知识图谱与知识推理(课件PPT)
- 格式:ppt
- 大小:2.26 MB
- 文档页数:18
教学资源库建设知识图谱构建与知识推理应用近年来,随着信息技术与教育的深度融合,教学资源库已成为教育领域的重要组成部分。
而知识图谱的构建与知识推理应用更是为教学资源库的建设提供了强有力的支持。
本文将重点探讨教学资源库建设中的知识图谱构建以及知识推理应用,以期为教育工作者提供参考与借鉴。
一、知识图谱构建在教学资源库建设中,知识图谱的构建可以帮助整理和管理大量的教学资源,提高教育资源的可用性和可操作性。
知识图谱是一种以图形网络的方式表示和存储知识的技术手段,通过将知识进行语义化的建模和链接,使得知识之间的关系更加清晰明了。
下面将从数据采集、知识建模、知识链接和知识表示四个方面来介绍知识图谱的构建。
1. 数据采集知识图谱的构建首先需要进行大量的数据采集工作。
可以利用网络爬虫技术从互联网上收集与教育相关的数据,如文本、图片、视频等。
同时,还可以运用自然语言处理技术对文本进行分析,提取出其中的实体、关系和属性信息,用于后续的知识建模。
2. 知识建模知识建模是将采集到的教育数据进行语义化的重要步骤。
可以运用本体论技术对数据进行建模,构建出相应的本体模型。
本体模型可以定义与教育相关的概念、属性和关系,并将其组织成一个有机的整体。
通过本体模型,可以对教育资源进行分类、标注和描述,为后续的知识链接提供基础。
3. 知识链接知识链接是将教育资源中的实体、属性和关系与本体模型中的对应节点进行关联的过程。
可以通过实体识别、关系抽取和属性匹配等技术手段,将教育资源中的知识与本体模型中的知识进行匹配和链接。
这样,在知识图谱中就能够对教育资源进行更加精准和全面的描述。
4. 知识表示知识图谱构建的最后一步是将知识以图形网络的形式进行表示。
可以用图的节点来表示实体,用边来表示实体之间的关系。
通过图算法,可以对知识图谱进行分析和挖掘,发现其中的规律和知识隐含。
二、知识推理应用知识推理应用是指通过对知识图谱进行推理操作,从而提供教育决策与智能化推荐的能力。
第13章知识图谱与知识推理王泉中国科学院大学网络空间安全学院2016年11月•13.1概述•13.2知识图谱构建•13.3 知识图谱中的知识推理–13.3.1 表示学习技术–13.3.2 张量分解技术–13.3.3 路经排序算法•13.4 本章小结•13.1概述•13.2知识图谱构建•13.3 知识图谱中的知识推理–13.3.1 表示学习技术–13.3.2 张量分解技术–13.3.3 路经排序算法•13.4 本章小结实体和关系•实体 (entity):现实世界中可区分、可识别的事物或概念–客观对象:人物、地点、机构–抽象事件:电影、奖项、赛事•关系 (relation):实体和实体之间的语义关联–BornInCity, IsParentOf, AthletePlaysForTeam•知识图谱 (knowledge graph):实体和关系所构成的异质、有向图,是表征实体间语义关联的语义网络−节点代表实体−边代表不同类型的关系 (异质) −两个节点之间有边相连表明它们之间存在相应关系 −边是有向的表明关系是非对称的•三元组 (triple/triplet):也称事实 (fact),是最基本的知识存储方式,表现为(主语, 谓词, 宾语)形式(Tom, BornInCity, Paris)(Tom, LivedInCity, Lyon)(Tom, Nationality, France) (Tom, ClassMates, Bob)(Paris, CityLocatedInCountry, France) (Lyon, CityLocatedInCountry, France) (Bob, BornInCity, Paris)•三元组 (triple/triplet):也称事实 (fact),是最基本的知识存储方式,表现为(主语, 谓词, 宾语)形式BornInCity(Tom,Paris) LivedInCity(Tom,Lyon) Nationality(Tom,France) ClassMates(Tom,Bob) CityLocatedInCountry(Paris,France) CityLocatedInCountry(Lyon,France) BornInCity(Bob,Paris)谓词逻辑/一阶逻辑表达式•模式 (schema):除三元组以外的高级知识形式–实体语义类别间的从属关系•(Athlete, SubclassOf, Person)•(City, SubclassOf, Location)•(Country, SubclassOf, Location)–关系的定义域(domain)和值域(range)•(AthletePlaysForTeam, Domain, Athlete)•(AthletePlaysForTeam, Range, SportTeam)•(CityLocatedInCountry, Domain, City)•(CityLocatedInCountry, Range, Country)•知识图谱的作用–知识图谱能够提供海量、有组织的知识体系,使机器语言认知、概念认知成为可能,进而为自然语言处理和理解相关任务提供技术支撑–知识图谱为海量无结构数据提供了结构化的存储方式,方便计算机储存和管理信息–知识图谱还能借助其图结构和海量知识,帮助学习和发现事物之间的关联规律,理解事物全貌•研究现状及应用前景国际Read the WebResearch Project at Carnegie Mellon University中国教育合作项目Representing and Reasoning Knowledge目录•13.1概述•13.2知识图谱构建•13.3 知识图谱中的知识推理–13.3.1 表示学习技术–13.3.2 张量分解技术–13.3.3 路经排序算法•13.4 本章小结知识图谱构建•几种主流构建方式NELL专家人工创建•典型代表:WordNet [Miller, 1995]•方法优点–知识的准确性高–知识的完备性高,较少出现知识缺失问题•方法缺点–人力和时间成本极高–知识的覆盖面有限,知识图谱的规模有限–知识的实时更新较难,滞后性严重大众协作编辑创建•典型代表:Freebase [Bollacker et al., 2008], Wikidata •方法优点–知识的准确性较高–知识的覆盖面广,知识图谱的规模大•方法缺点–人力和时间成本较高–知识的完备性较差,知识缺失现象较为普遍–知识的实时更新较难,滞后性严重基于信息抽取自动创建•典型代表:NELL [Carlson et al., 2010], YAGO [Suchanek et al., 2007] –指定关系类型,通过人工标注的种子知识,自动实现关系抽取•方法优点–人力和时间成本较低–知识的覆盖面广,知识图谱的规模大–知识的实时更新较为容易•方法缺点–依赖众多NLP任务,错误累积问题严重,知识准确性较低–知识的完备性较差,知识缺失现象较为普遍目录•13.1概述•13.2知识图谱构建•13.3 知识图谱中的知识推理–13.3.1 表示学习技术–13.3.2 张量分解技术–13.3.3 路经排序算法•13.4 本章小结•知识推理 (knowledge inference):根据知识图谱中已有的知识,推断出新的、未知的知识(Tom, BornInCity, Paris)(Tom, LivedInCity, Lyon)(Tom, Nationality, France) (Tom, ClassMates, Bob)(Paris, CityLocatedInCountry, France) (Lyon, CityLocatedInCountry, France) (Bob, BornInCity, Paris)(Bob, Nationality, France)•知识推理 (knowledge inference):根据知识图谱中已有的知识,推断出新的、未知的知识(Tom, BornInCity, Paris)(Tom, LivedInCity, Lyon)(Tom, Nationality, France)(Tom, ClassMates, Bob)(Paris, CityLocatedInCountry, France)(Lyon, CityLocatedInCountry, France)(Bob, BornInCity, Paris)(Bob, Nationality, France)提高知识的完备性,扩大知识的覆盖面知识推理方法•表示学习技术–TransE [Bordes et al., 2013], TransH [Wang et al., 2014], TransR [Lin et al., 2015]•张量分解技术–RESCAL [Nickel et al., 2011], TRESCAL [Chang et al., 2014] •路径排序算法–PRA [Lao and Cohen, 2010], CPRA [Wang et al., 2016]目录•13.1概述•13.2知识图谱构建•13.3 知识图谱中的知识推理–13.3.1 表示学习技术–13.3.2 张量分解技术–13.3.3 路经排序算法•13.4 本章小结表示学习技术•核心思想–将符号化的实体和关系在连续向量空间进行表示–简化操作与计算的同时最大程度保留原始的图结构•基本流程–将实体和关系在隐式向量空间进行表示(向量/矩阵/张量)–定义打分函数,衡量每个三元组成立的可能性–根据观测三元组构造优化问题,学习实体和关系的表示•位移假设 (translation assumption): –China – Beijing = France – Paris = <capital-of> –Beijing + <capital-of> = China–Paris + <capital-of> = FranceTransE实体表示:向量 e i关系表示:向量 r k 位移操作:e i +r k ≈e j三元组打分:f e i ,r k ,e j =e i +r k −e j 1e i +r k ≈e j•实体和关系的向量空间表示–实体:向量e∈ℝd–关系:向量r∈ℝd•打分函数定义–距离模型:f e i,r k,e j=e i+r k−e j1f e i,r k,e j=+−•优化问题构造–观测三元组(正例)得分 f e i ,r k ,e j –相应未观测三元组(负例)得分 f e i ′,r k ,e j ′ –排序损失:若正负例得分差距大于给定阈值 δ,损失为零;否则损失大于零–排序损失最小化:正负例得分差距尽可能大min e i ,r k ��δ+f e i ,r k ,e j −f e i ′,r k ,e j ′+t −∈N t +t +∈OTransE 模型拓展•动机:弥补TransE 在自反/多对一/一对多型关系上的不足 –自反型关系:e i ,r k ,e j ∈O ,e j ,r k ,e i ∈O –多对一型关系:∀ i ∈1,⋯,n ,e i ,r k ,e j ∈O –一对多型关系: ∀ j ∈1,⋯,m ,e i ,r k ,e j ∈Oe i +r k −e j =0,e j +r k −e i =0 ⇒r k =0,e i =e j e i +r k −e j =0,∀ i ∈1,⋯,n ⇒e 1=e 2=⋯=e n e i +r k −e j =0,∀ j ∈1,⋯,m ⇒e 1=e 2=⋯=e mTransH和TransR模型•解决方案:同一实体在不同关系下有不同的表示–TransH:关系专属超平面(relation-specific hyperplanes)–TransR:关系专属投影矩阵(relation-specific projection matrices)TransH TransR•实体和关系的向量空间表示–实体:向量e∈ℝd–关系:位移向量r∈ℝd,超平面法向量w∈ℝd•打分函数定义–头实体投影:e⊥i=e i−w k T e i w k–尾实体投影:e⊥j=e j−w k T e j w k–位移操作:e⊥i+r k≈e⊥j–距离模型:f e i,r k,e j e i−w k T e i w k+r k−e j−w k T e j w k1•优化问题构造–观测三元组(正例)得分 f e i ,r k ,e j –相应未观测三元组(负例)得分 f e i ′,r k ,e j ′ –排序损失:若正负例得分差距大于给定阈值 δ,损失为零;否则损失大于零–排序损失最小化:正负例得分差距尽可能大min e i ,r k ��δ+f e i ,r k ,e j −f e i ′,r k ,e j ′+t −∈N t +t +∈O•实体和关系的向量空间表示–实体:向量e∈ℝd–关系:位移向量r∈ℝd,投影矩阵M∈ℝd×d •打分函数定义–头实体投影:e⊥i=M k e i–尾实体投影:e⊥j=M k e j–位移操作:e⊥i+r k≈e⊥j–距离模型:f e i,r k,e j M k e i+r k−M k e j1TransR 模型•优化问题构造–观测三元组(正例)得分 f e i ,r k ,e j –相应未观测三元组(负例)得分 f e i ′,r k ,e j ′ –排序损失:若正负例得分差距大于给定阈值 δ,损失为零;否则损失大于零–排序损失最小化:正负例得分差距尽可能大min e i ,r k ��δ+f e i ,r k ,e j −f e i ′,r k ,e j ′+t −∈N t +t +∈O统一框架•相同的优化方式•不同的实体/关系表示方式和打分函数 min e i ,r k ��δ+f e i ,r k ,e j −f e i ′,rk ,e j ′+t −∈N t +t +∈O目录•13.1概述•13.2知识图谱构建•13.3 知识图谱中的知识推理–13.3.1 表示学习技术–13.3.2 张量分解技术–13.3.3 路经排序算法•13.4 本章小结张量分解技术•核心思想–将知识图谱表示成张量 (tensor) 形式,通过张量分解 (tensor factorization/decomposition) 实现对未知事实的判定•典型应用–链接预测:判断两个实体之间是否存在某种特定关系–实体分类:判断实体所属语义类别–实体解析:识别并合并指代同一实体的不同名称•张量表示–知识图谱 = 三阶张量X∈ℝn×n×m–n为实体数目,m为关系数目–x ijk=1 表示e i和e j之间存在关系r k •张量分解•实体解析–根据实体的向量表示计算其相似度TRESCAL模型•动机:解决输入张量高度稀疏所带来的过拟合问题–<capital-of>:头实体仅能为城市实体,尾实体仅能为国家实体•解决方案:子张量分解(sub-tensor factorization)目录•13.1概述•13.2知识图谱构建•13.3 知识图谱中的知识推理–13.3.1 表示学习技术–13.3.2 张量分解技术–13.3.3 路经排序算法•13.4 本章小结路径排序算法•问题定义•核心思想–以两个实体间的路径作为特征,来判断它们之间可能存在的关系•基本流程–特征抽取:生成并选择路径特征集合–特征计算:计算每个训练样例的特征值–分类器训练:根据训练样例,为每个关系训练一个二分类分类器PRA模型•核心思想:以路径作为特征训练关系专属分类器–路径:连接两个实体的关系序列•特征抽取–随机游走,广度优先搜索,深度优先搜索•特征计算–随机游走概率,布尔值(出现/不出现),出现频次/频率•分类器训练–单任务学习:为每个关系单独训练一个二分类分类器–多任务学习:将不同关系进行联合学习,同时训练它们的分类器•规则自动挖掘–根据分类器权重自动挖掘并筛选可靠规则目录•13.1概述•13.2知识图谱构建•13.3 知识图谱中的知识推理–13.3.1 表示学习技术–13.3.2 张量分解技术–13.3.3 路经排序算法•13.4 本章小结知识图谱•知识图谱 (knowledge graph):实体和关系所构成的异质、有向图,是表征实体间语义关联的语义网络−节点代表实体−边代表不同类型的关系 (异质)−两个节点之间有边相连表明它们之间存在相应关系−边是有向的表明关系是非对称的知识图谱构建•几种主流构建方式NELL知识推理•知识推理 (knowledge inference):根据知识图谱中已有的知识,推断出新的、未知的知识(Tom, BornInCity, Paris)(Tom, LivedInCity, Lyon)(Tom, Nationality, France)(Tom, ClassMates, Bob)(Paris, CityLocatedInCountry, France)(Lyon, CityLocatedInCountry, France)(Bob, BornInCity, Paris)(Bob, Nationality, France)提高知识的完备性,扩大知识的覆盖面•核心思想–将符号化的实体和关系在连续向量空间进行表示–简化操作与计算的同时最大程度保留原始的图结构•基本流程–将实体和关系在隐式向量空间进行表示(向量/矩阵/张量)–定义打分函数,衡量每个三元组成立的可能性–根据观测三元组构造优化问题,学习实体和关系的表示•相同的优化方式•不同的实体/关系表示方式和打分函数 min e i ,r k ��δ+f e i ,r k ,e j −f e i ′,r k,e j ′+t −∈N t +t +∈O张量分解技术•核心思想–将知识图谱表示成张量 (tensor) 形式,通过张量分解 (tensor factorization/decomposition) 实现对未知事实的判定路径排序算法•核心思想–以两个实体间的路径作为特征,来判断它们之间可能存在的关系•基本流程–特征抽取:生成并选择路径特征集合•随机游走,广度优先搜索,深度优先搜索–特征计算:计算每个训练样例的特征值•随机游走概率,布尔值(出现/不出现),出现频次/频率–分类器训练:根据训练样例,为每个关系训练一个二分类分类器•单任务学习:为每个关系单独训练一个二分类分类器•多任务学习:将不同关系进行联合学习,同时训练它们的分类器。
知识图谱综述表示、构建、推理与知识超图理论一、本文概述知识图谱作为一种结构化的知识库,集成了来自多个来源的信息,通过实体、概念和关系来组织和呈现现实世界中的复杂知识。
近年来,随着大数据和技术的快速发展,知识图谱已成为信息抽取、自然语言处理、智能问答、推荐系统等多个领域的研究热点。
本文旨在全面综述知识图谱的表示、构建、推理及其与知识超图理论的联系。
文章首先介绍知识图谱的基本概念和应用背景,随后深入探讨其表示方法、构建技术和推理算法,并在此基础上分析知识超图理论与知识图谱的内在关联。
本文的综述将为相关领域的研究者提供全面、深入的理论支持和实践指导。
二、知识图谱的表示知识图谱的表示是知识图谱构建和应用的关键环节。
它涉及到如何将现实世界中的实体、属性、关系等复杂的信息结构转化为计算机可以理解和处理的数据结构。
知识图谱的表示方式主要分为两大类:符号表示和分布式表示。
符号表示:符号表示是传统的知识表示方法,主要包括一阶谓词逻辑、描述逻辑、语义网络等。
这种表示方式能够清晰地描述实体间的复杂关系,易于人类理解和解释。
然而,符号表示在处理大规模知识图谱时存在效率低下的问题,难以处理模糊和不确定的知识。
分布式表示:为了克服符号表示的不足,近年来分布式表示方法逐渐受到关注。
分布式表示方法将实体和关系表示为低维稠密的向量,通过向量运算来模拟实体间的关系推理。
这种方法能够有效地处理大规模知识图谱,并且在处理模糊和不确定知识方面具有一定的优势。
其中,TransE、TransH、TransR等翻译模型是分布式表示中的代表性方法,它们在链接预测、实体分类等任务中取得了显著的效果。
随着深度学习技术的发展,基于神经网络的知识表示方法也逐渐兴起。
这类方法通过训练神经网络来学习实体和关系的表示,能够捕获更丰富的语义信息。
例如,卷积神经网络(CNN)和循环神经网络(RNN)等模型被应用于知识图谱的表示学习中,取得了良好的效果。
知识图谱的表示方法经历了从符号表示到分布式表示再到基于神经网络的知识表示的发展历程。
数学课程知识图谱构建及其推理随着技术的不断发展,知识图谱在教育领域的应用也越来越受到。
数学课程知识图谱是一种以图形化的方式呈现数学课程知识及其相互关系的知识库,它能够帮助学生更好地理解数学知识,提高学习效果。
本文将介绍如何构建数学课程知识图谱及其推理机制,以期为相关领域的研究提供一些参考。
确定知识图谱的范围和目标用户。
数学课程知识图谱的目标用户主要是数学教师和学生,其范围应该涵盖整个数学课程的知识体系,以便于用户查询和学习。
搜集和整理知识图谱的数据。
数学课程知识图谱的数据主要包括数学教材、参考书籍、网络资源等。
在搜集数据时,需要注意知识的准确性和完整性。
构建知识图谱的框架。
在构建数学课程知识图谱的框架时,需要考虑数学知识之间的相互关系,例如并列、包含等。
同时,还需要考虑知识图谱的可扩展性和可维护性。
绘制知识图谱。
通过绘图工具将数学课程知识图谱绘制成图形化的形式,以便于用户理解和查询。
数学课程知识图谱的推理机制包括规则推理和路径推理。
规则推理是指根据已知的知识进行推导和判断。
例如,在数学中,根据两个三角形全等可以得到相应的性质和定理。
规则推理可以自动化地推导出一些结论,从而拓展知识图谱的应用范围。
路径推理是指根据知识之间的路径进行推导和判断。
在数学课程知识图谱中,不同知识点之间存在多种路径,不同路径可以推导出不同的结论。
路径推理可以帮助学生在解决数学问题时找到不同的解决方法。
在数学课程中对学生学习情况进行评估。
通过数学课程知识图谱,教师可以了解学生对数学知识的掌握情况,从而有针对性地开展教学。
自动生成数学练习题。
利用知识图谱的推理机制,可以自动生成不同难度的数学练习题,提高学生的学习效果。
个性化数学教学。
通过数学课程知识图谱,教师可以根据学生的实际情况开展个性化教学,提高教学效果。
随着人工智能技术的不断发展,数学课程知识图谱的应用前景也越来越广阔。
未来,数学课程知识图谱可能会被应用于以下方面:智能数学教学助手。