狭义相对论思考题讨论
- 格式:ppt
- 大小:221.50 KB
- 文档页数:10
狭义相对论习题、答案与解答一. 选择题 1. 有下列几种说法:(1) 真空中,光速与光的频率、光源的运动、观察者的运动无关; (2) 在所有惯性系中光在真空中沿任何方向的传播速率都相同; (3) 所有惯性系对物理基本规律都是等价的。
请在以下选择中选出正确的答案(C )A 、 只有(1)、(2)正确;B 、 只有(1)、(3)正确;C 、 只有(2)、(3)正确;D 、 3种说法都不正确。
2.(1)对某观察者来说,发生在某惯性系同一地点、同一时刻两个事件,对于相对该惯性系做匀速直线运动的其他惯性系中的观察者来说,它们是否同时发生?(2)在某惯性系不同地点、同一时刻的两个事件,它们在其他惯性系中是否同时发生?(A )A 、(1)同时,(2)不同时;B 、(1)不同时,(2)同时;C 、(1)同时,(2)同时;D 、(1)不同时,(2)不同时。
参考答案:(1) ⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧=∆=∆-∆-∆='∆001222x t c v x c v t t 0='∆t(2) ⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧≠'∆='∆-''∆+'∆=∆001222x t c v x cv t t 2221c v x c v t -'∆=∆3.K 系中沿x 轴方向相距3m 远的两处同时发生两事件,在K '系中上述两事件相距5m 远,则两惯性系间的相对速度为(A ) A 、c )54( ; B 、c )53(; C 、c )52(; D 、c )51(。
参考答案:221cv vt x x --=' 221cv t v x x -∆-∆='∆ c c x x c v 54531122=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛'∆∆-=4.两个惯性系K 和K ',沿x x '轴方向作相对运动,相对速度为v ,设在K '系中某点先后发生两个事件,用固定于该系的钟测出两事件的时间间隔为0t ∆,而用固定在K 系的钟测出这两个事件的时间间隔为t ∆。
※18狭义相对论习题精选(解析版)一、 狭义相对论的两条基本假设 1.经典的相对性原理—速度的合成法则2.光的传播与经典的速度合成法则存在矛盾,狭义相对论提出的两条基本假设是:相对性原理与光速不变原理。
3.“事件”概念是理解同时的相对性的基础,“地面上认为同时的两个事件,对于沿着两个事件发生地的连线的观察者来说,更靠前面的那个事件发生在先”要记住这个结论。
二、时间和空间的相对性 1.长度的相对性:20)(1cvl l -=2.时间的相对性:2')(1cv t t -∆=∆三、狭义相对论的其它三个结论1.相对论速度变换公式:2''1cv u vu v +++=2.相对论质量公式:20)(1cv m m -=3.质能方程:2mc E =4.相对论动能 :2200K E E E mc m c =-=-一.例题1.S 系中平面上一个静止的圆的面积为122cm 在S '系测得该圆面积为多少?已知S '系在0='=t t 时与S 系坐标轴重合,以-0.8c 的速度沿公共轴x x '-运动。
解:在S '系中观测此圆时,与平行方向上的线度将收缩为21⎪⎭⎫⎝⎛-c v R 而与垂直方向上的线度不变,仍为2R ,所以测得的面积为(椭圆面积):22222.711cm c v R R c v ab S =⎪⎭⎫⎝⎛-=⋅⎪⎭⎫ ⎝⎛-==πππ(式中a 、b 分别表示椭圆的长半轴和短半轴)2.S 系中记录到两事件空间间隔m x 600=∆,时间间隔s t 7108-⨯=∆,而s '系中记录0='∆t ,求s '系相对s 系的速度。
解:设相对速度为v ,在S 系中记录到两事件的时空坐标分别为)t ,(x )t ,(x 2211、;S '系中记录到两事件的时空坐标分别),('1'1t x 为及),('2'2t x 。
习 题4-1 一辆高速车以0.8c 的速率运动。
地上有一系列的同步钟,当经过地面上的一台钟时,驾驶员注意到它的指针在0=t ,他即刻把自己的钟拨到0'=t 。
行驶了一段距离后,他自己的钟指到6 us 时,驾驶员看地面上另一台钟。
问这个钟的读数是多少? 【解】s)(10)/8.0(16/12220μ=-μ=-∆=∆c c s cu t t所以地面上第二个钟的读数为)(10's t t t μ=∆+=4-2 在某惯性参考系S 中,两事件发生在同一地点而时间间隔为4 s ,另一惯性参考系S′ 以速度c u 6.0=相对于S 系运动,问在S′ 系中测得的两个事件的时间间隔和空间间隔各是多少?【解】已知原时(s)4=∆t ,则测时(s)56.014/1'222=-=-∆=∆s cu t t由洛伦兹坐标变换22/1'c u ut x x --=,得:)(100.9/1/1/1'''8222220221012m c u t u c u ut x c u ut x x x x ⨯=-∆=-----=-=∆4-3 S 系中测得两个事件的时空坐标是x 1=6×104 m ,y 1=z 1=0,t 1=2×10-4 s 和x 2=12×104 m ,y 2=z 2=0,t 2=1×10-4 s 。
如果S′ 系测得这两个事件同时发生,则S′ 系相对于S 系的速度u 是多少?S′ 系测得这两个事件的空间间隔是多少?【解】(m)1064⨯=∆x ,0=∆=∆z y ,(s)1014-⨯-=∆t ,0'=∆t0)('2=∆-∆γ=∆cxu t t 2cxu t ∆=∆⇒ (m/s)105.182⨯-=∆∆=⇒x t c u (m )102.5)('4⨯=∆-∆γ=∆t u x x4-4 一列车和山底隧道静止时等长。
最近上电动力学ii,崔教授开始讲狭义相对论。
这东西我从初中就看,之前一直觉得这东西挺简单的。
不就几个现成的公式嘛,遇到问题套公式。
但其实没这么简单,越来越觉得这其中的思想深邃,要真正理解这其中的含义,还真不像我之前我想像的那么简单。
好吧,我以前在这个问题上确实很白痴。
个人认为,狭义相对论的真正的精髓在于它的运动学部分,这是对新时空观的直接认识。
比那啥电磁场张量,四维动量(我认为这些只是数学技巧)更能直观的反应狭义相对论的本质。
而且,运动学所涉及的问题有些还真的费劲,有不少非常经典的悖论。
这其中牵扯了一些关于空时定义与测量的基本物理学问题。
一不小心,很容易范错误。
不过,也没想像的那么复杂。
慢慢来过,把其中的问题梳理通顺。
这次重学相对论用的是俎栋林老师的《电动力学》。
也许我真的水平低,一直觉得郭硕鸿先生的书,相对论部分写的真不咋地。
一.关于历史狭义相对论是物理学革命的代表产物。
既然是革命,必然少不了伟大的历史。
当然,这段历史,学物理的人都应该很熟悉。
我想说的是,几乎所有的书在正式讲解狭义相对论之前都会用量的文字扯上这段历史,介绍包括麦克尔逊—莫雷实验的几个重大实验。
鄙人觉得这样写无非就是想说明在相对论出现之前物理学上的一些问题。
其实一个物理学专业的学生在大一学力学的时候就应该很清楚的知道这些问题。
这么多的实验,一是看不懂。
二是看了,对学习相对论也没多大意义。
只要在学生接受了光速不变,以太是不存在等简单的物理事实,在学习狭义相对论的基础知识后,把这些实验拿出来,结合当时的物理学发展情形,分别用经典物理和相对论去分析。
这样既复习了刚学的知识,更是清楚了实验的历史意义。
虽然违背历史的发展顺序,但对学习来说是有利的。
二.基本假设正式开始狭义相对论的基本内容。
两条基本原理:(1)狭义相对性原理:物理定律在所有惯性中具有相同的形式。
(2)光速不变原理:真空中的光速是一个宇宙常数,对所有观察者都相同。
说明:(i):对于原理一,书上只是写相对性原理,我喜欢加上“狭义”。
第四章 狭义相对论基础一、思考讨论题1、根据相对论问答下列问题: (1)在一个惯性系中同时、同地点发生的两事件,在另一惯性系中是否也是同时同地点发生? (2)在一个惯性系中同地点、不同时发生的两事件,可否在另一惯性系中为同时、同地点发生?(3)在一惯性系中的不同地点发生的两事件,应满足什么条件才可找另一惯性系,使它们成为同地点发生的事件?(4)在一惯性系中的不同时刻发生的两事件,应满足什么条件才可找到另一惯性系,使它们成为同时的事件?答:依据洛仑兹时空坐标变换)(ut x x -='γ )(2c ux t t -='γ (其中2211c u -=γ)得 )(t u x x ∆-∆='∆γ )(2c x u t t ∆-∆='∆γ(其中12x x x -=∆,'-'='∆12x x x ,12t t t -=∆,'-'='∆12t t t ) 所以有 (1)是。
(2)不能。
(3)若0≠∆x ,而欲0='∆x 应有0=∆-∆t u xxu c t∆∴=<∆ (4)若0≠∆t 而欲0='∆t ,应有02=∆-∆x u t2x c c t u∆∴=>∆ 2、一个光源沿相反方向放出两个光子(以光速c 运动),问两光子的相对速度的大小是多少?答:由相对论速度变换式易算得,相对速度大小仍为c 。
3、一发射台向东西两侧距离均为L 0的两个接收站发射光讯号,今有一飞机自西向东匀速飞行,在飞机上观察,两个接收站是否同时接到讯号?哪个先接到?如飞机在水平内向其它方向运动,又如何?解:以地面为S 系,飞机为S '系,设飞机相对于地面的速度为u 。
西、东两接收站接到光信号的时刻分别为:系中)(和系)(和S t t S t t '''2121S显然 021=∆⇒=t t t 0111222022222212<---=-∆-=-∆-∆='-'cu c L u cu c x u cu c x u t t t'<'∴12t t 即东边的接收台先接到。
V v1l(V x1 + *0.8c=习题6-1.设固有长度/= 2.50m的汽车,以v = 30.0m/s的速度沿直线行驶,问站在路旁的观察者按相对论计算该汽车长度缩短了多少?解:I = I。
』】-(vic,)Q112M = 1.-1 = /()x —二=1.25x10-%2c26-2.在参考系S中,一粒子沿直线运动,从坐标原点运动到了x = 1.5xl08m处,经历时间为山= 1.00s,试计算该过程对应的固有时。
解:以粒了为S'系△t' = &Jl-(U/c2) = 0.866s6-3.从加速器中以速度v = 0.8c、飞出的离了在它的运动方向上又发射出光了。
求这光了相对于加速器的速度。
解:设加速器为S系,离了为S'系6-4.两个宇宙飞船相对于恒星参考系以0.8c的速度沿相反方|何飞行, 求两飞船的相对速度。
解:设宇宙船A为S系,速度0.8c,宇宙船B为S'系,速度-0.8cI根据洛伦兹速度变换公式:*=丛也,有:u = 0.976c6-5.从S系观察到有一粒了在匕=0时由由=100m处以速度 v = 0.98c沿工方向运动,10s后到达方点,如在S'系(相对S系以速度=357.14mw = 0.96c 沿x 方向运动)观察,粒子出发和到达的时空坐标",弘 各 为多少? 0 =尸=0时,S'与S 的原点重合),并算出粒子相对S'系的速度。
—9.8C -0.96CX 挡= 2.14x10 七〃2. v -w 0.98c-0.96c < A1 . inx / v r = ----- =———— -------- =1.014x1()8 m/s1- —v v 1 ------ - x 0.98c c- c-6-6 .一飞船静长"以速度〃相对于恒星系作匀速直线飞行,飞船内一小 球从尾部运动到头部,宇航员测得小球运动速度为八试算出恒星系观察者 测得小球的运动时间。
狭义相对论课后题目解答思考题1 在狭义相对论中,下列说法中哪些是正确的?(A) 一切运动物体相对于观察者的速度都不能大于真空中的光速.(B) 质量、长度、时间的测量结果都是随物体与观察者的相对运动状态而改变的. (C) 在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时发生的.(D) 惯性系中的观察者观察一个与他作匀速相对运动的时钟时,会看到这时钟比与他相对静止的相同的时钟走得慢些.[A ,B ,D]解答:真空中的光速为自然界的极限速率,任何物体的速度都不大于光速;质量、长度、时间与运动是紧密联系的,这些物理量的测量结果与参考系的选择有关,也就是与观察者的相对运动状态有关;同时同地具有绝对性,同时异地则具有相对性;相对论时间膨胀效应即运动的时钟变慢。
答案:(A 、B 、D )2 两个惯性系K 与K '坐标轴相互平行,K '系相对于K 系沿x 轴作匀速运动,在K '系的x '轴上,相距为L '的A '、B '两点处各放一只已经彼此对准了的钟,试问在K 系中的观测者看这两只钟是否也是对准了?[ 没对准 ]解答:在K ’系中,A ’、B ’点的时空坐标分别为:()(),,,A A B B A x t B x t ''''''由题意:0A B t t t '''∆=-=,A B x x x L ''''∆=-=在K 系中,这两点的时空坐标分别为:()(),,,A A B B A x t B x t根据洛仑兹变换,220A B u ut x L t t t '''∆+∆∆=-==≠ 故,在K 系中的观测者看到这两只钟没有对准。
3 静止的μ子的平均寿命约为τ0 =2×10-6 s .今在8 km 的高空,由于π介子的衰变产生一个速度为v = 0.998 c (c 为真空中光速)的μ子,此μ子有无可能到达地面?[有可能]解答:μ子的固有寿命为:60210s τ-=⨯,根据相对论时间膨胀效应,对于地面参考系运动μ子的寿命为:653.1610s τ--==≈⨯μ子在τ时间内运动的距离为:50.998 3.16109461s u c m τ-==⨯⨯≈而μ在8km 的高空,小于它运动的距离,所以μ子可以到达地面。