不定积分经典习题
- 格式:doc
- 大小:670.00 KB
- 文档页数:7
不定积分59例1、⎰⎰+-=++-==+--C x C x dx x x dx 11)2(11)2(222、⎰⎰+=++-==+--C x C x dx x xdx 21)21(11)21(213、⎰+-=⎪⎪⎭⎫⎝⎛+--C x x dx x xarctan 3arcsin 51315224、()()()C x e e x dx dx e dx x e xx x x +-=-=⎪⎭⎫ ⎝⎛-⎰⎰⎰ln 21ln 2121ππππ5、()⎰⎰⎰++-=-=-C x x xdx x xdx dx x x x csc cot cot csc csc cot csc csc 26、⎰⎰⎰⎰++-=+=+=C x x xdx xdx dx xx x x x x dx tan cot sec csc cos sin cos sin cos sin 222222227、()⎰⎰+--=-=C x x dx x dx x cot 1csc cot 228、⎰⎰⎰++-=⎪⎭⎫⎝⎛++-=++-=+C x x x dx x x dx x x dx x x arctan 31111111132224249、()C x udu u x x xd xdx +-===⎰⎰⎰)5cos(51sin 51555sin 515sin 10、()()()()⎰⎰+--=+-+⋅-=---=-+C x C x x d x dx x 81777211612117121)21(212121 11、()C a x a a x a x d a x a dx +⎪⎭⎫⎝⎛=+=+⎰⎰arctan 11122212、()()Ca x a x a x d xa dx +⎪⎭⎫⎝⎛=-=-⎰⎰arcsin 1222()()⎰⎰=-n n n n dx x f ndx x x f 11 13、()()()()C x C x x d x dx x x +--=+-+⋅-=---=-+⎰⎰23212122122122131111211121114、()C e x d e dx e x x x x +-=--=---⎰⎰333323131 15、⎰⎰⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-=+⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-=x d dx x C x x d x dx x x 111sin 11cos 1cos 12216、⎰⎰⎪⎪⎭⎫ ⎝⎛=+==x d dx x Cx x d x dx xx 21sin 2cos 2cos 17、⎰⎰⎰+=+-=-==C x C x x xd dx x x xdx sec ln cos ln cos cos cos sin tan 18、⎰⎰⎰+-=+===Cx C x x xd dx x x xdx cos ln sin ln sin sin sin cos cot 19、()()()⎰⎰⎰++=++=++=C x x x x x x d dx x x x x x xdx tan sec ln tan sec tan sec tan sec tan sec sec sec 20、()()()⎰⎰⎰+-=--=--=C x x xx x x d dx x x x x x xdx cot csc ln cot csc cot csc cot csc cot csc csc csc21、()⎰⎰+==C x xxd dx x x ln ln ln ln ln 122、()()()⎰⎰++=++=+C x x x d x x dx 1tan ln 1tan 1tan tan 1cos 2 23、()()⎰⎰++=++=+C e ee d dx e e xx x x x 1ln 111 24、()()⎰⎰++-=+-+=+C e x ee e e dx x x x x x 1ln 111 25、()⎰⎰+=+=+C e e de dx e e x x xx x arctan 1122 26、()C e x d e dx e xx x x x +-=+--=++-+-+-⎰⎰212212121127、⎰⎰⎰⎰⎪⎭⎫⎝⎛++---=⎪⎭⎫ ⎝⎛+--=-a x a x d a x a x d a dx a x a x a ax dx )()(21112122 C ax a x a ++-=ln 2128、dx x x dx x x x dx x x x ⎰⎰⎰⎪⎭⎫ ⎝⎛++-=+--+=+--2222213113112 ()()C x x x xdx x x d x +-+-=+-++-=⎰⎰arctan 31ln 211311212222 29、()()⎰⎰⎰⎰+--+-+-=+---=+--413525221526222152422222x dxx x x x d dx x x x dx x x x ()C x x x +--+-=21arctan 2352ln 21230、()C x x x xd x dx x xdx +-=⋅-=-=⎰⎰⎰2sin 412122cos 21212122cos 1sin 2 31、()⎰⎰+--=+=C x x dx x x xdx x 2cos 418cos 1612sin 8sin 213cos 5sin32、⎰⎰⎰⎰+====C x x xd x x x d x xdx dx x x sin ln ln sin ln sin ln sin ln sin sin sin ln sin cos sin ln cot33、C x x xx d xdx dx x x x dx +-=+=-=+⎰⎰⎰⎰cos 1tan cos cos sec cos sin 1sin 1222 34、()⎰⎰⎰⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=+=+44csc 214sin 2sin cos πππx d x x dx x x dx C x x +⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=4cot 4csc ln 21ππ 35、dx x a ⎰-22解法一:令)cos (sin t a t a x 或=,则tdt a dx t a x a cos ,cos 22==-原式=()⎰⎰⎰⎰⎪⎭⎫⎝⎛+=+=⋅t td dt a dt t a tdt a t a 22cos 21222cos 1cos cos 22C ax a a x a a x a C t a t a +-⋅⋅⋅+=++=22222224arcsin 22sin 42 C x a x a x a +-+=22221arcsin 21 解法二:三角形上面是圆顶的面积很容易求,地下的三角形加上上面的扇形。
例1. 解法1).12)(12(1224+-++=+x x x x x而 +++)12(2x x )1(2)12(22+=+-x x x 所以)121121(21112242dx x x dx x x dx x x ⎰⎰⎰++++-=++ .)]12arctan()12[arctan(211)12()12211)12()12(21)21)22(121)22(1[212222c x x x x d x x d dx x dx x +++-=+++++--=++++-=⎰⎰⎰⎰解法2dxx x x x xx x dx x x ⎰⎰+++-++-=++)12)(12(2)12(1122242.arctan 21)12arctan(211212242c x x dx x xx x dx +++=++++=⎰⎰解法3⎰⎰⎰+-=++=++≠2222242)1(1111,0xx x x d dx x x x dx x x x 当 c x x xx x x d +-=+--=⎰21arctan 212)1()1(22,2221arctan 21lim 20π-=-+→x x x ,2221arctan 21lim 20π=--→x x x 由拼接法可有.02221arctan 2100,2221arctan 21112242⎪⎪⎩⎪⎪⎨⎧<+--=>++-=++⎰x cx x x x c x x dx x x ππ 例2.解 将被积函数化为简单的部分分式(*)1)1(1)1()1(222223⋅⋅⋅⋅⋅++++++=+++x DCx x B x A x x x 两边同乘以2)1(+x ,约去1+x 的因子后令1-→x 得 .211)1(2)1(23=+-+-=B 两边同乘以2)1(+x ,对x 求导,再令1-→x ,施以上运算后,右端得A,而左端为.2.2426)1()2(2)1(3lim ]12[lim )1()1()1(2[lim 22322123122231=∴=+=++-+=++=++++-→-→-→A x x x x x x x dx d x x x x dx d x x x 在分解式(*)中令,0=x 得,2D B A ++=所以.21-=D 分解式(*)两边同乘以x ,再令,+∞→x 得.1,1-=⇒+=C C A 故有.arctan 21)1ln(21)1(211ln 2]1)1(1[)1()1(2222223c x x x x dxx DCx x B x A dx x x x +-+-+-+=++++++=+++⎰⎰例3.解 令 ,2x u =再用部分分式,則⎰⎰++=++))(1(21)()1(22244u u u dudx x x x x,11)()1(1222+++++=++u D Cu u B u A u u u 两边乘以,u 再令,0→u 得.1=A 两边乘以,1+u 再令,1-→u 得.21-=B 两边乘以,u 再令,+∞→u 得.21,0-=⇒++=C C B A 令.21,1-=⇒=D u.arctan 41)1()1(ln 81arctan 41)1ln(81)1ln(41ln 21arctan 41)1ln(811ln 41ln 21]12121)1(211[21))(1(21)()1(2422824222222244c x x x x c x x x x c u u u u du u u u u u u u dudx x x x x +-++=+-+-+-=+-+-+-=+--++-=++=++∴⎰⎰⎰ 例4828872882815)1(1181)1()1(dx x x dx x x x dx x x ⎰⎰⎰+-+=⋅+=+)1(])1(111[818288++-+=⎰x d x x .)1(81)1ln(8188c x x ++++= 例5. 解 令 ,2tant x =则=-++⎰dx xx xsin cos 1cos 1 .2)sin 1ln(21arctan )1ln(211ln )1111()1)(1(212121111112222222c x x ct t t dtt t t dtt t dx t t t t t t t ++--=++++--=+++--=-+=+⋅+-+-++-+⎰⎰⎰ 例6dx x x 122+⎰⎰+=22421dx x x.1ln 811)12(81))21(ln(161)21(41)21(21)21()21()21(212222222222222c x x x x x c u u u u du u x d x +++-++=+-+--=-=+-+=⎰⎰分部积分例7.25342)2()1(25232121232c x x x dx x x x dx x x ++-=+-=-⎰⎰-分项例8dx x x dx x ]1111[2111224++-=-⎰⎰ .arctan 2111ln 41c x x x ++-+= 例9.dx x x dx x x ⎰⎰+-+=+1111.134132111c x x x dx xdx x ++-+=+-+=⎰⎰例10.⎰⎰⎰---=-+=+)24(cos )24()2cos(1sin 12x x d x dxx dx πππ.)24tan(c x +--=π 例 11c t t dt x xdx tx +=-=-⎰⎰=arcsin 11212⎪⎩⎪⎨⎧-<+>+-=.1,1arcsin 1,1arcsin x c x x c x 例12.解 .2cos 41)2sin 211(c x x dx x J I ++=-=+⎰dx x x x x x dxxx x x x J I ⎰⎰++-=++-=-222)sin (cos )2sin 211)(sin (cos sin cos )2sin 211)(sin (cos.)12ln(sin 412sin 412sin 12cos )2sin 211(c x x dx x xx +++=++=⎰解上面的联立方程可得出.,J I例13. ).(,)1ln(31)1ln(1111111,)21(332arctan 332.1,1111111332322333233略从而可解出可求出令I c x x dx x x dx x dx x x x x dx x x J I c x J I dx x x J dx x x dx x x dx xx x dx x I ++-+=+-+=+-+-=+-=-+-=++=+-+-=+-+=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰ 例14.)1(12arcsin 12arcsin++=+⎰⎰x d xxdx x x .212arcsin )1(112arcsin1c x xxx dx xx x x ++++=+++=⎰)(分部积分例15.解 令,)21(12,211,12222dt t t t dx t t x t x x x +++=+-=⇒+-=++ .)1212(231212ln 231ln 2])12(23)12(231[2)21(12222222c x x x x x x x x x dt t t t dt t t t t I ++++++++++-+++=+-+-=+++=⎰⎰例16.解 .sin 2cos 5]cos 2sin 5[x x x x +='- 被积函数的分子是x x sin ,cos 的线性组合,故有.1,2,cos )25(sin )25()cos 2sin 5()cos 2sin 5(cos sin 12==⇒-++='-+-=+B A x A B x B A x x B x x A x x 于是.cos 2sin 5ln 2cos 2sin 5)cos 2sin 5()cos 2sin 5(2cos 2sin 5cos sin 12c x x x dx x x x x x x dx x x x x +-+=-'-+-=-+⎰⎰例17.解 ⎰⎰⎰-=-+-=+=4cos 13)(cos sin 3sin 2cos 22t dtx x d x xdx t x .cos 2cos 2ln 41]2121[41c xx dt t t ++-=+--=⎰ 例18.⎰⎰+=+x xdxx dx 222cos )2cos 1(cos 21 .3tan arctan 313arctan 313tan 3)(tan 2cos )(tan 222c x c t t dtx x d xx d +=+=+=+=+⎰⎰⎰ 例19..)1ln(18189623266332366c x x x x x dx x x x t x +++-+-=⋅⋅⋅=+-=⎰例20..15arctan 21515ln153215c x xx x x x dx x xx t x x+-------+-=⋅⋅⋅=---=--⎰例21..]1ln [arctan 2112sin 22c x x x x x dx tx t +-++=⋅⋅⋅=-+=≤⎰π 例22.,11ln 21211222tan 232c x x x x x dxx tx t +++-+-=⋅⋅⋅=+=<⎰π例23.⋅⋅⋅=+-=⎰t e x x xe e dx232换元后有理函数积分例24..1arcsin arcsin 2c x x x xdx+-+=⎰分部积分例25..)(c e dx e e dx exxx e xe xe +==⎰⎰+例26.”)妙用“1(cos sin 1ln cos sin 1)cos sin 1(cos sin 12cos c x x x x x x d x x xdx ++=++=+⎰⎰例27..)13()(2dx e x x e x x x x +++⎰.])[(32])[()()13(])[(23222322c e x x e x x d e x x e x x e x x x x x e ++=++=∴++='+⎰原式例28..11)1(arctan .)1(arctan 2111arctan22x x c x dx x x +-='+-=+⎰例29.=++-=+⎰⎰xb x a x b x a d a b dxx b x a x22222222222222sin cos )sin cos (1sin cos 2sin .2sin )()sin cos (.sin cos 2222222222222x a b x b x a c x b x a ab -='+++-例30.)ln ()ln (1)ln (ln 1)ln (ln 1222x xx d xx x dxxx x xxdx x x x ---=--=--⎰⎰⎰ .ln ln 1c x x xc xx x +-=+-=例31..1212ln2211)1(22sin 22c xx xx xdxt x +---+-=-+⎰=例32..111)1(22tan 2323c x x dx x x tx ++++=+=⎰例33..313222sec 0422c x a x a dx x a x t a x a +⎪⎪⎭⎫⎝⎛-⋅=-=>⎰例34dt tt t dt t t x dx tx ⎰⎰⎰--=+=-+=22sin 2cos 1cos cos cos 1cos 11 .arcsin 112c x x x x ++-+-=例35..ln 212ln 141)1(2)1()2(72717c x x dt tttx x dxtx +++-=-⋅+=+⎰⎰=例36..13)12(2)431(]43)21[()1(2232121232232c xx x t tdt x dxx x dx tx ++++=+-=++=++⎰⎰⎰=+例37..22)(212)2(2222c e x x dx e x x x e x dx x e x x xx x ++-='+++-=+⎰⎰ 例38..)2ln(201ln 21)2()2(101010910c x x x x dx x x x dx ++-=+=+⎰⎰ 例39..1ln 72ln )2()1()1()1(71076777c x x x x dx x x x x dx x ++-=+-=+-⎰⎰ 例40..)1ln (1)()111(111112c x x nx d x n dx x x x x dx x n n n n n n n n n ++-=+-=+⋅=+⎰⎰⎰-- 例41..)1(121003dx x x ⎰-+9899111003)1(493)1(1331)1(12----=-+=-⎰x x dx x x u x例51. 求,))((dx x b a x ⎰-- 其中.b a < 解 由配方得2,)2())((22a b R b a x R x b a x -=+--=--其中,令,2b a u x ++=则有原式 .))((4)(2)(2arcsin )(41cos sin 22)2sin 412(22cos 1cos 2222222sin 22c x b a x b a x ab b a x a bc t t R t R c t t R dt t R tdt R du u R t R u +--+-+-+--=++=++=+==-=⎰⎰⎰= 例52.设)(x f 有一个原函数,sin xx 求.)(⎰'dx x f x 解 用分部积分法有 (*))()()()(⋅⋅⋅⋅⋅⋅-=='⎰⎰⎰dxx f x xf x xdf dx x f x.sin cos ]sin [])([)(sin )(211xx x x c x x dx x f x f c x x dx x f -='+='=⇒+=⎰⎰ 代入(*)有 1sin sin cos )(c xx x x x dx x f x ---='⎰, 即 .sin 2cos )(c x x x dx x f x +-='⎰。
不定积分(A)求下列不定积分dx~~2X(x 2)2dxdx2) xV x2x .2dx 4) 1 x1、1) 3)5)7) 2、1) 3) 5) 7) 9) 11) 13) 15) 17)2 3X 53^△dx cos2x2 ;~2~dx6)cos xsin xX 3(2e )dxx求下列不定积分(第一换元法)(1 —y^'xYxdX8) x3(3 2x) dxsin t ..dtxtdxcosxsin xdx2) 32 3xdx,) xl n x In (I n x)xcos(x2)dxsinx , 厂dxcos xdx2x2 1sin 2xcos3xdxdxx x6) e e“、cos3xdx12)tan3x secxdx14)3x9 x2dx16)______ 13cos2 x—dx4sin x10 2arccosxdxarctan x ,dx 18) x(1 x)3、求下列不定积分(第二换元法)1) 2)sinxdx3) 4)2x----------- d x, (a 0)2 2.a x5)7) 4、1) 3) 5)7) 5、1)2)3)dx6)dx1 \2xdxx -J x28)dx1 T x2求下列不定积分(分部积分法)xSnxdxx2In xdxx2arcta nxdxIn2xdx求下列不定积分(有理函数积分)3xdxx 32x 32x 3xdxx(x21)1、一曲线通过点方程。
2、已知一个函数2)4)6)8)arcs inxdxe 2x sin -dx2x2cosxdx2 2 xx cos dx2(B)(M,3),且在任一点处的切线斜率等于该点的横坐标的倒数,F(x)的导函数为1 x2,且当x 1时函数值为2求该曲线的,试求此函数。
3、证明:若f(x)dx F(x)c,则f (ax b)dx 丄F(axa b) c,(a 0)o sin x4、设f(x)的一个原函数为求xf(x)dx。
不定积分 (A)1、求下列不定积分1)⎰2xdx 2)⎰xxdx23)dxx⎰-2)2(4)dxxx⎰+221 5)⎰⋅-⋅dxxxx32532 6)dxxxx⎰22sincos2cos7)dxxe x32(⎰+ 8)dxxxx)11(2⎰-2、求下列不定积分(第一换元法)1)dxx⎰-3)23( 2)⎰-332xdx3)dttt⎰sin4)⎰)ln(lnln xxxdx5)⎰xxdxsincos 6)⎰-+xx eedx7)dxxx)cos(2⎰ 8)dxxx⎰-43139)dxxx⎰3cossin10)dxxx⎰--249111)⎰-122xdx 12)dxx⎰3cos13)⎰xdxx3cos2sin 14)⎰xdxx sectan315)dxxx⎰+23916)dxxx⎰+22sin4cos3117)dxxx⎰-2arccos211018)dxxxx⎰+)1(arctan3、求下列不定积分(第二换元法)1)dxxx⎰+211 2)dxx⎰sin3)dxxx⎰-424)⎰>-)0(,222adxxax5)⎰+32)1(xdx 6)⎰+xdx217)⎰-+21xxdx 8)⎰-+211xdx4、求下列不定积分(分部积分法) 1)inxdxxs⎰ 2)⎰xdxarcsin3)⎰xdxx ln24)dxxe x⎰-2sin25)⎰xdxx arctan2 6)⎰xdxx cos27)⎰xdx2ln 8)dxxx2cos22⎰5、求下列不定积分(有理函数积分)1)dxxx⎰+332)⎰-++dxxxx1033223)⎰+)1(2xxdx (B)1、一曲线通过点)3,(2e,且在任一点处的切线斜率等于该点的横坐标的倒数,求该曲线的方程。
2、已知一个函数)(xF的导函数为211x-,且当1=x时函数值为π23,试求此函数。
3、证明:若⎰+=c x F dx x f )()(,则)0(,)(1)(≠++=+⎰a cb ax F a dx b ax f 。
不定积分专题试题(含答案)一、填空题1、若⎰==__)(sin cos )()('dx x xf u f u F ,则 C x F +)(sin2、设)(x f 的一个原函数为x x tan ,则⎰=___)('dx x xf C x xx +-tan 2sec 2 3、若)1()(ln '2>=x x x f ,则___)(=x f C e x +2214、_____1)2(=--⎰xx dxC x +--1arctan 25、设x x f ln )(=,则____)('=⎰--dx ee f x x C x +6、___sin cos 2222=+⎰xb x a dx C x a bab +)tan arctan(1 7、已知边际收益为x 230-,则收益函数为___ 230x x -8、=-+=⎰⎰dx x xf C x dx x f )1()(22,则若______ C x +--22)121(9、____)2ln 1(12=+⎰dx x x C x +2ln arctan10、若____1)1()()(2=⋅+=⎰⎰dx xxf C u F du u f ,则 C xF +-)1(二、选择题1、函数x x e 3的一个原函数为( B )A 、)3ln 1()3(+xe B 、3ln 1)3(+xeC 、3ln 3xe D 、3ln 3xe2、求dx x ⎰-42时,为使被积函数有理化,可作变换(C )A、t x sin 2= B 、t x tan 2= C 、t x sec = D 、42-=t x3、若x ln 是函数)(x f 的原函数,那么)(x f 的另一个原函数是BA 、ax lnB 、ax a ln 1C 、x a +lnD 、2)ln 21x (4、函数__)(_)()()(2D x F x x x f =+=的一个原函数A 、334xB 、334x xC 、)(3222x x x + D 、)(322x x x +5、__)(_)(cos )1cos 1(2D x d x =-⎰A 、C x x +-tanB 、C x anx +-cos tC 、C x x+--cos 1 D 、C x x +--cos cos 1三、计算题 1、⎰+)1(x x dxC x +arctan 2 2、dx x x ⎰-234 C x x +-+--3)4(443223、dx xx⎰-31 C x x x x x x +-++----666656711ln 3625676 4、dx e x x 23-⎰ C e e x x x +----22212125、dx x x ⎰+241 C x x x ++-arctan 336、dx xx ⎰22cos sin 1C x x +-cot tan 7、dx ex ⎰-12 C x ex +---)112(128、dx x )arcsin (2⎰ C x x x x ar x +--+2arcsin 12)sin c (229、xdx ⎰3tan C x x++cos ln 2tan 210、⎰-dx x x 123 C x x +-+-13)1(232 11、dx x x 23)(ln ⎰ C x x x x x ++-32ln 8)(ln 4442412、⎰dx x )sin(ln C x x x +-)]cos(ln )[sin(ln 213、dx x f x f ⎰)()(' )(2x f +C 14、dx ex ⎰+211C e e x x +++-+1111ln 2122 15、dx x x ⎰sin C x x x x x +-+-sin )2(6cos )6(2 四、证明题:设)(x f 的原函数)(x F 非负,且1)0(=F ,当x x F x f x 2sin )()(02=≥时,有,试证14sin 412sin )(2+-=x x xx f不定积分练习题1基础题 一.填空题 1.不定积分:⎰=_____x x dx22.不定积分:dx x ⎰-2)2(=______3.不定积分: dx x x x)11(2⎰-=_______ 4.不定积分:dx x ⎰-2)2(=__________5.不定积分:dx xe x)32(⎰+=_______ 6.一曲线通过点)3,e (2,且在任一点处的切线斜率等于该点的横坐标的倒数,则该曲线的方程为____________________7.已知一个函数)x (F 的导函数为2x 11-,且当1x =时函数值为π23,则此函数为_______________ 8.=+⎰x d )x 1x ( ________ 9. 设1()f x x=,则()f x dx '=⎰ 10.如果xe -是函数()f x 的一个原函数,则()f x dx =⎰11. 设21()ln(31)6f x dx x c =-+⎰,则()f x = . 12. 经过点(1,2),且其切线的斜率为2x 的曲线方程为 .13. 已知()21f x x '=+,且1x =时2y =,则()f x = .14. (103sin )xx x dx +-=⎰ .15.222()a x dx +=⎰. 16.3321(1)x x dx x-+-=⎰ . 二.选择题 1、,则设x d x1I 4⎰=I =( ) c x 3 1)D ( c x 3 1)C ( cx 3 1)B ( c x 4)A (3335++-+-+--- 2、的一个原函数为则,设 )x (fx 1 1)x (f 2-=( )()arcsin ()arctan A x B x x 1 x 1 ln 2 1)C (+- x1x 1 ln 2 1)D (-+ 3、函数x 2 cos π的一个原函数为 ( ) (A) x 2 sin 2 ππ (B) x 2 sin 2 ππ- (C )x 2 sin 2ππ (D) x2 sin 2ππ- 4、设f(x) 的一个原函数为F(x), 则⎰=dx )x 2(f ( )(A) F(2x)+ C (B) F( 2 x )+ C (C)C )x 2(F2 1+ (D) 2F( 2 x )+ C 5.设3()lnsin 44f x dx x C =+⎰,则()f x =( )。
不定积分(A)1、求下列不定积分1)⎰2xdx2)⎰xxdx23)dxx⎰-2)2(4)dxxx⎰+2215)⎰⋅-⋅dxxxx325326)dxxxx⎰22sincos2cos7)dxxe x)32(⎰+8)dxxxx)11(2⎰-2、求下列不定积分(第一换元法)1)dxx⎰-3)23(2)⎰-332xdx3)dttt⎰sin4)⎰)ln(lnln xxxdx5)⎰xxdxsincos6)⎰-+xx eedx7)dxxx)cos(2⎰8)dxxx⎰-43139)dxxx⎰3cossin10)dxxx⎰--249111)⎰-122xdx12)dxx⎰3cos13)⎰xdxx3cos2sin14)⎰xdxx sectan315)dxxx⎰+23916)dxxx⎰+22sin4cos3117)dxxx⎰-2arccos211018)dxxxx⎰+)1(arctan3、求下列不定积分(第二换元法)1)dxxx⎰+2112)dxx⎰sin3)dxxx⎰-424)⎰>-)0(,222adxxax5)⎰+32)1(xdx6)⎰+xdx217)⎰-+21xxdx8)⎰-+211xdx4、求下列不定积分(分部积分法)1)inxdxxs⎰2)⎰xdxarcsin3)⎰xdxx ln24)dxxe x⎰-2sin25)⎰xdxx arctan26)⎰xdxx cos27)⎰xdx2ln8)dxxx2cos22⎰5、求下列不定积分(有理函数积分)1)dx xx⎰+332)⎰-++dxxxx1033223)⎰+)1(2xxdx(B)1、一曲线通过点)3,(2e,且在任一点处的切线斜率等于该点的横坐标的倒数,求该曲线的方程。
2、已知一个函数)(xF的导函数为211x-,且当1=x时函数值为π23,试求此函数。
3、证明:若⎰+=c x F dx x f )()(,则)0(,)(1)(≠++=+⎰a cb ax F a dx b ax f 。
计算题(共 200 小题) 1、⎰⎰+=.d )( , sin d )()(x x f c x x x f n 求设 2、⎰'>+=.d )(),0()(2x x f x x x x f 试求设 3、.d x x ⎰求4、.)( .0,sin ,0)(2的不定积分求 设x f x x x x x f ⎩⎨⎧>≤= 5、已知,求它的原函数.f x x F x ()()=-1 6、.d x x ⎰求 7、⎰-233d x x 求 8、 .,d 2是常数其中求 a x x a ⎰9、.0,,d >⎰a a x e a x x 是常数其中求 10、.d tan csc 22x x x ⋅⎰求11、⎰⋅x x x d cot sec 22求 12、⎰+22d x x 求 13、⎰+82d 2x x求 14、⎰-9d 2x x 求 15、⎰-.63d 2x x 求 16、 ⎰+232d x x 求 17、.d 2432x xx x ⎰-求 18、x x x d ⎰⋅求 19、.d )1(23x x x ⎰+求 20、 .,,d )cosh sinh (均为常数其中求 b a x x b x a ⎰+ 21、⎰x x d cot 2求22、.d 11)(3x x x ⎰++求 23、.d x x x x ⎰求 24、⎰+.d )arccos (arcsin x x x 求 25、[].d )1(cos cos )1(sin sin x x x x x ⎰+++求 26、⎰⋅.d 2sin 22x x 求 27、⎰.d 2cos 22x x 求 28、.d sin 1sin 423x x x ⎰-求 29、⎰+.d )32(2x x x 求 30、.d 3273x x x ⎰--求 31、.d 22222x x x x ⎰-+-求 32、⎰---.d )31)(21)(1(x x x x 求 33、x x x x d )1(21222⎰++求 34、.d 323x xx e x x x ⎰+-求 35、.d )1()1(22x x x x ⎰++求 36、⎰+.d )sec (tan 22x x x 求 37、.d )csc (cot 22x x x +⎰求 38、.d sin sin 2222⎰+x xx x x 求 39、.d 122x xx ⎰+求40、⎰-.d 122x x x 求 41、.d 1322x x x ⎰-+求 42、.d 111422x x x x ⎰--++求 43、 .d 111422x x x x ⎰---+求44、 .d 2cos 1sin 12x xx ⎰-+求 45、.d 1cos sin 122x x x ⎰--求 46、.d cos sin d 22x xx x ⎰求 47、 ⎰++.d 2cos 1cos 12x xx 求 48、.d sin cos 2cos x xx x ⎰-求 49、 ).20(d 2sin 1π≤≤+⎰x x x 求 50、x xx x d sin cos 2cos 22⎰求 51、 ⎰+x x x 2sin 2cos d 求 52、求⎰++++x xx x x x d 13323。
不定积分习题及答案9.求()()()()()dx x f x f x f x f x f ⎰⎥⎦⎤⎢⎣⎡'''-'32。
10.()d x x x ⎰1,,max 23。
第四章 不定积分(A 层次)1.⎰xx dx cos sin解:原式()()⎰⎰+===C tgx tgxtgx d dx tgx x ln sec 2 2.⎰--dx xx 2112解:原式()⎰⎰+---=-----=C x x x dx x x d arcsin 1211122223.()()⎰-+21x x dx解:原式()()[]⎰+--+-=⎪⎭⎫ ⎝⎛--+-=C x x dx x x 2ln 1ln 31211131 C x x +⎪⎭⎫⎝⎛+-=12ln 314.⎰xdx x 7sin 5sin 解:原式()⎰⎰⎰-=--=xdx xdx dx x x 12cos 212cos 212cos 12cos 21C x x +-=12sin 2412sin 41 5.()⎰+dx x x x arctg 1解:原式()()()⎰⎰+==+=C xarctg x arctg d x arctg dx x x arctg 222126.⎰-+21xx dx解:⎰⎰⎰+-++=+=-+dt tt tt t t t t tdt t x x x dx sin cos sin cos sin cos 21cos sin cos sin 12令()()C t t t t t t t d dt +++=+++=⎰⎰cos sin ln 2121cos sin cos sin 2121 ()C x x x ++-+=21ln 21arcsin 21 7.⎰arctgxdx x 2 解:原式()⎪⎭⎫ ⎝⎛+-==⎰⎰dx x x arctgx x x arctgxd 2333113131 ⎰⎰++-=231313131x xdxxdx arctgx x ()C x x arctgx x ++--=2231ln 6161318.()⎰dx x ln cos解:原式()()[]⎰+=dx x x x x x 1ln sin ln cos ()()⎰+=dx x x x ln sin ln cos()()()[]⎰-+=x xd x x x x ln sin ln sin ln cos ()()()⎰-+=dx x x x x x x ln cos ln sin ln cos 故()()()[]C x x x x dx x ++=⎰ln sin ln cos 21ln cos 9.⎰--+dx xx x x 3458解:原式()⎰⎰--++++=dx xx x x dx x x 32281⎰⎰⎰--+-+++=dx x dx x dx x x x x 131******** ()()C x x x x x x +--+-+++=1ln 31ln 4ln 821312310.()⎰+dx x x 2831解:原式()()()⎰⎰⎰=+=+=t tdt tgt u u du u x x x d 42224284sec sec 41141141令令 ()⎰⎰+==dt t tdt 2cos 181cos 412C t t ++=2sin 16181C uu u arctgu ++⋅++=221118181 ()C x x arctgx +++=844188111.⎰xdx x 2cos解:原式⎰⎪⎭⎫⎝⎛+=dx x x 22cos 1[]()⎰⎰⎰+=+=x xd x xdx x xdx 2sin 41412cos 212 ⎰-+=xdx x x x 2sin 412sin 41412C x x x x +++=2cos 812sin 4141212.⎰dx e x 3解:令t x =3,则3t x =,dt t dx 23=原式[]⎰⎰⎰-===t d t e e t de t dt t e t t t t 2333222[]⎰⎰--=-=dt e te e t tde e t ttttt 636322C e te e t t t t ++-=6632 ()C x x e x++-=2223332313.⎰xx x dxln ln ln解:原式()()[]()()[]C x x x d x x x d +===⎰⎰ln ln ln ln ln ln ln ln ln ln ln 14.()⎰+21x e dx解:()()()()⎰⎰⎰⎰+-+=+-+=+222111111t dtdt t t t t t t t e e dxx x令 ()()C t t t t t d dt t t ++++=++-⎪⎭⎫ ⎝⎛+-=⎰⎰111ln 111112()C e e x C e e e xxx x x ++++-=++++=111ln 111ln15.()⎰+dx exe xx21解:原式()()⎰⎰⎪⎭⎫⎝⎛+-=++=11112x xx e xd ee xd()()⎰⎰⎪⎭⎫ ⎝⎛+-++-=+++-=x x x x x x x x e d e e e x dx e e e e x 111111()C e e e xx x x++-++-=1ln ln 1()C e e xe x xx++-+=1ln 116.dx x ⎰3sin解:令t x =3,则3t x =,dt t dx 23= 原式⎰⎰-=⋅=t d t dt t t cos 33sin 22⎰⎰+-=⋅+-=t td t t tdt t t t sin 6cos 32cos 3cos 322 ⎰-+-=tdt t t t t sin 6sin 6cos 32 C t t t t t +++-=cos 6sin 6cos 32C x x x x x +++-=333332cos 6sin 6cos 3 17.⎰-dx xx 1arcsin解:令u x sin =,则u x 2sin =,udu u dx cos sin 2= 原式⎰=udu u uucos sin 2cos ()⎰⎰--=-=udu u u u d u cos cos 2cos 2C x x x C u u u ++--=++-=2arcsin 12sin 2cos 218.()⎰+dx x x 321ln解:原式()⎰⎪⎭⎫⎝⎛+-=-22211ln x d x()⎰+++-=dx xx x x x 2222122121ln ()()⎰+++-=2222212121ln x x dx x x ()⎰⎪⎭⎫ ⎝⎛+-++-=222221112121ln dx x x x x ()()[]C x x xx ++-++-=22221ln ln 2121ln ()()C x x xx ++-++-=2221ln 21ln 21ln 19.⎰+-dx xx xx sin 2cos 5sin 3cos 7解:原式()()⎰+-++=dx x x x x x x sin 2cos 5sin 5cos 2sin 2cos 5dx x x x x ⎰⎪⎭⎫⎝⎛+-+=sin 2cos 5sin 5cos 21C x x x +++=sin 2cos 5ln 20.()⎰++dx x xx 21ln解:原式()⎰⎪⎭⎫ ⎝⎛+-+=x d x x 11ln⎰+++++-=dx x x x x x 1111ln ⎰+++-=dx x x x x 11ln C x xxx ++++-=ln 1ln 21.⎰xdx x 35cos sin解:原式⎰=xdx x x cos cos sin 25()x d x x sin sin 1sin 25⎰-=C x x +-=86sin 81sin 6122.⎰dx x x tgxsin cos ln解:原式()⎰⎰==tgx d tgx tgxdx xtgxtgx ln cos ln 2 ()()⎰+==C tgx tgx tgxd 2ln 21ln ln 23.dx xx ⎰-2arccos 2110解:原式()⎰-=x d x arccos 21021arccos 2 C C x x ar +-=+-=arccos 2cos 21010ln 211010ln 12124.⎰arctgxdx x 2 解:原式()⎰=331x arctgxd ⎪⎭⎫⎝⎛+-=⎰dx x x arctgx x 2331131 dx xxx x arctgx x ⎰+-+-=23313131 ⎰⎰++-=231313131x xdxxdx arctgx x ()C x x arctgx x ++--=2231ln 61613125.⎰-+dx x xx 1122解:令t x 1=,dt tdx 21-=原式dt t t t t ⎰⎪⎭⎫ ⎝⎛--+=222111111⎰⎰⎰----=-+-=dt tt tdt dt tt 2221111C t t +-+-=21arcsinC xx x+-+-=11arcsin 2 26.dx x a x ⎰+222 解:令atgt x =,tdt a dx 2sec = 原式dt t a ttg a t a ⎰=222sec sec ⎰⎰+==dt tt tt t t dt cos sin cos sin cos sin 2222dt tttdt ⎰⎰+=2sin cos sec C t tgt t +-+=sin 1sec lnC xx a a x a x a ++-++=2222lnC x a x a x ++-++=2222ln 27.()dx tgx e x 221⎰+解:原式()⎰+=dx tgx x e x 2sec 22 ⎰⎰+=tgxdx e xdx e x x 2222sec ⎰⎰+=tgxdx e dtgx e x x 222dx tgx e dx e tgx tgx e x x x ⎰⎰+⋅-=22222C t g xe x +=2 28.()()()⎰+++321x x x xdx解:原式⎥⎦⎤⎢⎣⎡+-+-+=⎰⎰⎰3312421x dx x dx x dx()()()[]C x x x ++-+-+=1ln 3ln 32ln 421()()()C x x x ++++=34312ln2129.()⎰+xx dxsin cos 2解:令t x tg =2,则arctgt x 2=,212t dt dx +=,212sin t tx +=,2211cos t t x +-=,于是原式()⎰++=dt tt t 3122⎰⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡++=dt t t t 313322()⎰⎰+++=dt tt t d 131333122 ()C t t ++=3ln 313C x tg x tg +⎪⎭⎫⎝⎛+=232ln 31330.dx xxx x ex⎰-23sin cos sin cos 。
第六次习题课通过这一章的学习,我们认为应达到如下要求: 1、理解原函数、不定积分的概念。
2、掌握不定积分的基本性质,牢记基本积分公式,了解并能灵活应用若干常用积分公式。
3、理解不定积分的换元积分法和分部积分法的基本思想并能熟练运用于不定积分的计算。
4、掌握有理函数、三角函数有理式和简单无理函数的不定积分的计算方法和技巧。
⎧ 一、知识网络图 ⎧原函数 ⎪⎪⎪1.基本概念⎨不定积分⎪ ⎪⎪ ⎩不定积分的几何意义⎪ 不不定积分的性质 ⎪2.性质与公式⎨⎪⎧ ⎩基本积分公式⎪直接积分法⎪⎪⎧第一换元积分法(凑微分法)⎨⎪⎪⎪换元积分法⎨积 ⎪3.计算方法⎨⎩第二换元积分法⎪⎪⎪ ⎪分部积分法分⎪⎪⎪⎧有理函数积分⎪⎪⎪4.特殊函数的积分⎨三角函数有理式积分⎪⎪某些无理函数积分⎪⎩ ⎩一、求不定积分:例 1. 计算 ⎰ 2 arctan e x dx .e 2 x提示: ⎰2 arctan e x- ⎰ arctan e xde -2 x= -[ e -2 xarctan e x- ⎰de xdx =]e 2 x e 2 x (1 + e 2 x ) -2 x x dexde x = -[ e arctan e - ⎰ e2 x +⎰ ](1 + e 2 x )= - e -2 xarctan e x- 1- arctan e x + Ce x例 2.计算 ⎰ 1 dxx (1 + x )1[解一] ⎰ 1 dx = ⎰ 1d (x + 1 ) = ln (x + 1) + (x + 1 ) 2 - ( 1 ) 2 + C x (1 + x ) (x + 1 ) 2 - ( 1 ) 2 2 2 2 22 21+ x (x + 1) + C= ln x +2[解二] 1dx = 1dx =2d x= 2 ln( x + 1 + x ) + C 1⎰x (1 + x ) ⎰ x⎰1 + ( x ) 2(1 + x )1= ln x + + x (x + 1) + C2其中 C = C 1 - ln 2[方法小结]当被积函数含有根式时,通过巧妙的凑微分化成常用积分公式。
例 3.计算 ⎰ xe x dx (e x + 1) 2[解一] 令 e x= t ,则 ⎰ xe x dx = ⎰ t ln t 1 dt = ⎰ ln t dt (e x + 1) 2 (t + 1) 2 t (t + 1) 2= - ln t + ⎰[1 - 1 ]dt = - ln t + ln t t + 1 t + 1 t + 1 t= xe x - ln(e x+ 1) + Ce x + 1= ⎰ ln td (- t +1 1) = - 1ln +t t + ⎰ t +1 1 ⋅ 1t dt- ln(t + 1) + C[解二] ⎰ xe x dx = ⎰ xd (e x + 1) = ⎰ xd (- 1 ) = - x + ⎰ 1dx (e x + 1) 2 (e x + 1) 2 e x + 1 e x + 1 e x + 1= - x + ⎰ e x dx = - x + ⎰ de xe x +1 e x (e x +1) e x +1 e x (e x +1)= - x + ⎰ ( 1 - 1 )de x = - x+ ln e x - ln(e x + 1) + Ce x+ 1 x e x + 1 e x e + 1 = xe x - ln(e x+ 1) + Ce x + 1[方法小结] 被积函数中含有 e x 的不定积分,可令 e x = t , 从而将积分化为其它易积的积分。
另一方面,当用分部积分法,其中 u , dv 难以一步得到时,可以先将其中一部分凑成f '(ϕ ( x ))d ϕ ( x ) 的形式,从而 dv = df (ϕ ( x )) 。
例 4.计算 ⎰ x 2 (1 + x 2 )dx.2arctan x[解一] 令 arctan x = t ,即 x = tgt ,则 dx =sec 2tdt⎰ arctan x dx = ⎰t sec 2tdt = ⎰ t cot 2tdt = ⎰t (csc 2t -1)dtx 2(1 + x 2) tan 2t ⋅ sec 2t= - ⎰ td cot t - ⎰ tdt = -t cot t + ⎰ cot tdt - t 22= -t cot t + ln | sin t | - t 2 + C2= - arctgx + ln | x | - (arctgx ) 2 + Cx 1 + x 2 2[解二] ⎰ arctan x dx = ⎰ ( 1 - 1 ) arctan xdx= ⎰ arctan xdx - ⎰arctan xd arctan x x 2 (1 + x 2 ) x 2 1+ x 2 x 2=⎰ arctan x (arctan x )2 1 (arctan x )2x 2 dx -2 = - ⎰ arctan xd x -2= - arctan x+ ⎰1dx - (arctan x )2x x (1 + x 2 ) 2令 x = 1,则 ⎰1 dx = -⎰ t dt = -1 ⎰ 1 d (t2 + 1) = - 1 ln(t 2 + 1) + C x (1 + x 2 ) t 2 2 t 2 t + 1 + 1 2= ln | x| +C1 + x 2从而原式= - arctan x + ln | x | - (arctan x )2 + C 。
x 1+ x 2 2[方法小结]当被积函数含有难积的反三角函数时,通常的做法是将这一部分作变量替换。
另若分母为相差一个常数的两个因式的乘积,则可以将分式拆项,分别积分。
例 5. 计算 ⎰1 + sin xdx 1 + cos x[分析一]本题属于三角函数有理式的积分, 可以利用万能公式作变量替换。
解一 ] 令 t = tan x ,则 sin x = 2t ,cos x = 1-t 2, dx = 2dt2 1+t 21+t 21+t2[1 + sin x 1 + 2t2 t 2 + 2t + 1 2t ⎰1 + t 2dx = ⎰ dt = ⎰ 2 dt = ⎰ (1 + )dt = t + ln(1 + t 2 ) + C1 + cos x1 + 1 - t2 1 + t 2 1 + t 1 + t 21 + t 2= tan x + ln(1+ tan 2 x ) + C2 23[分析二] 本题被积函数含有三角函数, 若适当利用三角函数恒等式(如倍角、半角公式、和差化积、积化和差等公式),往往能简化计算。
[解二]1 +2 sin xxx⎰1 +sin xdx = ⎰cos1d x + 2 ⎰ sind x = tan x - 2 ln | cos x2 2 dx =⎰2 | +C2 x 1 + cos x2 cos2 x cos 2 cosx 2 2 2222[方法小结] 一般地,被积函数含有三角函数时,常利用万能公式作变量替换或利用三角函数恒等式进行化简。
前者虽然是通用的方法,但往往不是最简便的。
另须注意,本题两种解法给出的结果虽然不一致,但求导后都等于被积函数,所以都是正确的。
例 6.计算 ⎰1 dx(x - a )(b - x )[分析一]注意到被积函数中含有两个根式,可以先将其中一个根式有理化,再将余下的根式 作变量替换。
[解一]1=x - a = 1x - a(x - a )(b - x ) x - a b - x x - a b - x x - a = t , 即 x = a + bt 2 2(b - a )tdt ,令, dx =b - x 1 + t 2 (1 + t 2 ) 211+ t 22(b - a )t1x - a⎰dx = ⎰t (1+ t 2 )2 dt = 2⎰dt = 2 arctan t + C = 2 arctan+ C(x - a )(b - x ) (b - a )t 2 1+ t 2 b - x [分析二]本题也可以用凑微分法,计算过程更为简便。
[解二] ⎰1 dx = ⎰2 d x - a = 2⎰ d x - a = 2 arcsin x - a + C(x - a )(b - x )b - x (b - a ) - ( x - a ) 2 b - x[方法小结] 当被积函数含有根式时,常常需要对根式进行处理,通常作变量替换,也可以用凑微分法。
例 7. 计算 ⎰12dx3 + sin x[分析一] 被积函数分子、分母同除以 sin 2 x ,可化为 csc 2 x 的函数,利用 - csc 2 x = d cot x ,csc 2 x = cot 2 x +1 可以将积分化简。
1dx = ⎰ csc 2 xdx = -⎰ d cot x1 ⎰d cot x[解一] ⎰= -3 + sin 2x (3 csc 2x + 1) 3 cot 2x + 4 3 cot 2 x + ( 2) 234= 1 3 arctgcot x+ C 。
23[分析二] 被积函数分子、分母同除以 cos 2 x ,可化为 sec 2 x , tan 2 x 的函数,而利用 sec 2 x = d tan x ,可以将积分化简。
[解二]1sec 2 xd tan x 1d tan x1 2tan x⎰dx = ⎰dx = ⎰=⎰=arctg+ C3 + sin 2 x (3sec 2 x + tg 2 x )4 tan 2 x + 3 4 tan 2 x + (3 )24 33 22[方法小结] 当被积函数含有 sin x 或 cos x 的齐次函数时,常从各项中提取 sin 2 x 或 cos 2 x ,凑 成 d tan x 或 d cot x 。
例 8. 计算 ⎰ 1dxx 4 1 + x 2[分析一] 注意到被积函数中根式内外都有 x 的幂次,可尝试用倒代换。
[解一]令 x =1t ,则⎰1dx = - ⎰ t 3 dt1 ⎰ t2 dt 2 21 ⎰ udu 1 ⎰ u + 1 - 1 = -2 u = t - 2 = - 2 du x 4 1 + x 2 1 + t 2 1 + t 2 1 + u 1 + u= - 1 ⎰ 1 ⎰ 1 1 3 11 + udu + du = - (1 + u )2 + (1 + u ) 2 + C2 2 1 + u 31 3 1 (1 + x2 )3 1 + x 2 = - (1 + t 2 ) 2 + (1 + t 2 ) 2 + C = - + + C3 3x 3x[分析二]本题也可以用三角代换,令 x = tan t ,则根式下可化为 sec 2 x 。