补充知识-模糊推理
- 格式:ppt
- 大小:462.50 KB
- 文档页数:33
模糊推理基础模糊推理基础模糊推理是一种基于模糊逻辑的推理方法,它能够处理现实世界中存在的不确定性和模糊性。
在传统的推理方法中,命题的真假只有两种可能,即真或假,而在模糊推理中,命题的真假不再是二元的,而是一个连续的区间。
这种推理方法可以更好地适应人类思维的特点,能够处理不完全和不确定的信息,广泛应用于人工智能、控制系统、决策分析等领域。
模糊推理的基本原理是将模糊集合与模糊逻辑相结合。
模糊集合是一种介于传统集合和模糊逻辑之间的数学概念,它可以用来描述现实世界中模糊和不确定的概念。
在模糊集合中,每个元素都有一个隶属度,表示它属于该集合的程度。
这样,一个命题的真假可以表示为一个隶属度的区间。
模糊逻辑是一种扩展了传统逻辑的形式体系,它引入了模糊命题和模糊推理规则。
模糊命题是一种具有模糊隶属度的命题,它可以表示为“如果A,则B”,其中A和B都是模糊集合。
模糊推理规则是一种描述了命题之间关系的规则,它可以用来推导出新的命题。
在模糊推理中,推理过程包括模糊化、规则匹配、推理和去模糊化四个步骤。
首先,将输入的模糊命题转化为模糊集合,并进行隶属度的计算。
然后,根据事先定义好的模糊推理规则,对输入的命题进行匹配。
匹配成功后,根据推理规则和隶属度的计算,得到新的命题。
最后,将新的命题进行去模糊化处理,得到最终的推理结果。
模糊推理在实际应用中具有广泛的应用价值。
例如,在人工智能领域中,模糊推理可以用于处理自然语言的不确定性和模糊性,实现智能对话和问答系统。
在控制系统中,模糊推理可以用于处理传感器数据的噪声和不确定性,提高系统的鲁棒性和稳定性。
在决策分析中,模糊推理可以用于处理多指标决策问题,帮助决策者做出更准确和合理的决策。
然而,模糊推理也存在一些挑战和限制。
首先,模糊推理需要事先定义好的模糊集合和推理规则,这对于复杂问题来说可能是困难的。
其次,模糊推理需要大量的计算资源和时间,尤其是在处理大规模问题时。
此外,模糊推理对输入数据的准确性要求较高,如果输入数据存在误差或不完整性,可能会导致推理结果的不准确性。
几种典型的模糊推理方法根据模糊推理的定义可知,模糊推理的结论主要取决于模糊蕴含关系),(~Y X R 及模糊关系与模糊集合之间的合成运算法则。
对于确定的模糊推理系统,模糊蕴含关系),(~Y X R 一般是确定的,而合成运算法则并不唯一。
根据合成运算法则的不同,模糊推理方法又可分为Mamdani 推理法、Larsen 推理法、Zadeh 推理法等等。
一、Mamdani 模糊推理法Mamdani 模糊推理法是最常用的一种推理方法,其模糊蕴涵关系),(~Y X R M 定义简单,可以通过模糊集合A ~和B ~的笛卡尔积(取小)求得,即)()(),(~~~y x y x B A RMμμμΛ= (3.2.1) 例 3.2.1 已知模糊集合3211.04.01~x x x A ++=,33211.03.05.08.0~y y y y B +++=。
求模糊集合A ~和B ~之间的模糊蕴含关系),(~Y X R M 。
解:根据Mamdani 模糊蕴含关系的定义可知:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⨯=1.01.01.01.01.03.04.04.01.03.05.08.0]1.03.05.08.0[1.04.01~~),(~B A Y X R MMamdani 将经典的极大—极小合成运算方法作为模糊关系与模糊集合的合成运算法则。
在此定义下,Mamdani 模糊推理过程易于进行图形解释。
下面通过几种具体情况来分析Mamdani 模糊推理过程。
(i) 具有单个前件的单一规则设*~A 和A ~论域X 上的模糊集合,B ~是论域Y 上的模糊集合,A ~和B ~间的模糊关系是),(~Y X R M ,有大前提(规则): if x is A ~ then y is B ~小前提(事实): x is *~A结论: y is ),(~~~**Y X R A B M =当)()(),(~~~y x y x B A RMμμμΛ=时,有 )()}()]()({[V )]}()([)({V )(~~~~Xx ~~~Xx ~***y y x x y x x y BB A AB A AB μωμμμμμμμΛ=ΛΛ=ΛΛ=∈∈ (3.2.2)其中)]()([V ~~Xx *x x AA μμωΛ=∈,称为A ~和*~A 的适配度。
第三章:模糊推理系统随着科学技术的不断发展,人们对计算机的要求愈来愈高,不仅要求它具有更高的运算速度、更大的信息存贮和数据处理能力,而且还需要计算机具有一定的“智能”。
控制论的创始人维纳曾经说过,由于“人具有运用模糊概念的能力”,所以人胜过任何最完善的机器。
对模糊事物进行识别和判决是人脑的重要特点之一,那么如何使计算机能够模拟人脑思维的模糊性,如何使模糊语言作为算法语言直接进入计算机程序,让计算机完成模糊推理,这是模糊信息处理首先要解决的问题。
§3.1 语言变量与模糊规则为了使计算机能够利用模糊概念,模拟人的思维进行模糊推理,首先需要深入研究模糊推理的一些基础知识。
如模糊语言变量、模糊命题及模糊推理方法等等。
3.1.1 模糊语言语言是一种符号系统,通常包括自然语言和人工语言两种。
自然语言是指人类交流信息时使用的语言,它可以表示主、客观世界的各种事物、观念、行为、情感等。
自然语言具有相当的不确定性,其主要特征就是模糊性,这种模糊性主要是由于自然语言中经常用到大量的模糊词(如黎明、模范、优美、拥护等)。
人工语言主要是指程序设计语言,如我们熟悉的C语言、汇编语言等。
人工语言的格式是非常严密、且概念十分清晰。
一、模糊语言的概念从广义角度来讲,一切具有模糊性的语言都称为模糊语言。
显然,模糊语言主要是指自然语言。
由于模糊语言可以对模糊性进行分析和处理,因此,在现实生活中,人们常常用模糊语言来描述事物或现象的模糊性。
另外,需要说明的是模糊语言又具有很大的灵活性,在不同的场合,同一全模糊概念可以表达出不同的含义。
如“高个子”,在中国,大约在1.75—1.85 m之间的人就认为是“高个子”,而在欧洲,大约在1.80—1.90 m之间的人才能算作“高个子”。
模糊语言是一种广泛使用的自然语言。
如何将模糊语言表达出来,使计算机能够模拟人的思维去推理和判断,这就引出了语言变量这一概念。
二、语言变量经常用到的语言变量“偏差”、“偏差变化率”等。
几种典型的模糊推理方法根据模糊推理的定义可知,模糊推理的结论主要取决于模糊蕴含关系),(~Y X R 及模糊关系与模糊集合之间的合成运算法则。
对于确定的模糊推理系统,模糊蕴含关系),(~Y X R 一般是确定的,而合成运算法则并不唯一。
根据合成运算法则的不同,模糊推理方法又可分为Mamdani 推理法、Larsen 推理法、Zadeh 推理法等等。
一、Mamdani 模糊推理法Mamdani 模糊推理法是最常用的一种推理方法,其模糊蕴涵关系),(~Y X R M 定义简单,可以通过模糊集合A ~和B ~的笛卡尔积(取小)求得,即)()(),(~~~y x y x B A RMμμμΛ= (3.2.1)例 3.2.1 已知模糊集合3211.04.01~x x x A ++=,33211.03.05.08.0~y y y y B +++=。
求模糊集合A ~和B ~之间的模糊蕴含关系),(~Y X R M 。
解:根据Mamdani 模糊蕴含关系的定义可知:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⨯=1.01.01.01.01.03.04.04.01.03.05.08.0]1.03.05.08.0[1.04.01~~),(~ B A Y X R MMamdani 将经典的极大—极小合成运算方法作为模糊关系与模糊集合的合成运算法则。
在此定义下,Mamdani 模糊推理过程易于进行图形解释。
下面通过几种具体情况来分析Mamdani 模糊推理过程。
(i) 具有单个前件的单一规则设*~A 和A ~论域X 上的模糊集合,B ~是论域Y 上的模糊集合,A ~和B ~间的模糊关系是),(~Y X R M ,有大前提(规则): if x is A ~then y is B ~小前提(事实): x is *~A结论: y is ),(~~~**Y X R A B M =当)()(),(~~~y x y x B A RMμμμΛ=时,有)()}()]()({[V )]}()([)({V )(~~~~Xx ~~~Xx ~***y y x x y x x y BB A AB A AB μωμμμμμμμΛ=ΛΛ=ΛΛ=∈∈ (3.2.2)其中)]()([V ~~Xx *x x AA μμωΛ=∈,称为A ~和*~A 的适配度。
模糊推理的简单例子模糊推理的简单什么是模糊推理?模糊推理是一种逻辑推理方法,用于处理模糊或不确定的信息。
它通过使用模糊集合的概念来推断出结论,并且能够处理模糊的、部分真实的或不确定的信息。
模糊推理在人工智能、模式识别和决策支持系统等领域有广泛的应用。
模糊推理的例子例子1:天气预测假设我们要根据一些数据来预测明天是否会下雨。
我们收集到的数据包括湿度、温度和云量等信息。
根据经验,我们可以建立一些模糊规则来做出预测:1.如果湿度高或云量大,那么有可能下雨。
2.如果温度高,那么有可能不下雨。
3.如果湿度适中、温度适宜且云量少,那么有可能不下雨。
通过模糊推理,我们可以根据这些规则和输入的模糊数据,例如湿度为“高”、温度为“适宜”、云量为“少”,来推断出结论:“可能不下雨”。
例子2:模糊控制模糊控制是模糊推理的一种应用,用于控制模糊系统的行为。
举个简单的例子:假设我们要设计一个自动调节室内温度的控制系统。
我们可以设置一些模糊规则来决定应该如何调节加热器的功率:1.如果室内温度高且温度上升趋势明显,那么应该减少加热器的功率。
2.如果室内温度低且温度下降趋势明显,那么应该增加加热器的功率。
3.如果室内温度适宜,那么加热器的功率可以保持不变。
通过模糊推理,系统可以根据当前的室内温度和温度趋势,来推断出应该采取的控制动作,例如减少功率或增加功率,从而实现自动调节。
例子3:模糊匹配模糊匹配是模糊推理的一种应用,用于在一组数据中找到与给定模糊查询最匹配的项。
举个例子:假设我们要在一份学生成绩表中找到数学成绩与给定查询”良好”最匹配的学生。
我们可以根据一些模糊规则来定义”良好”的数学成绩范围:1.如果数学成绩大于80且小于90,那么可以判定为”良好”。
2.如果数学成绩大于70且小于80,也可以判定为”良好”。
3.如果数学成绩大于60且小于70,也可以判定为”良好”。
通过模糊推理,我们可以将这些规则与每个学生的数学成绩进行匹配,然后找到与查询”良好”最匹配的学生。
几种典型的模糊推理方法根据模糊推理的定义可知, 模糊推理的结论主要取决于模糊蕴含关系 R (X ,Y )及模糊关系与模 糊集合之间的合成运算法则。
对于确定的模糊推理系统,模糊蕴含关系 R (X ,Y )—般是确定的,而 合成运算法则并不唯一。
根据合成运算法则的不同,模糊推理方法又可分为Mamdan 推理法、Larsen 推理法、Zadeh 推理法等等。
一、Mamdan 模糊推理法Mamda ni 模糊推理法是最常用的一种推理方法,其模糊蕴涵关系 R M (X,Y)定义简单,可以通过 模糊集合A 和B 的笛卡尔积(取小)求得,即R M (X , y)A (X ) B(y)(321)例 3.2.1 已知模糊集合A 10.4 0.1,B 0.8 0.5 0.3 0.1。
求模糊集合A 和B 之间的模糊咅 X 2X 3y 1y 2y 3y 3蕴含关系 R M (X,Y)。
解:根据 Mamda n 模糊蕴含关系的定义可知:10.4R M (X,Y) A B[0.8 0.5 0.3 0.1]0.10.8 0.5 0.3 0.10.4 0.4 0.30.10.1 0.1 0.1 0.1Mamdani 将经典的极大一极小合成运算方法作为模糊关系与模糊集合的合成运算法则。
在此定 义下,Mamdani 模糊推理过程易于进行图形解释。
下面通过几种具体情况来分析 Mamdan 模糊推理过程。
(i)具有单个前件的单一规则设A *和A 论域X 上的模糊集合,B 是论域Y 上的模糊集合,A 和B 间的模糊关系是R M (X,Y), 有大前提(规则): ifx is A then y is B 小前提(事实):x is A*〜* 〜* 〜结论:y is B A R M (X,Y)当 R M(x,y)"X ) B (y)时,有其中 V [ A *(x) A (x)],称为A 和A *的适配度x X在给定模糊集合A *、A 及B 的情况下,Mamdan 模糊推理的结果B *如图321所示〜〜*IB1AA1AB*JJ■--------- rxy图3.2.1 单前提单规则的推理过程根据Mamdani 推理方法可知,欲求B *,应先求出适配度(即A *(x) A (x)的最大值);然后用适配度 去切割B 的MF 即可获得推论结果B *,如图3.2.1中后件部分的阴影区域。
§3.3 模糊推理系统系统是指两个以上彼此相互作用的对象所构成的具有某种功能的集体。
模糊推理系统又称为模糊系统,是以模糊集合理论和模糊推理等技术为基础,具有处理模糊信息能力的系统。
模糊推理系统以模糊理论为主要计算工具,可以实现复杂的非线性映射,而且其输入输出都是精确的数值,因此具有广阔的应用前景。
3.3.1 模糊推理系统的结构一、模糊推理系统的组成模糊推理是一种仿生行为的近似推理方法,主要用来解决带有模糊现象的复杂推理问题。
由于模糊现象普遍存在,因此,模糊推理系统被广泛使用。
目前,已经在自动控制,数据处理、决策分析及模式识别等领域得到成功应用。
从功能上来看,模糊推理系统主要由模糊化、模糊规则库、模糊推理方法及去模糊化几部分组成,其基本结构如图3.3.1所示。
图3.3.1模糊推理系统的功能结构二、模糊推理系统的工作过程为了满足实际信息处理需要,模糊系统的输入输出必须是精确的数值。
由图3.3.1看出,模糊推理系统的工作机理为:首先通过模糊化模块将输入的精确量进行模糊化处理,转换成给定论域上的模糊集合;然后激活规则库中对应的模糊规则,并且选用适当的模糊推理方法,根据已知模糊事实获得推理结果,最后将该模糊结果进行去模糊化处理,得到最终的精确输出量。
关于模糊推理方法,前面已经做了比较详细的介绍。
但是模糊推理系统对模糊规则库有何要求?如何将精确值转换成模糊集合,以及如何将模糊集合去模糊化,使之成为精确的数值?这些内容是设计模糊推理系统的基础,现在将详细阐述这方面的内容。
3.3.2 模糊化(Fuzzification)精确值进入模糊推理系统时,一般要将其模糊化成给定论域上的模糊集合。
可见,模糊化的实质是将给定输入*x转换成模糊集合*~A。
模糊化的原则是:①在精确值*x处模糊集合*~A的隶属度最大;②输入数据若噪声干扰时,模糊化结果就具有一定的抗干扰能力;③模糊化运算应尽可能简单。
下面介绍三种常用的模糊化方法。