38x 22展开式中不含3x 项和2x 项,求m,n 的值,并写出展开式中的最后结果练习:()()后的结果的值,并写出展开式最项,求的乘积中不含和k x k x x x 222333x +-++题型二:整式乘法的实际应用 【例1】:小明将现金x 元存入银行,年利率为a ,到期后他又连本带利存入该银行,形式还是1年期,蛋年利率调整为b ,那么一年后,小明能获得的本息总和是多少(扣除5%的利息税)练习:一种商品进价是p 元,他的价格提高10k%,再打k 折,则售价是 元【例2】:.观察下列各式:2311= 233321=+ 23336321=++ 23333104321=+++……观察等式左边各项幂的底数与右边幂的底数的关系,猜一猜可以得出什么规律,并把这规律用等式写出来: .题型三:整式的乘法能力提升训练;例1. 已知1582=+x x ,求2)12()1(4)2)(2(++---+x x x x x 的值.变式: 已知012=--x x ,求)5()3()2)(2(2---+-+x x x x x 的值.变式: 已知)1()3)(3(1,09322---+++=-+x x x x x x x )求(的值.例2. 已知012=-+x x ,求代数式3223++x x 的值。
变式: 已知0332=-+x x ,求代数式103523-++x x x 的值。
变式: 已知0132=+-x x ,求代数式200973223+--x x x 的值。
平方差和完全平方一、复习:(a+b)(a-b)=a2-b2 (a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2 (a+b)(a2-ab+b2)=a3+b3 (a-b)(a2+ab+b2)=a3-b3归纳小结公式的变式,准确灵活运用公式:①位置变化,(x+y)(-y+x)=x2-y2②符号变化,(-x+y)(-x-y)=(-x)2-y2= x2-y2③指数变化,(x2+y2)(x2-y2)=x4-y4④系数变化,(2a+b)(2a-b)=4a2-b2⑤换式变化,[xy+(z+m)][xy-(z+m)]=(xy)2-(z+m)2=x2y2-(z+m)(z+m)=x2y2-(z2+zm+zm+m2)=x2y2-z2-2zm-m2⑥增项变化,(x-y+z)(x-y-z)=(x-y)2-z2=(x-y)(x-y)-z2=x2-xy-xy+y2-z2=x2-2xy+y2-z2⑦连用公式变化,(x+y)(x-y)(x2+y2)=(x2-y2)(x2+y2)=x4-y4⑧逆用公式变化,(x-y+z)2-(x+y-z)2=[(x-y+z)+(x+y-z)][(x-y+z)-(x+y-z)]例题解析:例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a - ∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯- 例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
解:19992-2000×1998 =19992-(1999+1)×(1999-1)=19992-(19992-12)=19992-19992+1 =1例4:已知x-y=2,y-z=2,x+z=14。
求x 2-z 2的值。
〖解析〗此题若想根据现有条件求出x 、y 、z 的值,比较麻烦,考虑到x 2-z 2是由x+z 和x-z 的积得来的,所以只要求出x-z 的值即可。
解:因为x-y=2,y-z=2,将两式相加得x-z=4,所以x 2-z 2=(x+z )(x-z)=14×4=56。
例5.运用公式简便计算(1)1032 (2)1982 解:(1)1032=(100+3)2 =1002+2⨯100⨯3+32 =10000+600+9 =10609 (2)1982=(200-2)2 =2002-2⨯200⨯2+22 =40000-800+4 =39204例6.计算(1)(a +4b -3c )(a -4b -3c ) (2)(3x +y -2)(3x -y +2) 解:(1)原式=[(a -3c )+4b ][(a -3c )-4b ]=(a -3c )2-(4b )2=a 2-6ac +9c 2-16b 2 (2)原式=[3x +(y -2)][3x -(y -2)]=9x 2-( y 2-4y +4)=9x 2-y 2+4y -4例7.解下列各式(1)已知a 2+b 2=13,ab =6,求(a +b )2,(a -b )2的值。
(2)已知(a +b )2=7,(a -b )2=4,求a 2+b 2,ab 的值。
(3)已知a (a -1)-(a 2-b )=2,求222a b ab +-的值。
(4)已知13x x -=,求441x x+的值。
分析:在公式(a +b )2=a 2+b 2+2ab 中,如果把a +b ,a 2+b 2和ab 分别看作是一个整体,则公式中有三个未知数,知道了两个就可以求出第三个。
解:(1)∵a 2+b 2=13,ab =6∴(a +b )2=a 2+b 2+2ab =13+2⨯6=25 (a -b )2=a 2+b 2-2ab =13-2⨯6=1 (2)∵(a +b )2=7,(a -b )2=4∴ a 2+2ab +b 2=7 ① a 2-2ab +b 2=4 ② ①+②得 2(a 2+b 2)=11,即22112a b +=(3)由a (a -1)-(a 2-b )=2 得a -b =-2()22221222a b ab a b ab +∴-=+-()()22112222a b =-=⨯-=(4)由13x x -=,得19x x 2⎛⎫-= ⎪⎝⎭ 即22129x x +-= 22111x x ∴+= 221121x x 2⎛⎫∴+= ⎪⎝⎭ 即4412121x x ++= 441119x x += 例8.(1)(-1+3x)(-1-3x); (2)(-2m-1)2解:(1)(-1+3x)(-1-3x)=[-(1-3x)][-(1+3x)]=(1-3x)(1+3x)=12-(3x)2=1-9x 2. (2) (-2m-1)2=[-(2m+1)]2=(2m+1)2= 4m 2+4m+1.例9.四个连续自然数的乘积加上1,一定是平方数吗?为什么? 分析:由于1⨯2⨯3⨯4+1=25=522⨯3⨯4⨯5+1=121=112 3⨯4⨯5⨯6+1=361=192…… 得猜想:任意四个连续自然数的乘积加上1,都是平方数。