一元二次不等式的应用含答案
- 格式:doc
- 大小:59.50 KB
- 文档页数:8
一元一次方程例1 某厂一车间有64人,二车间有56人.现因工作需要,要求第一车间人数是第二车间人数的一半.问需从第一车间调多少人到第二车间?解析:如果设从一车间调出的人数为x,那么有如下数量关系设需从第一车间调x人到第二车间,根据题意得:2(64-x)=56+x,解得x=24;答:需从第一车间调24人到第二车间二元一次方程例2两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,一元一次不等式例3将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。
问有笼多少个?有鸡多少只?设笼有x个,那么鸡就有(4x+1)只,根据若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只,可列出不等式求解.解:设笼有x个.4x+1>5(x?2) 4x+1<5(x?2)+3 ,解得:8<x<11 x=9时,4×9+1=37x=10时,4×10+1=41(舍去).故笼有9个,鸡有37只一元二次不等式例4用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。
请问:有多少辆汽车?解:设有x辆汽车,则货物有(4x+20)吨,根据题意,有不等式组:4x+20﹤8x (1)4x+20﹥8(x-1) (2)解不等式(1)得:x﹥5解不等式(2)得:x﹤7所以,不等式组的解为 5﹤x﹤7因为x为整数,所以 x=6答:有6辆汽车。
完整版)一元二次不等式练习题含答案则x<-1或x≥2;x-2x<-1或x>2;1≤x≤2.答案】C4.【解析】由题意可得a<0,且解集为x|-2<x<-4则可列不等式组a(-2)2+b(-2)-2>0,即4a-2b-4>0;a(-42+b(-42<0,即16a-4b-2<0;解得a=-1,b=2.答案】D5.【解析】不等式x(x-a+1)>a可化为x2-ax+a-1>0,解得xa.当x0,即a>1;当x>a时,a-1<0,即a<1.综上可得a<1或a≥1,故选项为C.答案】C6.【解析】由f(x)>0得a>0,c>0,代入可得f(x)=ax2+bx+c>0,x∈(-3,1).对x取相反数得f(-x)=ax2-bx+c>0,x∈(-1,3).故函数y=f(-x)的图象为:y=ax2+bx+c,x∈(-3,1).答案】略7.【解析】x⊙(x-2)=x(x-2)+2x+(x-2)=x2-x-2<0,解得x∈(-∞,-1)∪(2,+∞).答案】C8.【解析】由题意可得2x2-3x+a=(2x-m)(x-1),解得m=2a+1,又因为(m,1)在不等式解集内,故1<m<2.答案】1<m<29.【解析】不等式ax-b>0的解集为(1,+∞),则a>0,且ax>b,即x>b/a,代入不等式得x2-(a/b)x+1>0,解得x <2或x>b/a.综上可得x<2或x>b/a>2,即x>max{2,b/a},故填b/a即可.答案】b/a10.【解析】当x=-1时,方程左边为0,右边为(4+a)/27>0,故4+a>0,即a>-4.当x≠-1时,方程两边同时乘以3x+4,得27x2+(4+a)(3x+4)>0,即x2+(4+a)/27x+4/27>0,故Δ<0,解得a2<48,即-2√3<a<2√3.综上可得-2√3<a≤4,故选项为D.答案】D11.【解析】移项化简得ax2-2x+a-2≥0,即(x-1)2≤1-a,由于a0,化简得x∈(1-√(1-a),1+√(1-a)).答案】x∈(1-√(1-a),1+√(1-a))12.【解析】(1)由f(x)<0得x∈(-∞,0)∪(1,+∞),代入函数可得m∈(-∞,0)∪(1,+∞).2)由f(x)<-m+5得mx2-mx+m-6<0,对x∈[1,3],有m(x-3)(x-1)>0,故m>0且x∈(-∞,1)∪(3,+∞).综上可得m∈(0,1).答案】(1)m∈(-∞,0)∪(1,+∞);(2)m∈(0,1).3.解析:根据题意,可以得到不等式x-2≠0,即x≠2.然后根据x>2或x≤-1可以得到答案为B。
一元二次不等式及其解法知识梳理及典型练习题(含答案)一元二次不等式及其解法1.一元一次不等式解法任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax>b(a≠0)的形式。
当a>0时,解集为x>b/a;当a<0时,解集为x<b/a。
2.一元二次不等式及其解法1) 我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式。
2) 使某个一元二次不等式成立的x的值叫做这个一元二次不等式的解,一元二次不等式所有的解组成的集合叫做一元二次不等式的解集。
3) 一元二次不等式的解:对于一元二次不等式ax^2+bx+c>0(a>0),我们可以先求出其对应的一元二次方程ax^2+bx+c=0的解集,然后根据一元二次函数的图像,判断不等式的解集。
3.分式不等式解法对于分式不等式f(x)/g(x)>0或f(x)/g(x)<0,我们可以先化为标准型,即将右边化为0,左边化为分母的符号,然后将分式不等式转化为整式不等式求解。
对于分式不等式f(x)/g(x)≥0或f(x)/g(x)≤0,我们可以先求出f(x)/g(x)>0或f(x)/g(x)<0的解集,然后根据分式函数的图像判断不等式的解集。
例题1:已知集合A={x|x^2-2x-3≥0},B={x|-2≤x<2},则A∩B=[-2,-1]。
例题2:设f(x)=x^2+bx+1且f(-1)=f(3),则f(x)>0的解集为{x|x≠1,x∈R}。
例题3:已知-2<x/11<1/2,则x的取值范围是-22<x<11.解:首先求出方程2x2-8x-4=0的解为x1=-1,x2=2.根据题意,不等式在(1,4)内有解,即在x1和x2之间有解,则2x2-8x-4-a的图像必定开口向上,且在x1和x2处有两个零点。
又因为a>0时,图像整体上移,不可能在(1,4)内有解,故a<0.又因为当a=-4时,2x2-8x-4=0在(1,4)内有解,故a的取值范围是a<-4.故选A.1) 给定不等式 $2x^2-8x-4-a>0$ 在区间 $(1,4)$ 内有解,即$a<2x^2-8x-4$ 在区间 $(1,4)$ 内有解。
一元二次不等式1.一元一次不等式解法任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax>b(a≠0)的形式.当a>0时,解集为;当a<0时,解集为.2.一元二次不等式及其解法(1)我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为__________不等式.(2)使某个一元二次不等式成立的x的值叫做这个一元二次不等式的解,一元二次不等式所有的解组成的集合叫做一元二次不等式的________.(3)一元二次不等式的解:函数与不等式Δ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0(a>0)的根有两相异实根x1,x2(x1<x2)有两相等实根x1=x2=-b2a无实根ax2+bx+c>0(a>0)的解集①②Rax2+bx+c<(a>0)的解集{x|x1<x<x2}∅③3.分式不等式解法(1)化分式不等式为标准型.方法:移项,通分,右边化为0,左边化为f(x)g(x)的形式.(2)将分式不等式转化为整式不等式求解,如:f(x)g(x)>0⇔f(x)g(x)>0;f(x)g(x)<0⇔f(x)g(x)<0;f(x)g(x)≥0⇔x)g(x)≥0,(x)≠0;f(x)g(x)≤0⇔x)g(x)≤0,(x)≠0.已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=()A.[-2,-1]B.[-1,2)C.[-1,1]D.[1,2)解:∵A={x|x≥3或x≤-1},B={x|-2≤x<2},∴A∩B={x|-2≤x≤-1}=[-2,-1].故选A.设f(x)=x2+bx+1且f(-1)=f(3),则f(x)>0的解集为()A.{x|x∈R}B.{x|x≠1,x∈R}C.{x|x≥1}D.{x|x≤1}解:f(-1)=1-b+1=2-b,f(3)=9+3b+1=10+3b,由f(-1)=f(3),得2-b=10+3b,解出b=-2,代入原函数,f(x)>0即x2-2x+1>0,x的取值范围是x≠1.故选B.已知-12<1x<2,则x的取值范围是()A.-2<x <0或0<x <12B.-12<x <2C.x <-12或x >2D.x <-2或x >12解:当x >0时,x >12;当x <0时,x <-2.所以x 的取值范围是x <-2或x >12,故选D.不等式1-2xx +1>0的解集是.解:不等式1-2x x +1>0等价于(1-2x )(x +1)>0x +1)<0,所以-1<x <12.|-1<x <12,x ∈若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为________.解:显然k ≠0.若k >0,则只须(2x 2+x )max <38k ,解得k ∈∅;若k <0,则只须38k <(2x 2+x )min ,解得k ∈(-3,0).故k 的取值范围是(-3,0).故填(-3,0).类型一一元一次不等式的解法已知关于x 的不等式(a +b )x +2a -3b <0求关于x 的不等式(a -3b )x +b -2a >0的解集.解:由(a +b )x <3b -2a ∞a +b >0,且3b -2a a +b=-13,从而a =2b ,则a +b =3b >0,即b >0,将a =2b 代入(a -3b )x +b -2a >0,得-bx -3b >0,x <-3,故所求解集为(-∞,-3).点拨:一般地,一元一次不等式都可以化为ax >b (a ≠0)的形式.挖掘隐含条件a +b >0且3b -2a a +b =-13是解本题的关键.解关于x 的不等式:(m 2-4)x <m +2.解:(1)当m 2-4=0即m =-2或m =2时,①当m =-2时,原不等式的解集为∅,不符合②当m =2时,原不等式的解集为R ,符合(2)当m 2-4>0即m <-2或m >2时,x <1m -2.(3)当m 2-4<0即-2<m <2时,x >1m -2.类型二一元二次不等式的解法解下列不等式:(1)x 2-7x +12>0;(2)-x 2-2x +3≥0;(3)x 2-2x +1<0;(4)x 2-2x +2>0.解:(1){x |x <3或x >4}.(2){x |-3≤x ≤1}.(3)∅.(4)因为Δ<0,可得原不等式的解集为R .已知函数f (x )x +1,x <0,-1,x ≥0,则不等式x +(x +1)f (x +1)≤1的解集是()A.{x |-1≤x ≤2-1}B.{x |x ≤1}C.{x |x ≤2-1}D.{x |-2-1≤x ≤2-1}解:由题意得不等式x +(x +1)f (x +1)≤1等价于①+1<0,+(x +1)[-(x +1)+1]≤1+1≥0,+(x +1)[(x +1)-1]≤1,解不等式组①得x<-1;解不等式组②得-1≤x≤2-1.故原不等式的解集是{x|x≤2-1}.故选C.类型三二次不等式、二次函数及二次方程的关系已知关于x的不等式x2-bx+c≤0的解集是{x|-5≤x≤1},求实数b,c的值.解:∵不等式x2-bx+c≤0的解集是{x|-5≤x≤1},∴x1=-5,x2=1是x2-bx+c=0的两个实数根,5+1=b,5×1=c,=-4,=-5.已知不等式ax2+bx+c>0的解集为{x|2<x<3},求不等式cx2-bx+a>0的解集.解:∵不等式ax2+bx+c>0的解集为{x|2<x<3},∴a<0,且2和3是方程ax2+bx+c=0的两根,由根与系数的关系得-ba=2+3,2×3,.=-5a,=6a,<0.代入不等式cx2-bx+a>0,得6ax2+5ax+a>0(a<0).即6x2+5x+1<|-12<x类型四含有参数的一元二次不等式解关于x的不等式:mx2-(m+1)x+1<0.解:(1)m=0时,不等式为-(x-1)<0,得x-1>0,不等式的解集为{x|x>1};(2)当m≠0时,不等式为x-1)<0.①当m<0x-1)>0,∵1m<1|x<1m或x>②当m>0x-1)<0.(Ⅰ)若1m<1即m>1|1m<x<(Ⅱ)若1m>1即0<m<1|1<x(Ⅲ)若1m=1即m=1时,不等式的解集为∅.点拨:当x2的系数是参数时,首先对它是否为零进行讨论,确定其是一次不等式还是二次不等式,即对m≠0与m=0进行讨论,这是第一层次;第二层次:x2的系数正负(不等号方向)的不确定性,对m<0与m>0进行讨论;第三层次:1m与1大小的不确定性,对m<1、m>1与m=1进行讨论.解关于x的不等式ax2-2≥2x-ax(a∈R).解:不等式整理为ax2+(a-2)x-2≥0,当a=0时,解集为(-∞,-1].当a≠0时,ax2+(a-2)x-2=0的两根为-1,2a,所以当a>0时,解集为(-∞,-1]∪2a,+当-2<a<0时,解集为2a,-1;当a=-2时,解集为{x|x=-1};当a<-2时,解集为-1,2a.类型五分式不等式的解法(1)解不等式x -12x +1≤1.解:x -12x +1≤1⇔x -12x +1-1≤0⇔-x -22x +1≤0⇔x +22x +1≥0.x +22x +1≥0⇔x +2)(2x +1)≥0,x +1≠0.得{xx >-12或x ≤-2}.※(2)不等式x -2x 2+3x +2>0的解集是.解:x -2x 2+3x +2>0⇔x -2(x +2)(x +1)>0⇔(x -2)(x +2)(x +1)>0,数轴标根得{x |-2<x <-1或x >2},故填{x|-2<x <-1或x >2}.点拨:分式不等式可以先转化为简单的高次不等式,再利用数轴标根法写出不等式的解集,如果该不等式有等号,则要注意分式的分母不能为零.※用“数轴标根法”解不等式的步骤:(1)移项:使得右端为0(注意:一定要保证x 的最高次幂的项的系数为正数).(2)求根:就是求出不等式所对应的方程的所有根..(3)标根:在数轴上按从左到右(由小到大)依次标出各根(不需标出准确位置,只需标出相对位置即可).(4)画穿根线:从数轴“最右根”的右上方向左下方画线,穿过此根,再往左上方穿过“次右根”,一上一下依次穿过各根,“奇穿偶不穿”来记忆.(5)写出不等式的解集:若不等号为“>”,则取数轴上方穿根线以内的范围;若不等号为“<”,则取数轴下方穿根线以内的范围;若不等式中含有“=”号,写解集时要考虑分母不能为零.(1)若集合A ={x |-1≤2x +1≤3},B |x -2x≤A ∩B =()A.{x |-1≤x <0}B.{x |0<x ≤1}C.{x |0≤x ≤2}D.{x |0≤x ≤1}解:易知A ={x |-1≤x ≤1},B (x -2)≤0,≠0的解集,求出B ={x |0<x ≤2},所以A ∩B={x |0<x ≤1}.故选B.(2)不等式x -12x +1≤0的解集为()-12,1 B.-12,1[1,+∞)-∞,-12∪[1,+∞)解:x -12x +1≤0x -1)(2x +1)≤0,x +1≠0得-12<x ≤1.故选A.类型六和一元二次不等式有关的恒成立问题(1)若不等式x 2+ax +1≥0对于一切x ,12成立,则a 的最小值为()A.0B.-2C.-52D.-3解:不等式可化为ax ≥-x 2-1,由于x ,12,∴a ≥∵f (x )=x +1x ,12上是减函数,x max=-52.∴a ≥-52.(2)已知对于任意的a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值总大于0,则x 的取值范围是()A.1<x <3B.x <1或x >3C.1<x <2D.x <1或x >2解:记g (a )=(x -2)a +x 2-4x +4,a ∈[-1,1](1)>0,(-1)>02-3x +2>0,2-5x +6>0⇒x <1或x >3,故选B.点拨:对于参数变化的情形,大多利用参变量转换法,即参数转换为变量;变量转换为参数,把关于x 的二次不等式转换为关于a 的一次不等式,化繁为简,然后再利用一次函数的单调性,求出x 的取值范围.对于满足|a |≤2的所有实数a ,求使不等式x 2+ax +1>2x +a 成立的x 的取值范围.解:原不等式转化为(x -1)a +x 2-2x +1>0,设f (a )=(x -1)a +x 2-2x +1,则f (a )在[-2,2]上恒大于0,故有:2)>0,2)>02-4x +3>0,2-1>0>3或x <1,>1或x <-1.∴x <-1或x >3.类型七二次方程根的讨论若方程2ax 2-x -1=0在(0,1)内有且仅有一解,则a 的取值范围是()A.a <-1B.a >1C.-1<a <1D.0≤a <1解法一:令f (x )=2ax 2-x -1,则f (0)·f (1)<0,即-1×(2a -2)<0,解得a >1.解法二:当a =0时,x =-1,不合题意,故排除C ,D ;当a =-2时,方程可化为4x 2+x +1=0,而Δ=1-16<0,无实根,故a =-2不适合,排除A.故选B.。
一元二次不等式的应用———不等式中的参数问题200000a b a ax bx c x c ==>⎧⎧++>⇔⎨⎨><⎩⎩ 不等式对任意实数恒成立或 200000a b a ax bx c x c ==<⎧⎧++<⇔⎨⎨<<⎩⎩不等式对任意实数恒成立或 1.(1)若不等式04)2(2)2(2<--+-x a x a 对R x ∈恒成立,求实数a 的取值范围.(2)若不等式13642222<++++x x mmx x 的解集为R ,求实数m 的取值范围.答案:(1)()2,2a ∈- (2) 1<m<32.已知}0)1(|{},023|{22≤++-=≤+-=a x a x x B x x x A ,①若A B ,求实数a 的取值范围.;②若A B ⊆,求实数a 的取值范围.;③若B A 为仅含有一个元素的集合,求a 的值.① a>2 ② 1≤a ≤2 ③ a ≤1答案:13,2x ⎛⎫∈- ⎪⎝⎭2210{|2},30ax bx c x x cx bx a ++≥-≤≤++<3.若不等式的解集是 求不等式的解集.答案:10a c +=对于含参数的不等式恒成立问题的处理方法:方法1:将不等式化为f(x)>0(<0)的形式,构造函数y=f(x), 求函数的最小值(最大值),再令(fmin(x)> 0(fmax(x)<0)通过解不等式求得。
方法2:分离参数法:分离参数,构造函数y=f(x), 求函数的最小值(最大值),使参数t<fmin(x)(参数t>fmax(x))。
21. 10(0,]2x ax x a ++≥∈5不等式对于一切恒成立,求的最小值。
答案:min 52a =-6.已知函数3()f x x x =+,对任意的m ∈[-2,2],(2)()0f mx f x -+<恒成立, 则x 的取值范围为____.223x -<<7.2lg()R,y x bx b b =++若函数的定义域为求实数的取值范围。
一元二次不等式恒成立与能成立问题5大题型命题趋势不等式是高考数学的重要内容。
其中,“含参不等式恒成立与能成立问题”把不等式、函数、三角、几何等内容有机地结合起来,其以覆盖知识点多、综合性强、解法灵活等特点备受高考命题者的青睐。
另一方面,在解决这类数学问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维灵活性、创造性都有这独到的作用。
一元二次不等式应用广泛,考察灵活,高考复习过程要注重知识与方法的灵活运用。
满分技巧一、一元二次不等式在实数集上的恒成立1.不等式ax2+bx+c>0对任意实数x恒成立⇔a=b=0c>0或a>0△<02.不等式ax2+bx+c<0对任意实数x恒成立⇔a=b=0c<0或a<0△<0【注意】对于二次不等式恒成立问题,恒大于0就是相应的二次函数的图像在给定的区间上全部在x轴上方;恒小于0就是相应的二次函数的图像在给定的区间上全部在x轴下方.二、一元二次不等式在给定区间上的恒成立问题求解方法方法一:若f x >0在集合A中恒成立,即集合A是不等式f x >0的解集的子集,可以先求解集,再由子集的含义求解参数的值(或范围);方法二:转化为函数值域问题,即已知函数f x 的值域为m,n,则f x ≥a恒成立⇒f x min≥a,即m ≥a;f x ≤a恒成立⇒f x min≤a,即n≤a.三、给定参数范围的一元二次不等式恒成立问题解决恒成立问题一定要清楚选谁为主元,谁是参数;一般情况下,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数.即把变元与参数交换位置,构造以参数为变量的函数,根据原变量的取值范围列式求解。
四、常见不等式恒成立及有解问题的函数处理方法不等式恒成立问题常常转化为函数的最值来处理,具体如下:1.对任意的x∈m,n,a>f x 恒成立⇒a>f x max;若存在x∈m,n,a>f x 有解⇒a>f x min;公众号:高中数学最新试题若对任意x∈m,n,a>f x 无解⇒a≤f x min.2.对任意的x∈m,n,a<f x 恒成立⇒a<f x min;若存在x∈m,n,a<f x 有解⇒a<f x max;若对任意x∈m,n,a<f x 无解⇒a≥f x max.热点题型解读【题型1一元二次不等式在实数集上的恒成立问题】【例1】(2022·重庆沙坪坝·重庆八中校考模拟预测)使得不等式x2-ax+1>0对∀x∈R恒成立的一个充分不必要条件是()A.0<a<2B.0<a≤2C.a<2D.a>-2【答案】A【解析】由不等式x2-ax+1>0对∀x∈R恒成立,得Δ<0,即-a2-4<0,解得-2<a<2, 从选项可知0<a<2是-2<a<2的充分不必要条件,故选:A.【变式1-1】(2022秋·山东·高三山东省实验中学校考阶段练习)已知命题“∃x∈R,使4x2+a-1x+ 1≤0”是假命题,则实数a的取值范围是()A.(-∞,-3)B.(-5,3)C.(5,+∞)D.(-3,5)【答案】D【解析】因为命题“∃x∈R,使4x2+a-1x+1≤0”是假命题,所以,命题“∀x∈R,4x2+a-1x+1>0”是真命题,所以,Δ=(a-1)2-16<0,解得-3<a<5,故实数a的取值范围是(-3,5).故选:D.【变式1-2】(2023·全国·高三专题练习)若命题“关于x 的不等式2mx 2+4mx +m -1<0对一切实数x 恒成立”是假命题,则实数m 的取值范围是____________.【答案】m ≤-1或m >0【解析】若命题是真命题:当m =0时,2mx 2+4mx +m -1<0,可化为-1<0,成立;当m ≠0时,m <0Δ=16m 2-8m m -1 <0 ,解得-1<m <0综合得当-1<m ≤0时,关于x 的不等式2mx 2+4mx +m -1<0对一切实数x 恒成立是真命题,若命题“关于x 的不等式2mx 2+4mx +m -1<0对一切实数x 恒成立”是假命题则m ≤-1或m >0【变式1-3】(2022秋·广西钦州·高三校考阶段练习)已知关于x 的不等式x +kx-k >0恒成立,则实数k 的取值范围是_____________.【答案】[0,4)【解析】x +kx -k >0,即x -k x +k >0(x >0),令t =x >0,则t 2-kt +k >0(t >0)恒成立.所以k 2≤002-k ×0+k ≥0或k 2>0Δ=-k 2-4k <0,解得0≤k <4,故实数k 的取值范围是[0,4).【变式1-4】(2022秋·山东聊城·高三山东聊城一中校考期末)关于x 的不等式a 2-16 x 2-(a -4)x -1≥0的解集为∅,则实数a 的取值范围为_________.【答案】a ∣-125<a ≤4 【解析】当a =4时,不等式可化为-1≥0,无解,满足题意;当a =-4时,不等式化为8x -1≥0,解得x ≥18,不符合题意,舍去;当a ≠±4时,要使得不等式a 2-16 x 2-(a -4)x -1≥0的解集为∅,则a 2-16<0,Δ=a -4 2+4a 2-16 <0, 解得-125<a <4.综上,实数a 的取值范围是a ∣-125<a ≤4 .【题型2一元二次不等式在某区间上的恒成立问题】公众号:高中数学最新试题【例2】(2022秋·辽宁沈阳·高三沈阳市第三十一中学校考开学考试)已知不等式-2x 2+bx +c >0的解集x -1<x <3 ,若对任意-1≤x ≤0,不等式-2x 2+bx +c +t ≤4恒成立.则t 的取值范围是__________.【答案】t ≤-2【解析】由题设,b 2=2且-c 2=-3,可得b =4,c =6,所以-2x 2+4x +2+t ≤0在-1≤x ≤0上恒成立,而f (x )=-2x 2+4x +2+t 在(-∞,1)上递增,故只需f (0)=2+t ≤0即可,所以t ≤-2.【变式2-1】(2022秋·山东青岛·高三统考期中)已知关于x 的不等式ax 2+(1-3a )x +2≥0的解集为A ,设B ={-1,1},B ⊆A ,则实数a 的取值范围为()A.-32≤a ≤14B.-14≤a ≤32C.a ≤-14D.a ≥32【答案】B【解析】由题意,a (x 2-3x )+x +2≥0在B ={-1,1}上恒成立,所以4a +1≥03-2a ≥0,可得-14≤a ≤32.故选:B【变式2-2】(2022秋·河南·高三期末)已知a >0,b ∈R ,若x >0时,关于x 的不等式ax -2 x2+bx -5 ≥0恒成立,则b +4a的最小值为()A.2B.25C.43D.32【答案】B【解析】设y =ax -2(x >0),y =x 2+bx -5(x >0),因为a >0,所以当0<x <2a时,y =ax -2<0;当x =2a时,y =ax -2=0;当x >2a时,y =ax -2>0;由不等式(ax -2)x 2+bx -5 ≥0恒成立,得:ax -2≤0x 2+bx -5≤0 或ax -2≥0x 2+bx -5≥0 ,即当0<x ≤2a时,x 2+bx -5≤0恒成立,当x ≥2a时,x 2+bx -5≥0恒成立,所以当x =2a 时,y =x 2+bx -5=0,则4a2+2b a -5=0,即b =5a 2-2a ,则当a>0时,b+4a=5a2-2a+4a=5a2+2a≥25a2×2a=25,当且仅当5a2=2a,即a=255时等号成立,所以b+4a的最小值为2 5.故选:B.【变式2-3】(2022秋·广西钦州·高三校考阶段练习)已知函数f x =ax2+x+a,不等式f x <5的解集为-3 2,1.(1)求a的值;(2)若f x >mx在x∈0,5上恒成立,求m的取值范围.【答案】(1)a=2;(2){m|m<5}.【解析】(1)f x =ax2+x+a<5的解集为-3 2,1,即ax2+x+a-5<0的解集为-3 2,1,∴a>0-32+1=-1a-32×1=a-5a,解得a=2;(2)由(Ⅰ)可得f x =2x2+x+2,∵f x >mx在x∈0,5上恒成立,即2x2+1-mx+2>0恒成立,令h x =2x2+1-mx+2,则h x >0在0,5上恒成立,有m-14≤0h0 =2>0或0<m-14≤5m-12-2×2×4<0或m-14>5h5 =52+51-m>0,解得m≤1或1<m<5或m∈∅,综上可得m的范围为{m|m<5}.【变式2-4】(2021秋·陕西西安·高三校考阶段练习)已知二次函数f x 满足f2 =-1,f-1=-1,且f x 的最大值是8.(1)试确定该二次函数的解析式;(2)f x >2x+k在区间-3,1上恒成立,试求k的取值范围.【答案】(1)f x =-4x2+4x+7;(2)k的取值范围为-∞,-35.【解析】(1)由f(2)=f(-1),得x=2-12=12为二次函数的对称轴,因函数f(x)的最大值为8,所以可设f x =a x-1 22+8 ,公众号:高中数学最新试题又因f (2)=94a +8=-1,所以a =-4,因此f x =-4x 2+4x +7.(2)由(1)不等式f x >2x +k ,可化为-4x 2+4x +7>2x +k ,所以k <-4x 2+2x +7,因为f x >2x +k 在区间-3,1 上恒成立,所以k <-4x 2+2x +7在区间-3,1 上恒成立,故k <-4x 2+2x +7 min ,其中x ∈-3,1 ,又函数y =-4x 2+2x +7=-4x -142+294,又当x =-3时,y =-35,当x =1时,y =5,所以函数y =-4x 2+2x +7在-3,1 上的最小值为-35,所以k <-35,所以k 的取值范围为-∞,-35 .【题型3给定参数范围的一元二次不等式恒成立问题】【例3】(2021·吉林松原·校考三模)若不等式x 2-ax ≥16-3x -4a 对任意a ∈-2,4 成立,则x 的取值范围为()A.-∞,-8 ∪3,+∞B.-∞,0 ∪1,+∞C.-8,6D.0,3【答案】A【解析】由题得不等式(x -4)a -x 2-3x +16≤0对任意a ∈-2,4 成立,所以(x -4)(-2)-x 2-3x +16≤0(x -4)4-x 2-3x +16≤0 ,即-x 2-5x +24≤0-x 2+x ≤0,解之得x ≥3或x ≤-8.故选:A【变式3-1】(2022秋·湖北襄阳·高三校考阶段练习)若命题“∃a ∈-1,3 ,ax 2-2a -1 x +3-a <0”为假命题,则实数x 的取值范围为()A.-1,4B.0,53C.-1,0 ∪53,4D.-1,0 ∪53,4【答案】C【解析】命题“∃a ∈-1,3 ,ax 2-2a -1 x +3-a <0”为假命题,其否定为真命题,即“∀a ∈-1,3 ,ax 2-2a -1 x +3-a ≥0”为真命题.令g (a )=ax 2-2ax +x +3-a =(x 2-2x -1)a +x +3≥0,则g (-1)≥0g (3)≥0 ,即-x 2+3x +4≥03x 2-5x ≥0 ,解得-1≤x ≤4x ≥53或x ≤0 ,所以实数x 的取值范围为-1,0 ∪53,4.故选:C 【变式3-2】(2022秋·广东深圳·高三深圳中学校考阶段练习)已知当-1≤a ≤1时,x 2+a -4 x +4-2a >0恒成立,则实数x 的取值范围是()A.-∞,3B.-∞,1∪ 3,+∞C.-∞,1D.-∞,1 ∪3,+∞【答案】D【解析】x 2+a -4 x +4-2a >0恒成立,即x -2 a +x 2-4x +4>0,对任意得a ∈-1,1 恒成立,令f a =x -2 a +x 2-4x +4,a ∈-1,1 ,当x =2时,f a =0,不符题意,故x ≠2,当x >2时,函数f a 在a ∈-1,1 上递增,则f a min =f -1 =-x +2+x 2-4x +4>0,解得x >3或x <2(舍去),当x <2时,函数f a 在a ∈-1,1 上递减,则f a min =f 1 =x -2+x 2-4x +4>0,解得x <1或x >2(舍去),综上所述,实数x 的取值范围是-∞,1 ∪3,+∞ .故选:D .【变式3-3】(2023·全国·高三专题练习)当a ∈2,3 时,不等式ax 2-x +1-a ≤0恒成立,求x 的取值范围.【答案】-12,1 .【解析】由题意不等式ax 2-x +1-a ≤0对a ∈2,3 恒成立,可设f (a )=(x 2-1)a +(-x +1),a ∈2,3 ,则f (a )是关于a 的一次函数,要使题意成立只需f (2)≤0f (3)≤0,即2x 2-x -1≤03x 2-x -2≤0 ,解2x 2-x -1≤0,即2x +1 x -1 ≤0得-12≤x ≤1,解3x 2-x -2≤0,即3x +2 x -1 ≤0得-23≤x ≤1,所以原不等式的解集为-12,1 ,所以x 的取值范围是-12,1.【变式3-4】(2021·辽宁沈阳·高三沈阳二中校考开学考试)设函数f x =mx 2-mx -1.(1)若对于x ∈-2,2 ,f x <-m +5恒成立,求m 的取值范围;(2)若对于m ∈-2,2 ,f x <-m +5恒成立,求x 的取值范围.【答案】(1)-∞,67;(2)-1,2 【解析】(1)若对于x ∈-2,2 ,f x <-m +5恒成立,即mx 2-mx +m -6<0对于x ∈-2,2 恒成立,即m <6x 2-x +1对于x ∈-2,2 恒成立.公众号:高中数学最新试题令h x =6x 2-x +1=6x -12 2+34,x ∈-2,2 ,则h x min =h (-2)=6254+34=67,故m <67,所以m 的取值范围为-∞,67.(2)对于m ∈-2,2 ,f x <-m +5恒成立,即mx 2-mx -1<-m +5恒成立,故m x 2-x +1 -6<0恒成立,令g m =m x 2-x +1 -6,则g -2 =-2x 2-x +1 -6<0g 2 =2x 2-x +1 -6<0 ,解得-1<x <2,所以x 的取值范围为-1,2 .【题型4一元二次不等式在实数集上的有解问题】【例4】(2023·全国·高三专题练习)若存在实数x ,使得mx 2-m -2 x +m <0成立,则实数m 的取值范围为()A.-∞,2B.-∞,0 ∪13,32C.-∞,23D.-∞,1 【答案】C【解析】①当m =0时,不等式化为2x <0,解得:x <0,符合题意;②当m >0时,y =mx 2-m -2 x +m 为开口方向向上的二次函数,只需Δ=m -2 2-4m 2=-3m 2-4m +4>0,即0<m <23;③当m <0时,y =mx 2-m -2 x +m 为开口方向向下的二次函数,则必存在实数x ,使得mx 2-m -2 x +m <0成立;综上所述:实数m 的取值范围为-∞,23.故选:C .【变式4-1】(2022秋·广西钦州·高三校考阶段练习)若关于x 的不等式a 2-4 x 2+a +2 x -1≥0的解集不为空集,则实数a 的取值范围为()A.-2,65B.-2,65C.(-∞,-2)∪65,+∞ D.(-∞,-2]∪65,+∞【答案】C【解析】根据题意,分两种情况讨论:①当a 2-4=0时,即a =±2,若a=2时,原不等式为4x-1≥0,解可得:x≥1 4,则不等式的解集为x x≥1 4,不是空集;若a=-2时,原不等式为-1≥0,无解,不符合题意;②当a2-4≠0时,即a≠±2,若(a2-4)x2+(a+2)x-1≥0的解集是空集,则有a2-4<0Δ=(a+2)2+4(a2-4)<0,解得-2<a<65,则当不等式(a2-4)x2+(a+2)x-1≥0的解集不为空集时,有a<-2或a≥65且a≠2,综合可得:实数a的取值范围为(-∞,-2)∪65,+∞;故选:C.【变式4-2】(2023·全国·高三专题练习)若关于x的不等式ax2-(a+2)x+94<0有解,则实数a的取值范围是____.【答案】(-∞,1)∪(4,+∞)【解答】当a=0时,不等式为-2x+94<0有解,故a=0,满足题意;当a>0时,若不等式ax2-(a+2)x+94<0有解,则满足Δ=(a+2)2-4a⋅94>0,解得a<1或a>4;当a<0时,此时对应的函数的图象开口向下,此时不等式ax2-(a+2)x+94<0总是有解,所以a<0,综上可得,实数a的取值范围是(-∞,1)∪(4,+∞).【变式4-3】(2022·全国·高三专题练习)若关于x的不等式ax2+2x+1<0有实数解,则a的取值范围是_____.【答案】-∞,1【解析】当a=0时,不等式为2x+1<0有实数解,所以a=0符合题意;当a<0时,不等式对应的二次函数开口向下,所以不等式ax2+2x+1<0有实数解,符合题意;当a>0时,要使不等式ax2+2x+1<0有实数解,则需满足Δ=4-4a>0,可得a<1,所以0<a<1,综上所述:a的取值范围是-∞,1,公众号:高中数学最新试题【题型5一元二次不等式在某区间上的有解问题】【例5】(2022·甘肃张掖·高台县第一中学校考模拟预测)若关于x 的不等式x 2-6x +2-a >0在区间0,5 内有解,则实数a 的取值范围是().A.2,+∞B.-∞,5C.-∞,-3D.-∞,2【答案】D【解析】不等式x 2-6x +2-a >0在区间0,5 内有解,仅需(x 2-6x +2)max >a 即可,令f (x )=x 2-6x +2,因为f (x )的对称轴为x =--62×1=3,f (0)=2,f (5)=-3,所以由一元二次函数的图像和性质的得(x 2-6x +2)max =2,所以a <2,故选:D【变式5-1】(2023·全国·高三专题练习)已知关于x 的不等式mx 2-6x +3m <0在0,2 上有解,则实数m 的取值范围是()A.-∞,3B.-∞,127C.3,+∞D.127,+∞ 【答案】A【解析】由题意得,mx 2-6x +3m <0,x ∈0,2 ,即m <6xx 2+3,故问题转化为m <6xx 2+3在0,2 上有解,设g (x )=6x x 2+3,则g (x )=6x x 2+3=6x +3x ,x ∈0,2 ,对于x +3x≥23,当且仅当x =3∈(0,2]时取等号,则g (x )max =623=3,故m <3,故选:A【变式5-2】(2022·全国·高三专题练习)命题p :∃x ∈{x |1≤x ≤9},x 2-ax +36≤0,若p 是真命题,则实数a 的取值范围为()A.a ≥37 B.a ≥13C.a ≥12D.a ≤13【答案】C【解析】∵命题p :∃x ∈{x |1≤x ≤9},使x 2-ax +36≤0为真命题,即∃x ∈{x |1≤x ≤9},使x 2-ax +36≤0成立,即a ≥x +36x能成立设f (x )=x +36x ,则f (x )=x +36x≥2x ⋅36x =12,当且仅当x =36x,即x =6时,取等号,即f (x )min =12,∴a ≥12,故a的取值范围是a≥12.故选:C.【变式5-3】(2022秋·北京·高三统考阶段练习)若存在x∈[0,1],有x2+(1-a)x+3-a>0成立,则实数a的取值范围是__________.【答案】-∞,3【解析】将原不等式参数分离可得a<x2+x+3x+1,设f x =x2+x+3x+1,已知存在x∈[0,1],有x2+(1-a)x+3-a>0成立,则a<f x max,令t=x+1,则f x =t-12+t-1+3t=t2-t+3t=t+3t-1,t∈1,2,由对勾函数知f x 在1,3上单调递减,在3,2上单调递增,f1 =1+31-1=3,f2 =2+32-1=52,所以f x max=f1 =3,即a<3.【变式5-4】(2023·全国·高三专题练习)已知命题“∃x∈[-1,1],-x02+3x0+a>0”为真命题,则实数a 的取值范围是______.【答案】-2,+∞【解析】因为命题“∃x∈[-1,1],-x02+3x0+a>0”为真命题则∃x∈[-1,1],a>x2-3x有解,设f(x)=x2-3x,则f(x)=x2-3x=x-3 22-94,当x∈[-1,1]时,f(x)单调递减,所以-2≤f(x)≤4,所以a>-2.【变式5-5】(2022·全国·高三专题练习)设f x 为奇函数,g x 为偶函数,对于任意x∈R均有f x + 2g x =mx-4.若f x -x2+2g x ≥0在x∈0,+∞上有解,则实数m的取值范围是_____ _.【答案】m≥4【解析】由题设,f x -x2+2g x =mx-4-x2≥0,即x2-mx+4≤0在x∈0,+∞上有解,对于y=x2-mx+4,开口向上且对称轴为x=m2,Δ=m2-16,y|x=0=4,∴Δ≥0m2>0,可得m≥4.公众号:高中数学最新试题限时检测(建议用时:60分钟)1.(2022·甘肃张掖·高台县第一中学校考模拟预测)已知命题P:∀x∈R,x2-2x+m>0,则满足命题P为真命题的一个充分条件是()A.m>2B.m<0C.m<1D.m≥1【答案】A【解析】∵命题P为真命题,∴不等式x2-2x+m>0在R上恒成立,∴△=4-4m<0,解得m>1,对于A,m>2⇒m>1,∴m>2 是m>1的充分条件,∴m>2 是命题P为真命题的充分条件,选项A正确;对于B,m<0推不出m>1,∴m<0不是m>1的充分条件,∴m<0不是命题P为真命题的充分条件,选项B不正确;对于C,m<1推不出m>1,∴m<1不是m>1的充分条件,∴m<1不是命题P为真命题的充分条件,选项C不正确对于D,m≥1推不出m>1,∴m≥1不是m>1的充分条件,∴m≥1不是命题P为真命题的充分条件,选项D不正确.故选:A.2.(2022秋·北京大兴·高三统考期中)若命题“∃x∈R,x2+2x+m≤0”是真命题,则实数m的取值范围是()A.m<1B.m≤1C.m>1D.m≥1【答案】B【解析】由题可知,不等式x2+2x+m≤0在实数范围内有解,等价于方程x2+2x+m=0有实数解,即△=4-4m≥0,解得m≤1.故选:B.3.(2022秋·全国·高三校联考阶段练习)设m∈R,则“m>-34”是“不等式x2-x+m+1≥0在R上恒成立”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】由不等式x2-x+m+1≥0在R上恒成立,得△=-1 2-4m +1 ≤0,解得m ≥-34.所以“m >-34”是“不等式x 2-x +m +1≥0在R 上恒成立”的充分不必要条件.故选:A 4.(2022秋·宁夏银川·高三校考期中)已知命题P :∀x ∈R ,x 2-x +a >0,若-P 是假命题,则实数a 的取值范围是()A.-∞,14B.14,12C.14,+∞D.12,+∞【答案】C【解析】已知命题P :∀x ∈R ,x 2-x +a >0,若-P 是假命题,则不等式x 2-x +a >0在R 上恒成立,∴△=1-4m <0,解得a >14.因此,实数a 的取值范围是14,+∞.故选:C .5.(2022秋·河南·高三校联考阶段练习)设函数f x =2ax 2-ax ,命题“∃x ∈0,1 ,f x ≤-a +3”是假命题,则实数a 的取值范围为()A.-∞,3B.3,+∞C.247,+∞D.32,+∞【答案】C【解析】因为命题“∃x ∈0,1 ,f x ≤-a +3”是假命题,所以∃x ∈0,1 ,f x >-a +3是真命题,又f x >-a +3可化为2ax 2-ax >-a +3,即a 2x 2-x +1 >3,当x ∈0,1 时,2x 2-x +1∈78,2,所以m >32x 2-x +1在x ∈0,1 上恒成立,所以m >32x 2-x +1 max其中,x ∈0,1 ,当x =14时2x 2-x +1有最小值为78,此时32x 2-x +1有最大值为247,所以m >247,故实数m 的取值范围是247,+∞ ,故选:C 6.(2023·全国·高三专题练习)若对任意的x ∈-1,0 ,-2x 2+4x +2+m ≥0恒成立,则m 的取值范围是()A.4,+∞B.2,+∞C.-∞,4D.-∞,2【答案】A【解析】因为对任意的x ∈-1,0 ,-2x 2+4x +2+m ≥0恒成立,所以对任意的x ∈-1,0 ,m ≥2x 2-4x -2恒成立,公众号:高中数学最新试题因为当x ∈-1,0 ,y =2x -1 2-4∈-2,4 ,所以m ≥2x 2-4x -2 max =4,x ∈-1,0 ,即m 的取值范围是4,+∞ ,故选:A7.(2021秋·河南南阳·高三南阳中学校考阶段练习)设函数f x =mx 2-mx -1,若对于任意的x ∈x |1≤x ≤3 ,f x <-m +4恒成立,则实数m 的取值范围为()A.m <57B.0≤m <57C.m <0或0<m <57D.m ≤0【答案】A【解析】若对于任意的x ∈x |1≤x ≤3 ,f x <-m +4恒成立,即可知:mx 2-mx +m -5<0在x ∈x |1≤x ≤3 上恒成立,令g x =mx 2-mx +m -5,对称轴为x =12.当m =0时,-5<0恒成立,当m <0时,有g x 开口向下且在1,3 上单调递减,在1,3 上g x max =g 1 =m -5<0,得m <5,故有m <0.当m >0时,有g x 开口向上且在1,3 上单调递增在1,3 上g x max =g 3 =7m -5<0,∴0<m <57综上,实数m 的取值范围为m <57,故选:A .8.(2022秋·湖南邵阳·高三统考期中)设函数f x =x 2+2ax +a 2-2a +3,若对于任意的x ∈R ,不等式f f x ≥0恒成立,则实数a 的取值范围是()A.a ≥32B.a ≤2C.32<a ≤2 D.a ≤32【答案】B【解析】∵f x =x 2+2ax +a 2-2a +3=x +a 2-2a +3,即开口向上且f x ∈-2a +3,+∞ ,由f f x ≥0恒成立,即f x ≥0在-2a +3,+∞ 上恒成立,∴当-2a +3≥0时,即a ≤32,由二次函数的性质,f x ≥0显然成立;当a >32时,y =f x 有两个零点,则只需满足-a ≤-2a +3f -2a +3 ≥0,解得a ≤2,故32<a ≤2;综上,a 的取值范围是a ≤2.故选:B9.(2022秋·辽宁鞍山·高三校联考期中)设a ∈R ,,若关于x 的不等式x 2-ax +1≥0在1≤x ≤2上有解,则()A.a ≤2B.a ≥2C.a ≤52D.a ≥52【答案】C【解析】由x 2-ax +1≥0在1≤x ≤2上有解,得x 2+1x≥a 在1≤x ≤2上有解,则a ≤x 2+1x max ,由于x 2+1x =x +1x ,而x +1x 在1≤x ≤2单调递增,故当x =2时,x +1x 取最大值为52,故a ≤52,故选:C 10.(2023·全国·高三专题练习)已知命题“∃x 0∈R ,4x 02+a -2 x 0+14≤0”是真命题,则实数a 的取值范围()A.-∞,0B.0,4C.4,+∞D.-∞,0 ⋃4,+∞【答案】D【解析】由题意,命题∃x 0∈R ,4x 02+a -2 x 0+14≤”是真命题故△=a -2 2-4×4×14=a 2-4a ≥0,解得a ≥4或a ≤0.则实数a 的取值范围是-∞,0 ⋃4,+∞ 故选:D .11.(2022·全国·高三专题练习)已知关于x 的不等式-x 2+4x ≥a 2-3a 在R 上有解,则实数a 的取值范围是()A.a |-1≤a ≤4B.a |-1<a <4C.a |a ≥4或a ≤-1D.a |-4≤a ≤1【答案】A【解析】因为关于x 的不等式-x 2+4x ≥a 2-3a 在R 上有解,即x 2-4x +a 2-3a ≤0在R 上有解,只需y =x 2-4x +a 2-3a 的图象与x 轴有公共点,所以△=-4 2-4×a 2-3a ≥0,即a 2-3a -4≤0,所以a -4 a +1 ≤0,解得:-1≤a ≤4,所以实数a 的取值范围是a |-1≤a ≤4 ,故选:A .12.(2022·全国·高三专题练习)若关于x 的不等式x 2+ax -2>0在区间1,5 上有解,则实数a 的取值范围为()A.-235,+∞ B.-235,1C.1,+∞D.-∞,-235公众号:高中数学最新试题【答案】A【解析】关于x的不等式x2+ax-2>0在区间1,5上有解,ax>2-x2在x∈1,5上有解,即a>2x-x在x∈1,5上成立;设函数f x =2x-x,x∈1,5,∴f x 在x∈1,5上是单调减函数,又f1 =2-1=1,f5 =25-5=-235所以f x 的值域为-23 5,1,要a>2x-x在x∈1,5上有解,则a>-235,即实数a的取值范围为-235,+∞.故选:A.13.(2021秋·江苏徐州·高三统考阶段练习)若存在实数x,使得关于x的不等式ax2-4x+a-3<0成立,则实数a的取值范围是______.【答案】a<4【解析】a<3时,若x=0,则不等式为a-3<0,不等式成立,满足题意,a≥3时,在在x使得不等式ax2-4x+a-3<0成立,则△=16-4a a-3>0,∴3≤a<4.综上,a<4.14.(2021·全国·高三专题练习)已知函数x2-x,x≤02x,x>0.若存在x∈R使得关于x的不等式f x ≤ax-1成立,则实数a的取值范围是________.【答案】-∞,-3⋃-1,+∞【解析】由题意,当x=0时,不等式f x ≤ax-1可化为0≤-1显然不成立;当x<0时,不等式f x ≤ax-1可化为x2-x+1≤ax,所以a≤x+1x-1,又当x<0时,x+1x=--x+-1x≤-2,当且仅当-x=-1x,即x=-1时,等号成立;当x>0时,不等式f x ≤ax-1可化为2x+1≤ax,即a≥1x+2x=1x+12-1≥-1;因为存在x∈R使得关于x的不等式f x ≤ax-1成立,所以,只需a≤-2-1=-3或a≥-1.15.(2020·上海杨浦·复旦附中校考模拟预测)若命题:“存在整数x使不等式kx-k2-4x-4<0成立”是假命题,则实数k 的取值范围是____________.【答案】1,4【解析】设不等式kx -k 2-4 x -4 <0的解集为A,当k =0时,不等式kx -k 2-4 x -4 <0化为x >4,存在整数x 使不等式成立,所以此时不满足题意,所以k ≠0;当k >0时,原不等式化为x -k +4kx -4 <0,因为k +4k ≥2k ⋅4k =4,当且仅当k =4k即k =2时取等号,所以A =x |4<x <k +4k ,要使命题:“存在整数x 使不等式kx -k 2-4 x -4 <0成立”是假命题,则需4≤k +4k≤5,解得1≤k ≤4;当k <0时,原不等式化为x -k +4kx -4 >0,而k +4k =--k +4-k ≤-2-k ⋅4-k =-4,当且仅当-k =4-k即k =-2时取等号,所以A =-∞,k +4k∪4,+∞ ,所以存在整数x 使不等式kx -k 2-4 x -4 <0成立,所以k <0不合题意.综上可知,实数k 的取值范围是1,4 .16.(2022秋·江苏连云港·高三校考开学考试)ax 2-2x +1≥0,∀x >0恒成立,则实数a 的取值范围是_________ .【答案】1,+∞【解析】由ax 2-2x +1≥0,∀x >0恒成立,可得,a ≥2x -1x2对∀x >0恒成立,令y =2x -1x2,则y =1-1x -1 2,1x >0 当1x=1时,y max =1,所以a ≥y max =1.17.(2021·全国·高三专题练习)若不等式x 2-2>mx 对满足m ≤1的一切实数m 都成立,则x 的取值范围是___________【答案】x <-2或x >2【解析】因为x 2-2>mx ,所以mx -x 2+2<0令f m =mx -x 2+2,即f m <0在m ≤1恒成立,即-1≤m ≤1时f m <0恒成立,公众号:高中数学最新试题所以f1 <0f-1<0,即x-x2+2<0-x-x2+2<0,解x-x2+2<0得x>2或x<-1;解-x-x2+2<0得x>1或x<-2,所以原不等式组的解集为x∈-∞,-2∪2,+∞18.(2023·全国·高三专题练习)若不等式-x2+t2-2at+1≥0对任意x∈-1,1及a∈-1,1恒成立,则实数t的取值范围是__________.【答案】-∞,-2∪0 ∪2,+∞【解析】由题意得t2-2at+1≥x2对任意x∈-1,1及a∈-1,1恒成立,所以t2-2at+1≥1对任意a∈-1,1恒成立,即t2-2at≥0对a∈-1,1恒成立,令g a =t2-2at=-2at+t2,则g a 是关于a的一次函数,所以只需g1 ≥0g-1≥0,即t2-2t≥0t2+2t≥0,解得t≥2或t≤-2或t=0,所以实数t的取值范围是-∞,-2∪0 ∪2,+∞。
课时作业17 一元二次不等式的应用时间:45分钟 满分:100分课堂训练1.不等式(1-|x |)(1+x )>0的解集为( ) A .{x |x <1} B .{x |x <-1} C .{x |-1<x <1} D .{x |x <-1或-1<x <1} 【答案】 D 【解析】原不等式可化为⎩⎨⎧x ≥0且x ≠1(1-x )(1+x )>0,或⎩⎨⎧x <0且x ≠-1(1+x )(1+x )>0.即0≤x <1或x <0且x ≠-1.∴x <1且x ≠-1,故选D.2.如果方程x 2+(m -1)x +m 2-2=0的两个实根一个小于-1,另一个大于1,那么实数m 的取值范围是( )A .(-2,2)B .(-2,0)C .(-2,1)D .(0,1)【答案】 D【解析】 令f (x )=x 2+(m -1)x +m 2-2,则⎩⎪⎨⎪⎧f (1)<0f (-1)<0,∴⎩⎨⎧m 2+m -2<0m 2-m <0,∴0<m <1.3.已知关于x的不等式x2-ax+2a>0在R上恒成立,则实数a 的取值范围是________.【答案】(0,8)【解析】不等式x2-ax+2a>0在R上恒成立,即Δ=(-a)2-8a<0,∴0<a<8,即a的取值范围是(0,8).4.解不等式:(1)(x+2)(x+1)(x-1)(x-2)≤0.(2)3x-5x2+2x-3≤2.【分析】(1)本题考查高次不等式的解法.应用等价转化的方法显得较繁琐,可利用数轴标根法来解.(2)考查分式不等式的解法.给出的不等式并非分式不等式的标准形式,要通过移项、通分的办法将其化为标准形式再解.【解析】(1)设y=(x+2)(x+1)(x-1)(x-2),则y=0的根分别是-2,-1,1,2,将其分别标在数轴上,其画出示意图如下:∴不等式的解集是{x|-2≤x≤-1或1≤x≤2}.(2)原不等式等价变形为3x-5x2+2x-3-2≤0,即-2x2-x+1x2+2x-3≤0,即2x2+x-1x2+2x-3≥0,即⎩⎨⎧(2x 2+x -1)(x 2+2x -3)≥0,x 2+2x -3≠0,即等价变形为⎩⎨⎧(2x -1)(x +1)(x +3)(x -1)≥0,x ≠-3且x ≠1.画出示意图如下:可得原不等式的解集为 {x |x <-3或-1≤x ≤12或x >1}.课后作业一、选择题(每小题5分,共40分) 1.不等式x -3x +2<0的解集为( )A .{x |-2<x <3}B .{x |x <-2}C .{x |x <-2或x >3}D .{x |x >3}【答案】 A【解析】 不等式x -3x +2<0可转化为(x +2)(x -3)<0,解得-2<x <3.2.不等式(x 2-4x -5)(x 2+4)<0的解集为( ) A .{x |0<x <5} B .{x |-1<x <5} C .{x |-1<x <0} D .{x |x <-1或x >5} 【答案】 B【解析】 原不等式等价于x 2-4x -5<0.3.不等式x +ax 2+4x +3≥0的解集为{x |-3<x <-1或x ≥2},则a的值为( )A .2B .-2 C.12 D .-12【答案】 B【解析】 原不等式可化为x +a (x +1)(x +3)≥0,等价于⎩⎨⎧(x +a )(x +1)(x +3)≥0(x +1)(x +3)≠0,由题意得对应方程的根为-3,-1,2,∴a=-2.4.不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是( )A .-4≤a ≤4B .-4<a <4C .a ≥4或a ≤-4D .a <-4或a >4【答案】 D【解析】 不等式x 2+ax +4<0的解集不是空集,只需Δ=a 2-16>0,∴a <-4或a >4,故选D.5.不等式x +5(x -1)2≥2的解集是( )A .[-3,12]B .[-12,3]C .[12,1)∪(1,3] D .[-12,1)∪(1,3]【答案】 D【解析】 ∵(x -1)2>0, 由x +5(x -1)2≥2可得:x +5≥2(x -1)2,且x ≠1. ∴2x 2-5x -3≤0且x ≠1,∴-12≤x ≤3且x ≠1. ∴不等式的解集是[-12,1)∪(1,3]. 6.不等式x +2x -1>-2的解集是( )A .(-1,1)B .(-1,0)∪(1,+∞)C .(0,1)D .(-1,1)∪(1,+∞)【答案】 B【解析】 不等式移项通分,得x (x -1)+2-(-2)(x -1)x -1>0,整理得x (x +1)x -1>0,不等式等价于⎩⎨⎧x -1>0,x (x +1)>0(1),或⎩⎨⎧x -1<0,x (x +1)<0(2),解(1)得,x >1;解(2)得,-1<x <0. 所以不等式的解集为(-1,0)∪(1,+∞).7.若不等式x 2+ax +1≥0对一切x ∈(0,12]恒成立,则a 的最小值为( )A .0B .-2C .-52D .-3【答案】 C【解析】 x 2+ax +1≥0对一切x ∈(0,12]恒成立,等价于a ≥-x -1x 时对一切x ∈(0,12]恒成立.设f (x )=-x -1x .∵f (x )在(0,12]上单调递增, ∴f (x )max =f (12)=-52. ∴a ≥-52.∴a 的最小值为-52,故选C.8.定义运算:a *b =a ·(2-b ),若不等式(x -m )*(x +m )<1对任意实数x 都成立,则( )A .-1<m <0B .0<m <2C .-32<m <12D .-12<m <32【答案】 B【解析】 因为a *b =a ·(2-b ),所以(x -m )*(x +m )=(x -m )·(2-x -m )=-(x -m )[x -(2-m )],所以(x -m )*(x +m )<1可化为x 2-2x -m 2+2m +1>0,令x 2-2x -m 2+2m +1=0,所以Δ=4+4(m 2-2m-1)=4(m 2-2m )<0,即0<m <2,故选B.二、填空题(每小题10分,共20分) 9.不等式x -2x 2-1<0的解集为________.【答案】 {x |x <-1或1<x <2}【解析】 因为不等式x -2x 2-1<0等价于(x +1)(x -1)·(x -2)<0,所以该不等式的解集是{x |x <-1或1<x <2}.10.函数f (x )=kx 2-6kx +(k +8)的定义域为R ,则实数k 的取值范围为________.【答案】 [0,1]【解析】 kx 2-6kx +(k +8)≥0恒成立, 当k =0时,满足.当k ≠0时,⎩⎨⎧k >0,Δ=(-6k )2-4k (k +8)≤0⇒0<k ≤1.∴0≤k ≤1.三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)11.若不等式x 2-8x +20mx 2+2(m +1)x +9m +4>0对任意实数x 恒成立,求m 的取值范围.【解析】 ∵x 2-8x +20=(x -4)2+4>0∴要使不等式x 2-8x +20mx 2+2(m +1)x +9m +4>0对任意实数x 恒成立,只要mx 2+2(m +1)x +9m +4>0对于任意实数x 恒成立.①当m =0时,2x +4>0,x >-2,此时原不等式对于x >-2的实数x 成立,∴m =0不符合题意.②当m ≠0时,要使不等式对任意实数x 恒成立,须⎩⎨⎧m >0Δ<0解得:m >14.∴m 的取值范围是{m |m >14}.12.实数m 取何范围的值时,方程x 2+(m -3)x +m =0的两根满足:(1)都是正数;(2)都在(0,2)内.【解析】 (1)设方程的两根为x 1,x 2,则由题意可得⎩⎪⎨⎪⎧Δ=m 2-10m +9≥0x 1+x 2=3-m >0x 1·x 2=m >0,解得m 的取值范围是(0,1].(2)设f (x )=x 2+(m -3)x +m ,由题意得⎩⎪⎪⎨⎪⎪⎧Δ=m 2-10m +9≥0f (0)=m >00<3-m 2<2f (2)=3m -2>0,解得m 的取值范围是(23,1]。
高二数学一元二次不等式试题答案及解析1.设函数,记不等式的解集为.(1)当时,求集合;(2)若,求实数的取值范围.【答案】(1);(2).【解析】(1)当时,不等式是一个具体的一元二次不等式,应用因式分解法可求得其解集;(2)注意这个条件只能用于第(1)小问,而不能用于第(2)问,所以不能用第(1)小问的结果,来解第(2)问;不等式从而可得,然后由画出数轴,就可列出关于字母a的不等式组,从而求出a的取值范围.试题解析:(1)当时,,解不等式,得, 5分. 6 分(2),,又,,. 9分又,,解得,实数的取值范围是. 14分【考点】1.一元二次不等式;2.集合间的关系.2. (1)求不等式的解集:;(2)求函数的定义域:.【答案】(1); (2)【解析】(1)根据解一元二次不等式的步骤,首先求方程,再结合函数的图象写出不等式的解;(2)已知解析式求函数的定义域,转化为解不等式,从而得到函数的定义域.试题解析:解:(1)解:原不等式等价于,令,得或所以原不等式的解为或,即原不等式的解集为(2)要使函数有意义,则,得不等式组的解为或,所以原不等式的解集为.所以函数的定义域为【考点】1、一元二次不等式的解法;2、分式不等式的解法;3、函数的定义域.3.设,解关于的不等式.【答案】当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为【解析】由实数的取值是不为零关系到不等的类型,所以要首先考虑的情况;、当时,要解不等式,需要先解方程得两根:2和,可以发现实数的取值对两根的大小起决定作用,故又需要依此对的取值进行分类讨论.试题解析:解:(1)若,则不等式化为,解得 2分(2)若,则方程的两根分别为2和 4分①当时,解不等式得 6分②当时,不等式的解集为 8分③当时,解不等式得 10分④当时,解不等式得或 12分综上所述,当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为 14分【考点】1、一元一次、一元二次不等式的解法;2、分类讨论的思想.4.已知函数,求不等式的解集。
一元二次不等式及其解法. 一元二次不等式的解法(1)将不等式的右边化为零,左边化为二次项系数大于零的不等式ax 2+bx +c >0 (a >0)或ax 2+bx +c <0 (a >0).(2)求出相应的一元二次方程的根.(3)利用二次函数的图象与x 轴的交点确定一元二次不等式的解集. 2. 一元二次不等式与相应的二次函数及一元二次方程的关系如下表:题型一 一元二次不等式的解法例1 已知不等式ax 2-3x +6>4的解集为{x |x <1或x >b }.(1)求a ,b 的值;(2)解不等式ax 2-(ac +b )x +bc <0.解 (1)因为不等式ax 2-3x +6>4的解集为{x |x <1或x >b },所以x 1=1与x 2=b 是方程ax 2-3x +2=0的两个实数根,b >1且a >0.由根与系数的关系,得⎩⎨⎧1+b =3a,1×b =2a. 解得⎩⎪⎨⎪⎧a =1,b =2.(2)不等式ax 2-(ac +b )x +bc <0,即x 2-(2+c )x +2c <0,即(x -2)(x -c )<0. 当c >2时,不等式(x -2)(x -c )<0的解集为{x |2<x <c }; 当c <2时,不等式(x -2)(x -c )<0的解集为{x |c <x <2};当c =2时,不等式(x -2)(x -c )<0的解集为∅.所以,当c >2时,不等式ax 2-(ac +b )x +bc <0的解集为{x |2<x <c }; 当c <2时,不等式ax 2-(ac +b )x +bc <0的解集为{x |c <x <2}; 当c =2时,不等式ax 2-(ac +b )x +bc <0的解集为∅.(1)不等式ax 2+bx +c >0的解集为{x |2<x <3},则不等式ax 2-bx +c >0的解集为________.(2)解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). (1)答案 {x |-3<x <-2}解析 令f (x )=ax 2+bx +c ,则f (-x )=ax 2-bx +c ,结合图象,可得ax 2-bx +c >0的解集为{x |-3<x <-2}.(2)解 原不等式可化为ax 2+(a -2)x -2≥0⇒(ax -2)(x +1)≥0. ①当a =0时,原不等式化为x +1≤0⇒x ≤-1.②当a >0时,原不等式化为⎝⎛⎭⎫x -2a (x +1)≥0⇒x ≥2a 或x ≤-1. ③当a <0时,原不等式化为⎝⎛⎭⎫x -2a (x +1)≤0. 当2a >-1,即a <-2时,原不等式等价于-1≤x ≤2a ; 当2a =-1,即a =-2时,原不等式等价于x =-1; 当2a <-1,即a >-2,原不等式等价于2a ≤x ≤-1. 综上所述,当a <-2时,原不等式的解集为⎣⎡⎦⎤-1,2a ; 当a =-2时,原不等式的解集为{-1}; 当-2<a <0时,原不等式的解集为⎣⎡⎦⎤2a ,-1; 当a =0时,原不等式的解集为(-∞,-1];当a >0时,原不等式的解集为(-∞,-1]∪⎣⎡⎭⎫2a ,+∞.练习题1. 不等式x 2<1的解集为________.答案 {x |-1<x <1}解析 x 2<1,则-1<x <1,∴不等式的解集为{x |-1<x <1}. 2. 函数y =x 2+x -12的定义域是____________.答案 (-∞,-4]∪[3,+∞)解析 由x 2+x -12≥0得(x -3)(x +4)≥0,∴x ≤-4或x ≥3. 3. 已知不等式x 2-2x +k 2-1>0对一切实数x 恒成立,则实数k 的取值范围为__________.答案 (-∞,-2)∪(2,+∞)解析 由题意,知Δ=4-4×1×(k 2-1)<0,即k 2>2,∴k >2或k <- 2. 4. (2012·重庆)不等式x -12x +1≤0的解集为( )A.⎝⎛⎦⎤-12,1B.⎣⎡⎦⎤-12,1C.⎝⎛⎭⎫-∞,-12∪[1,+∞)D.⎝⎛⎦⎤-∞,-12∪[1,+∞) 解析 x -12x +1≤0等价于不等式组⎩⎪⎨⎪⎧ x -1≤0,2x +1>0,①或⎩⎪⎨⎪⎧x -1≥0,2x +1<0.②解①得-12<x ≤1,解②得x ∈∅,∴原不等式的解集为⎝⎛⎦⎤-12,1. 5.若不等式ax 2+bx -2<0的解集为{x |-2<x <14},则ab 等于( )A .-28B .-26C .28D .26答案 C 解析 由已知得⎩⎨⎧-2+14=-ba-2×14=-2a,∴a =4,b =7,∴ab =28.5. 不等式x -3x +2<0的解集为解析 不等式x -3x +2<0可转化为(x +2)(x -3)<0,解得-2<x <3.6. 已知不等式ax 2-bx -1≥0的解集是⎣⎡⎦⎤-12,-13,则不等式x 2-bx -a <0的解集是 解析 由题意知-12,-13是方程ax 2-bx -1=0的根,所以由根与系数的关系得-12+⎝⎛⎭⎫-13=b a ,-12×⎝⎛⎭⎫-13=-1a.解得a =-6,b =5,不等式x 2-bx -a <0即为x 2-5x +6<0,解集为(2,3).7. 若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的值的集合是解析 由题意知a =0时,满足条件.a ≠0时,由⎩⎪⎨⎪⎧a >0Δ=a 2-4a ≤0得0<a ≤4,所以0≤a ≤4. 8. 已知关于x 的不等式ax -1x +1<0的解集是(-∞,-1)∪⎝⎛⎭⎫-12,+∞,则a =________. 答案 -2解析 由于不等式ax -1x +1<0的解集是(-∞,-1)∪⎝⎛⎭⎫-12,+∞,故-12应是ax -1=0的根,∴a =-2.9. (江西)不等式x 2-9x -2>0的解集是________.答案 {x |-3<x <2或x >3}解析 利用“穿根法”求解.不等式可化为(x -3)(x +3)x -2>0,即(x -3)(x +3)(x -2)>0,利用数轴穿根法可知,不等式的解集为{x |-3<x <2或x >3}. 10. 若关于x 的不等式ax 2-6x +a 2<0的解集是(1,m ),则m =________.答案 2解析 根据不等式与方程之间的关系知1为方程ax 2-6x +a 2=0的一个根,即a 2+a -6=0,解得a =2或a =-3,当a =2时,不等式ax 2-6x +a 2<0的解集是(1,2),符合要求;当a =-3时,不等式ax 2-6x +a 2<0的解集是(-∞,-3)∪(1,+∞),不符合要求,舍去.故m =2.11. 求不等式12x 2-ax >a 2 (a ∈R )的解集.解 原不等式可化为(3x -a )(4x +a )>0. 当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x <-a 4或x >a 3;当a =0时,不等式的解集为{x |x ∈R 且x ≠0}; 当a <0时,不等式的解集为{x |x <a 3或x >-a4}.。
一元二次不等式1.一元一次不等式解法任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax >b (a ≠0)的形式. 当a >0时,解集为 ;当a <0时,解集为 . 2.一元二次不等式及其解法(1)我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为__________不等式.(2)使某个一元二次不等式成立的x 的值叫做这个一元二次不等式的解,一元二次不等式所有的解组成的集合叫做一元二次不等式的________.(3)一元二次不等式的解:函数与不等式 Δ>0Δ=0Δ<0二次函数 y =ax 2+bx +c (a >0)的图象一元二次方程 ax 2+bx +c =0 (a >0)的根 有两相异实根 x 1,x 2(x 1<x 2)有两相等实根 x 1=x 2=-b2a无实根ax 2+bx +c >0 (a >0)的解集 ① ② Rax 2+bx +c <0 (a >0)的解集{x |x 1<x <x 2}∅③3.分式不等式解法(1)化分式不等式为标准型.方法:移项,通分,右边化为0,左边化为f (x )g (x )的形式.(2)将分式不等式转化为整式不等式求解,如:f (x )g (x )>0 ⇔ f (x )g (x )>0; f (x )g (x )<0 ⇔ f (x )g (x )<0; f (x )g (x )≥0 ⇔ ⎩⎪⎨⎪⎧f (x )g (x )≥0,g (x )≠0; f (x )g (x )≤0 ⇔ ⎩⎪⎨⎪⎧f (x )g (x )≤0,g (x )≠0.已知集合A ={x |x 2-2x -3≥0},B ={x |-2≤x <2},则A ∩B =( ) A.[-2,-1]B.[-1,2)C.[-1,1]D.[1,2)解:∵A ={x |x ≥3或x ≤-1},B ={x |-2≤x <2},∴A ∩B ={x |-2≤x ≤-1}=[-2,-1].故选A . 设f (x )=x 2+bx +1且f (-1)=f (3),则f (x )>0的解集为( )A.{x |x ∈R }B.{x |x ≠1,x ∈R }C.{x |x ≥1}D.{x |x ≤1}解:f (-1)=1-b +1=2-b ,f (3)=9+3b +1=10+3b ,由f (-1)=f (3),得2-b =10+3b , 解出b =-2,代入原函数,f (x )>0即x 2-2x +1>0,x 的取值范围是x ≠1.故选B.已知-12<1x <2,则x 的取值范围是( )A.-2<x <0或0<x <12B.-12<x <2C.x <-12或x >2D.x <-2或x >12解:当x >0时,x >12;当x <0时,x <-2.所以x 的取值范围是x <-2或x >12,故选D.不等式1-2xx +1>0的解集是 .解:不等式1-2x x +1>0等价于(1-2x )(x +1)>0,也就是⎝⎛⎭⎫x -12(x +1)<0,所以-1<x <12. 故填⎩⎨⎧⎭⎬⎫x |-1<x <12,x ∈R .若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为________.解:显然k ≠0.若k >0,则只须(2x 2+x )max <38k ,解得k ∈∅;若k <0,则只须38k <(2x 2+x )min ,解得k ∈(-3,0).故k 的取值范围是(-3,0).故填(-3,0).类型一 一元一次不等式的解法已知关于x 的不等式(a +b )x +2a -3b <0的解集为⎝⎛⎭⎫-∞,-13,求关于x 的不等式(a -3b )x +b -2a >0的解集.解:由(a +b )x <3b -2a 的解集为⎝⎛⎭⎫-∞,-13,得a +b >0,且3b -2a a +b =-13, 从而a =2b ,则a +b =3b >0,即b >0,将a =2b 代入(a -3b )x +b -2a >0, 得-bx -3b >0,x <-3,故所求解集为(-∞,-3).点拨:一般地,一元一次不等式都可以化为ax >b (a ≠0)的形式.挖掘隐含条件a +b >0且3b -2a a +b =-13是解本题的关键.解关于x 的不等式:(m 2-4)x <m +2.解:(1)当m 2-4=0即m =-2或m =2时,①当m =-2时,原不等式的解集为∅,不符合 ②当m =2时,原不等式的解集为R ,符合(2)当m 2-4>0即m <-2或m >2时,x <1m -2.(3)当m 2-4<0即-2<m <2时,x >1m -2.类型二 一元二次不等式的解法解下列不等式:(1)x 2-7x +12>0; (2)-x 2-2x +3≥0;(3)x 2-2x +1<0; (4)x 2-2x +2>0.解:(1){x |x <3或x >4}.(2){x |-3≤x ≤1}.(3)∅.(4)因为Δ<0,可得原不等式的解集为R .已知函数f (x )=⎩⎪⎨⎪⎧-x +1,x <0,x -1,x ≥0, 则不等式x +(x +1)f (x +1)≤1的解集是( )A.{x |-1≤x ≤2-1}B.{x |x ≤1}C.{x |x ≤2-1}D.{x |-2-1≤x ≤2-1} 解:由题意得不等式x +(x +1)f (x +1)≤1等价于①⎩⎪⎨⎪⎧x +1<0,x +(x +1)[-(x +1)+1]≤1 或②⎩⎪⎨⎪⎧x +1≥0,x +(x +1)[(x +1)-1]≤1,解不等式组①得x <-1;解不等式组②得-1≤x ≤2-1.故原不等式的解集是{x |x ≤2-1}.故选C.类型三 二次不等式、二次函数及二次方程的关系已知关于x 的不等式x 2-bx +c ≤0的解集是{x |-5≤x ≤1},求实数b ,c 的值.解:∵不等式x 2-bx +c ≤0的解集是{x |-5≤x ≤1},∴x 1=-5,x 2=1是x 2-bx +c =0的两个实数根,∴由韦达定理知⎩⎪⎨⎪⎧-5+1=b ,-5×1=c ,∴⎩⎪⎨⎪⎧b =-4,c =-5. 已知不等式ax 2+bx +c >0的解集为{x |2<x <3},求不等式cx 2-bx +a >0的解集.解:∵不等式ax 2+bx +c >0的解集为{x |2<x <3},∴a <0,且2和3是方程ax 2+bx +c =0的两根,由根与系数的关系得⎩⎪⎨⎪⎧-ba =2+3,c a =2×3,a <0.即⎩⎪⎨⎪⎧b =-5a ,c =6a ,a <0.代入不等式cx 2-bx +a >0,得6ax 2+5ax +a >0(a <0).即6x 2+5x +1<0,∴所求不等式的解集为⎩⎨⎧⎭⎬⎫x |-12<x <-13.类型四 含有参数的一元二次不等式解关于x 的不等式:mx 2-(m +1)x +1<0.解:(1)m =0时,不等式为-(x -1)<0,得x -1>0,不等式的解集为{x |x >1}; (2)当m ≠0时,不等式为m ⎝⎛⎭⎫x -1m (x -1)<0.①当m <0,不等式为⎝⎛⎭⎫x -1m (x -1)>0, ∵1m <1,∴不等式的解集为⎩⎨⎧⎭⎬⎫x |x <1m 或x >1. ②当m >0,不等式为⎝⎛⎭⎫x -1m (x -1)<0. (Ⅰ)若1m <1即m >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x |1m <x <1;(Ⅱ)若1m >1即0<m <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x |1<x <1m ;(Ⅲ)若1m=1即m =1时,不等式的解集为∅.点拨:当x 2的系数是参数时,首先对它是否为零进行讨论,确定其是一次不等式还是二次不等式,即对m ≠0与m =0进行讨论,这是第一层次;第二层次:x 2的系数正负(不等号方向)的不确定性,对m <0与m >0进行讨论;第三层次:1m与1大小的不确定性,对m <1、m >1与m =1进行讨论.解关于x 的不等式ax 2-2≥2x -ax (a ∈R ).解:不等式整理为ax 2+(a -2)x -2≥0,当a =0时,解集为(-∞,-1].当a ≠0时,ax 2+(a -2)x -2=0的两根为-1,2a ,所以当a >0时,解集为(-∞,-1]∪⎣⎡⎭⎫2a ,+∞; 当-2<a <0时,解集为⎣⎡⎦⎤2a ,-1;当a =-2时,解集为{x |x =-1};当a <-2时,解集为⎣⎡⎦⎤-1,2a . 类型五 分式不等式的解法(1)解不等式x -12x +1≤1.解:x -12x +1≤1 ⇔ x -12x +1-1≤0 ⇔ -x -22x +1≤0 ⇔ x +22x +1≥0.x +22x +1≥0 ⇔ ⎩⎪⎨⎪⎧(x +2)(2x +1)≥0,2x +1≠0.得{xx >-12或x ≤-2}.※(2)不等式x -2x 2+3x +2>0的解集是 .解:x -2x 2+3x +2>0⇔x -2(x +2)(x +1)>0⇔(x -2)(x +2)(x +1)>0,数轴标根得{x |-2<x <-1或x >2},故填{x|-2<x <-1或x >2}.点拨:分式不等式可以先转化为简单的高次不等式,再利用数轴标根法写出不等式的解集,如果该不等式有等号,则要注意分式的分母不能为零.※用“数轴标根法”解不等式的步骤:(1)移项:使得右端为0(注意:一定要保证x 的最高次幂的项的系数为正数).(2)求根:就是求出不等式所对应的方程的所有根..(3)标根:在数轴上按从左到右(由小到大)依次标出各根(不需标出准确位置,只需标出相对位置即可).(4)画穿根线:从数轴“最右根”的右上方向左下方画线,穿过此根,再往左上方穿过“次右根”,一上一下依次穿过各根,“奇穿偶不穿”来记忆.(5)写出不等式的解集:若不等号为“>”,则取数轴上方穿根线以内的范围;若不等号为“<”,则取数轴下方穿根线以内的范围;若不等式中含有“=”号,写解集时要考虑分母不能为零.(1)若集合A ={x |-1≤2x +1≤3},B =⎩⎨⎧⎭⎬⎫x |x -2x ≤0,则A ∩B =( )A.{x |-1≤x <0}B.{x |0<x ≤1}C.{x |0≤x ≤2}D.{x |0≤x ≤1}解:易知A ={x |-1≤x ≤1},B 集合就是不等式组⎩⎪⎨⎪⎧x (x -2)≤0,x ≠0 的解集,求出B ={}x |0<x ≤2,所以A ∩B={x |0<x ≤1}.故选B.(2)不等式x -12x +1≤0的解集为( )A.⎝⎛⎦⎤-12,1B.⎣⎡⎦⎤-12,1C.⎝⎛⎭⎫-∞,-12∪[1,+∞)D.⎝⎛⎦⎤-∞,-12∪[1,+∞) 解:x -12x +1≤0⇔⎩⎪⎨⎪⎧(x -1)(2x +1)≤0,2x +1≠0得-12<x ≤1.故选A.类型六 和一元二次不等式有关的恒成立问题(1)若不等式x 2+ax +1≥0对于一切x ∈⎝⎛⎦⎤0,12成立,则a 的最小值为( ) A.0 B.-2 C.-52D.-3解:不等式可化为ax ≥-x 2-1,由于x ∈⎝⎛⎦⎤0,12,∴a ≥-⎝⎛⎭⎫x +1x .∵f (x )=x +1x 在⎝⎛⎦⎤0,12上是减函数, ∴⎝⎛⎭⎫-x -1x max=-52.∴a ≥-52.(2)已知对于任意的a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值总大于0,则x 的取值范围是( ) A.1<x <3B.x <1或x >3C.1<x <2D.x <1或x >2解:记g (a )=(x -2)a +x 2-4x +4,a ∈[-1,1],只须⎩⎪⎨⎪⎧g (1)>0,g (-1)>0⇒⎩⎪⎨⎪⎧x 2-3x +2>0,x 2-5x +6>0⇒x <1或x >3,故选B.点拨:对于参数变化的情形,大多利用参变量转换法,即参数转换为变量;变量转换为参数,把关于x 的二次不等式转换为关于a 的一次不等式,化繁为简,然后再利用一次函数的单调性,求出x 的取值范围.对于满足|a |≤2的所有实数a ,求使不等式x 2+ax +1>2x +a 成立的x 的取值范围.解:原不等式转化为(x -1)a +x 2-2x +1>0,设f (a )=(x -1)a +x 2-2x +1,则f (a )在[-2,2]上恒大于0,故有:⎩⎪⎨⎪⎧f (-2)>0,f (2)>0 即⎩⎪⎨⎪⎧x 2-4x +3>0,x 2-1>0 解得⎩⎪⎨⎪⎧x >3或x <1,x >1或x <-1.∴x <-1或x >3. 类型七 二次方程根的讨论若方程2ax 2-x -1=0在(0,1)内有且仅有一解,则a 的取值范围是( ) A.a <-1B.a >1C.-1<a <1D.0≤a <1解法一:令f(x)=2ax2-x-1,则f(0)·f(1)<0,即-1×(2a-2)<0,解得a>1.解法二:当a=0时,x=-1,不合题意,故排除C,D;当a=-2时,方程可化为4x2+x+1=0,而Δ=1-16<0,无实根,故a=-2不适合,排除A.故选B.。
1.“三个二次”的关系判别式Δ=b2-4ac Δ>0Δ=0Δ<0二次函数y=ax2+bx+c (a>0)的图象一元二次方程ax2+bx+c=0(a>0)的根有两个相异实根x1,x2(x1<x2)有两个相等实根x1=x2=-b2a没有实数根ax2+bx+c>0 (a>0)的解集(-∞,x1)∪(x2,+∞)(-∞,-b2a)∪(-b2a,+∞)Rax2+bx+c<0(a>0)的解集(x1,x2) ∅∅不等式解集a<b a=b a>b(x-a)·(x-b)>0{x|x<a或x>b}{x|x≠a}{x|x<b或x>a}(x-a) (x-b)<0{x|a<x<b}∅{x|b<x<a}【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.( √ ) (2)不等式x -2x +1≤0的解集是[-1,2].( × )(3)若不等式ax 2+bx +c >0的解集是(-∞,x 1)∪(x 2,+∞),则方程ax 2+bx +c =0的两个根是x 1和x 2.( √ )(4)若方程ax 2+bx +c =0(a ≠0)没有实数根,则不等式ax 2+bx +c >0的解集为R .( × ) (5)不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.( × )1.(教材改编)不等式x 2-3x -10>0的解集是________. 答案 (-∞,-2)∪(5,+∞)解析 解方程x 2-3x -10=0得x 1=-2,x 2=5,由y =x 2-3x -10的开口向上,所以x 2-3x -10>0的解集为(-∞,-2)∪(5,+∞). 2.设集合M ={x |x 2-3x -4<0},N ={x |0≤x ≤5},则M ∩N =________. 答案 [0,4)解析 ∵M ={x |x 2-3x -4<0}={x |-1<x <4}, ∴M ∩N =[0,4).3.已知不等式ax 2-bx -1≥0的解集是⎣⎡⎦⎤-12,-13,则不等式x 2-bx -a <0的解集是________________. 答案 (2,3)解析 由题意知-12,-13是方程ax 2-bx -1=0的根,所以由根与系数的关系得-12+⎝⎛⎭⎫-13=b a ,-12×⎝⎛⎭⎫-13=-1a .解得a =-6,b =5,不等式x 2-bx -a <0即为x 2-5x +6<0,解集为(2,3).4.(教材改编)若关于x 的不等式m (x -1)>x 2-x 的解集为{x |1<x <2},则实数m 的值为________. 答案 2解析 因为m (x -1)>x 2-x 的解集为{x |1<x <2}. 所以1,2一定是m (x -1)=x 2-x 的解,∴m =2.5.(教材改编)若关于x 的方程x 2+ax +a 2-1=0有一正根和一负根,则a 的取值范围为________. 答案 (-1,1)解析 由题意可知,Δ>0且x 1x 2=a 2-1<0,故-1<a <1.题型一 一元二次不等式的求解命题点1 不含参的不等式例1 求不等式-2x 2+x +3<0的解集. 解 化-2x 2+x +3<0为2x 2-x -3>0, 解方程2x 2-x -3=0得x 1=-1,x 2=32,∴不等式2x 2-x -3>0的解集为(-∞,-1)∪(32,+∞),即原不等式的解集为(-∞,-1)∪(32,+∞).命题点2 含参不等式例2 解关于x 的不等式:x 2-(a +1)x +a <0. 解 由x 2-(a +1)x +a =0得(x -a )(x -1)=0, ∴x 1=a ,x 2=1,①当a >1时,x 2-(a +1)x +a <0的解集为{x |1<x <a }, ②当a =1时,x 2-(a +1)x +a <0的解集为∅, ③当a <1时,x 2-(a +1)x +a <0的解集为{x |a <x <1}. 引申探究将原不等式改为ax 2-(a +1)x +1<0,求不等式的解集. 解 若a =0,原不等式等价于-x +1<0,解得x >1. 若a <0,原不等式等价于(x -1a )(x -1)>0,解得x <1a 或x >1.若a >0,原不等式等价于(x -1a )(x -1)<0.①当a =1时,1a =1,(x -1a )(x -1)<0无解;②当a >1时,1a <1,解(x -1a )(x -1)<0得1a<x <1;③当0<a <1时,1a >1,解(x -1a )(x -1)<0得1<x <1a .综上所述:当a <0时,解集为{x |x <1a或x >1};当a =0时,解集为{x |x >1};当0<a <1时,解集为{x |1<x <1a };当a =1时,解集为∅;当a >1时,解集为{x |1a<x <1}.思维升华 含有参数的不等式的求解,往往需要对参数进行分类讨论.(1)若二次项系数为常数,首先确定二次项系数是否为正数,再考虑分解因式,对参数进行分类讨论,若不易分解因式,则可依据判别式符号进行分类讨论;(2)若二次项系数为参数,则应先考虑二次项系数是否为零,确定不等式是不是二次不等式,然后再讨论二次项系数不为零的情形,以便确定解集的形式; (3)对方程的根进行讨论,比较大小,以便写出解集.求不等式12x 2-ax >a 2(a ∈R )的解集.解 ∵12x 2-ax >a 2,∴12x 2-ax -a 2>0, 即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0, 得:x 1=-a 4,x 2=a3.①a >0时,-a 4<a 3,解集为⎩⎨⎧⎭⎬⎫x |x <-a 4或x >a 3;②a =0时,x 2>0,解集为{x |x ∈R 且x ≠0}; ③a <0时,-a 4>a 3,解集为⎩⎨⎧⎭⎬⎫x |x <a 3或x >-a 4.综上所述,当a >0时,不等式的解集为 ⎩⎨⎧⎭⎬⎫x |x <-a 4或x >a 3;当a =0时,不等式的解集为{x |x ∈R 且x ≠0}; 当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x <a 3或x >-a 4.题型二 一元二次不等式恒成立问题命题点1 在R 上恒成立例3 (1)若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为________.(2)设a 为常数,∀x ∈R ,ax 2+ax +1>0,则a 的取值范围是________. 答案 (1)(-3,0) (2)[0,4)解析 (1)2kx 2+kx -38<0对一切实数x 都成立,则必有⎩⎪⎨⎪⎧2k <0,Δ=k 2-4×2k ×(-38)<0,解之得-3<k <0. (2)∀x ∈R ,ax 2+ax +1>0,则必有⎩⎪⎨⎪⎧a >0,Δ=a 2-4a <0或a =0,∴0≤a <4.命题点2 在给定区间上恒成立例4 设函数f (x )=mx 2-mx -1.若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围. 解 要使f (x )<-m +5在x ∈[1,3]上恒成立,即 m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立. 有以下两种方法:方法一 令g (x )=m ⎝⎛⎭⎫x -122+34m -6,x ∈[1,3]. 当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)⇒7m -6<0, 所以m <67,所以0<m <67;当m =0时,-6<0恒成立; 当m <0时,g (x )在[1,3]上是减函数,所以g (x )max =g (1)⇒m -6<0,所以m <6,所以m <0. 综上所述:m 的取值范围是{m |m <67}.方法二 因为x 2-x +1=⎝⎛⎭⎫x -122+34>0, 又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝⎛⎭⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可.所以,m 的取值范围是⎩⎨⎧⎭⎬⎫m |m <67.命题点3 给定参数范围的恒成立问题例5 对任意的k ∈[-1,1],函数f (x )=x 2+(k -4)x +4-2k 的值恒大于零,则x 的取值范围是________________________________________________________________________. 答案 {x |x <1或x >3}解析 x 2+(k -4)x +4-2k >0恒成立, 即g (k )=(x -2)k +(x 2-4x +4)>0, 在k ∈[-1,1]时恒成立.只需g (-1)>0且g (1)>0,即⎩⎪⎨⎪⎧x 2-5x +6>0,x 2-3x +2>0,解之得x <1或x >3.思维升华 (1)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.(2)解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.(1)若不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为__________.(2)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________. 答案 (1)[-1,4] (2)(-22,0) 解析 (1)x 2-2x +5=(x -1)2+4的最小值为4, 所以x 2-2x +5≥a 2-3a 对任意实数x 恒成立, 只需a 2-3a ≤4,解得-1≤a ≤4.(2)作出二次函数f (x )的草图,对于任意x ∈[m ,m +1],都有f (x )<0,则有⎩⎪⎨⎪⎧f (m )<0,f (m +1)<0,即⎩⎪⎨⎪⎧m 2+m 2-1<0,(m +1)2+m (m +1)-1<0,解得-22<m <0.题型三 一元二次不等式的应用例6 某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域; (2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围. 解 (1)由题意得,y =100⎝⎛⎭⎫1-x 10·100⎝⎛⎭⎫1+850x . 因为售价不能低于成本价,所以100⎝⎛⎭⎫1-x10-80≥0. 所以y =f (x )=40(10-x )(25+4x ),定义域为x ∈[0,2]. (2)由题意得40(10-x )(25+4x )≥10 260, 化简得8x 2-30x +13≤0.解得12≤x ≤134.所以x 的取值范围是⎣⎡⎦⎤12,2.思维升华 求解不等式应用题的四个步骤(1)阅读理解,认真审题,把握问题中的关键量,找准不等关系.(2)引进数学符号,将文字信息转化为符号语言,用不等式表示不等关系,建立相应的数学模型.(3)解不等式,得出数学结论,要注意数学模型中自变量的实际意义. (4)回归实际问题,将数学结论还原为实际问题的结果.某汽车厂上年度生产汽车的投入成本为10万元/辆,出厂价为12万元/辆,年销售量为10 000辆.本年度为适应市场需求,计划提高产品质量,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应地提高比例为0.75x ,同时预计年销售量增加的比例为0.6x ,已知年利润=(出厂价-投入成本)×年销售量. (1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年度有所增加,则投入成本增加的比例x 应在什么范围内? 解 (1)y =[(1+0.75x )×12-(1+x )×10]×(1+0.6x )×10 000 =-6 000x 2+2 000x +20 000,即y =-6 000x 2+2 000x +20 000(0<x <1). (2)上年利润为(12-10)×10 000=20 000. ∴y -20 000>0,即-6 000x 2+2 000x >0, ∴0<x <13,即x 的范围为(0,13).14.转化与化归思想在不等式中的应用典例 (1)已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为________.(2)已知函数f (x )=x 2+2x +ax ,若对任意x ∈[1,+∞),f (x )>0恒成立,则实数a 的取值范围是________.思维点拨 (1)考虑“三个二次”间的关系; (2)将恒成立问题转化为最值问题求解. 解析 (1)由题意知f (x )=x 2+ax +b =⎝⎛⎭⎫x +a 22+b -a 24. ∵f (x )的值域为[0,+∞), ∴b -a 24=0,即b =a 24.∴f (x )=⎝⎛⎭⎫x +a 22. 又∵f (x )<c ,∴⎝⎛⎭⎫x +a22<c , 即-a 2-c <x <-a2+c .∴⎩⎨⎧-a2-c =m , ①-a2+c =m +6. ②②-①,得2c =6,∴c =9.(2)∵x ∈[1,+∞)时,f (x )=x 2+2x +ax >0恒成立,即x 2+2x +a >0恒成立.即当x ≥1时,a >-(x 2+2x )=g (x )恒成立.而g (x )=-(x 2+2x )=-(x +1)2+1在[1,+∞)上单调递减, ∴g (x )max =g (1)=-3,故a >-3. ∴实数a 的取值范围是{a |a >-3}. 答案 (1)9 (2){a |a >-3}温馨提醒 (1)本题的解法充分体现了转化与化归思想:函数的值域和不等式的解集转化为a ,b 满足的条件;不等式恒成立可以分离常数,转化为函数值域问题. (2)注意函数f (x )的值域为[0,+∞)与f (x )≥0的区别.[方法与技巧]1.“三个二次”的关系是解一元二次不等式的理论基础,一般可把a <0时的情形转化为a >0时的情形.2.f (x )>0的解集即为函数y =f (x )的图象在x 轴上方的点的横坐标的集合,充分利用数形结合思想.3.简单的分式不等式可以等价转化,利用一元二次不等式解法进行求解. [失误与防范]1.对于不等式ax 2+bx +c >0,求解时不要忘记讨论a =0时的情形. 2.当Δ<0时,ax 2+bx +c >0 (a ≠0)的解集为R 还是∅,要注意区别. 3.含参数的不等式要注意选好分类标准,避免盲目讨论.A 组 专项基础训练(时间:30分钟)1.不等式(x -1)(2-x )≥0的解集为____________. 答案 {x |1≤x ≤2}解析 由(x -1)(2-x )≥0可知(x -2)(x -1)≤0, 所以不等式的解集为{x |1≤x ≤2}.2.已知函数f (x )=⎩⎪⎨⎪⎧x +2, x ≤0,-x +2, x >0,则不等式f (x )≥x 2的解集为________.答案 [-1,1]解析 方法一 当x ≤0时,x +2≥x 2, ∴-1≤x ≤0;①当x >0时,-x +2≥x 2,∴0<x ≤1.② 由①②得原不等式的解集为{x |-1≤x ≤1}.方法二 作出函数y =f (x )和函数y =x 2的图象,如图,由图知f (x )≥x 2的解集为[-1,1].3.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的取值范围是____________. 答案 [0,4]解析 由题意知a =0时,满足条件.a ≠0时,由⎩⎪⎨⎪⎧a >0,Δ=a 2-4a ≤0,得0<a ≤4,所以0≤a ≤4.4.已知不等式x 2-2x -3<0的解集是A ,不等式x 2+x -6<0的解集是B ,不等式x 2+ax +b <0的解集是A ∩B ,那么a +b =________. 答案 -3解析 由题意,A ={x |-1<x <3},B ={x |-3<x <2},A ∩B ={x |-1<x <2}, 则不等式x 2+ax +b <0的解集为{x |-1<x <2}. 由根与系数的关系可知,a =-1,b =-2, 所以a +b =-3.5.设a >0,不等式-c <ax +b <c 的解集是{x |-2<x <1},则a ∶b ∶c =________.答案 2∶1∶3解析 ∵-c <ax +b <c ,又a >0,∴-b +c a <x <c -b a. ∵不等式的解集为{x |-2<x <1},∴⎩⎪⎨⎪⎧ -b +c a =-2,c -b a =1,∴⎩⎨⎧ b =a 2,c =32a ,∴a ∶b ∶c =a ∶a 2∶3a 2=2∶1∶3. 6.若不等式-2≤x 2-2ax +a ≤-1有唯一解,则a 的值为__________.答案 1±52解析 若不等式-2≤x 2-2ax +a ≤-1有唯一解,则x 2-2ax +a =-1有两个相等的实根,所以Δ=4a 2-4(a +1)=0,解得a =1±52. 7.若0<a <1,则不等式(a -x )(x -1a)>0的解集是________________. 答案 {x |a <x <1a} 解析 原不等式即(x -a )(x -1a)<0, 由0<a <1得a <1a ,∴a <x <1a. 8.已知关于x 的不等式ax -1x +1<0的解集是⎩⎨⎧⎭⎬⎫x |x <-1或x >-12,则实数a =____________. 答案 -2解析 ax -1x +1<0⇔(x +1)(ax -1)<0, 依题意,得a <0,且1a =-12.∴a =-2. 9.设f (x )是定义在R 上的以3为周期的奇函数,若f (1)>1,f (2)=2a -3a +1,则实数a 的取值范围是________.答案 (-1,23) 解析 ∵f (x +3)=f (x ),∴f (2)=f (-1+3)=f (-1)=-f (1)<-1.∴2a -3a +1<-1⇔3a -2a +1<0⇔(3a -2)(a +1)<0, ∴-1<a <23. 10.设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ).(1)若m =-1,n =2,求不等式F (x )>0的解集;(2)若a >0,且0<x <m <n <1a,比较f (x )与m 的大小. 解 (1)由题意知,F (x )=f (x )-x =a (x -m )(x -n ).当m =-1,n =2时,不等式F (x )>0,即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1或x >2};当a <0时,不等式F (x )>0的解集为{x |-1<x <2}.(2)f (x )-m =F (x )+x -m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1),∵a >0,且0<x <m <n <1a, ∴x -m <0,1-an +ax >0.∴f (x )-m <0,即f (x )<m .B 组 专项能力提升(时间:20分钟)11.已知函数f (x )=(ax -1)(x +b ),如果不等式f (x )>0的解集是(-1,3),则不等式f (-2x )<0的解集是__________________________.答案 (-∞,-32)∪(12,+∞) 解析 f (x )=0的两个解是x 1=-1,x 2=3且a <0,由f (-2x )<0得-2x >3或-2x <-1,∴x <-32或x >12.12.若关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =________.答案 52解析 由x 2-2ax -8a 2<0,得(x +2a )(x -4a )<0,因a >0,所以不等式的解集为(-2a,4a ),即x 2=4a ,x 1=-2a ,由x 2-x 1=15,得4a -(-2a )=15,解得a =52. 13.已知函数f (x )=-x 2+ax +b 2-b +1(a ∈R ,b ∈R ),对任意实数x 都有f (1-x )=f (1+x )成立,当x ∈[-1,1]时,f (x )>0恒成立,则b 的取值范围是________.答案 b <-1或b >2解析 由f (1-x )=f (1+x )知f (x )图象的对称轴为直线x =1,则有a 2=1,故a =2. 由f (x )的图象可知f (x )在[-1,1]上为增函数.∴x ∈[-1,1]时,f (x )min =f (-1)=-1-2+b 2-b +1=b 2-b -2,令b 2-b -2>0,解得b <-1或b >2.14.设函数f (x )=x 2-1,对任意x ∈[32,+∞),f (x m)-4m 2·f (x )≤f (x -1)+4f (m )恒成立,则实数m 的取值范围是________________.答案 {m |m ≤-32或m ≥32} 解析 依据题意得x 2m 2-1-4m 2(x 2-1)≤(x -1)2-1+4(m 2-1)在x ∈[32,+∞)上恒成立, 即1m 2-4m 2≤-3x 2-2x +1在x ∈[32,+∞)上恒成立. 当x =32时,函数y =-3x 2-2x +1取得最小值-53, 所以1m 2-4m 2≤-53,即(3m 2+1)(4m 2-3)≥0, 解得m ≤-32或m ≥32. 15.求使不等式x 2+(a -6)x +9-3a >0,|a |≤1恒成立的x 的取值范围.解 将原不等式整理为形式上是关于a 的不等式(x -3)a +x 2-6x +9>0.令f (a )=(x -3)a +x 2-6x +9.因为f (a )>0在|a |≤1时恒成立,所以(1)若x =3,则f (a )=0,不符合题意,应舍去.(2)若x ≠3,则由一次函数的单调性,可得⎩⎪⎨⎪⎧ f (-1)>0,f (1)>0,即⎩⎪⎨⎪⎧x 2-7x +12>0,x 2-5x +6>0, 解得x <2或x >4.所以x 的取值范围是{x |x <2或x >4}.。
一分配问题1.把假设干颗花生分给假设干只猴子。
如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但缺乏5颗。
问猴子有多少只,花生有多少颗?2.把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。
问这些书有多少本?学生有多少人?3.某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。
4.一群女生住假设干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。
⑴如果有x间宿舍,那么可以列出关于x的不等式组:⑵可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗?二速度、时间问题1 爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的平安地区,导火索至少需要多长?2.王凯家到学校2.1千米,现在需要在18分钟内走完这段路。
王凯步行速度为90米/ 分,跑步速度为210米/分,问王凯至少需要跑几分钟?3.抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到?三工程问题1.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原方案至少提前两天完成,那么以后平均每天至少要比原方案多完成多少方土?2.用每分钟抽1.1吨水的A型抽水机来抽池水,半小时可以抽完;如果改用B型抽水机,估计20分钟到22分可以抽完。
B型抽水机比A型抽水机每分钟约多抽多少吨水?3.某工人方案在15天里加工408个零件,最初三天中每天加工24个,问以后每天至少要加工多少个零件,才能在规定的时间内超额完成任务?四价格问题1.商场购进某种商品m件,每件按进价加价30元售出全部商品的65%,然后再降价10%,这样每件仍可获利18元,又售出全部商品的25%。
高三数学一元二次不等式试题答案及解析1.已知,则“”是“成立”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B【解析】解得其解集,解得,因为,所以,”是“成立”的必要不充分条件,选.【考点】充要条件,一元二次不等式的解法.2.已知同时满足下列条件:①;②.则实数的取值范围 .【答案】【解析】①说明给定一个的值,中至少一个的值小于0.对,当时;当时.所以当时必有,从而.由得.由得.当时,的解为或,此时应有.当时,的解为或,此时应有,所以.时,此时,不满足②.当时,都满足②.故实数的取值范围是.【考点】函数与不等式.3. [2014·大连模拟]若关于x的不等式ax-b>0的解集为(-∞,1),则关于x的不等式(ax+b)(x-2)>0的解集为________.【答案】(-1,2)【解析】由题意可得a=b<0,故(ax+b)(x-2)>0等价于(x+1)(x-2)<0,解得-1<x<2,故所求不等式的解集为(-1,2).4.关于的不等式的解集为,则实数的取值范围是________.【答案】【解析】由题意,当时,原不等式变为,其解集为,不满足题意.当时,令,其对称轴,要使对恒成立,需,解得;当时,令,其对称轴,要使对恒成立,需解得,综上,.【考点】1.一元二次含参不等式的求解;2.分类讨论思想的应用.5.不等式3x2-x-4≤0的解集是__________.【答案】【解析】由3x2-x-4≤0,得(3x-4)(x+1)≤0,解得-1≤x≤.6.已知不等式x2-2x+k2-3>0对一切实数x恒成立,则实数k的取值范围是________.【答案】k>2或k<-2【解析】由Δ=4-4(k2-3)<0,知k>2或k<-2.7.已知不等式(2+x)(3-x)≥0的解集为A,函数f(x)=(k<0)的定义域为B.(1)求集合A;(2)若集合B中仅有一个元素,试求实数k的值;(3)若B A,试求实数k的取值范围.【答案】(1)A=[-2,3](2)k=-4(3)-4≤k≤-【解析】(1)由(2+x)(3-x)≥0,得(2+x)(x-3)≤0,解得-2≤x≤3,故A=[-2,3].(2)记g(x)=kx2+4x+k+3,则g(x)≥0在R上有且仅有一解,而k<0,所以Δ=0.由k<0与16-4k(k+3)=0,解得k=-4.(3)记g(x)=kx2+4x+k+3,首先g(x)≥0在R上有解,而k<0,所以Δ=16-4k(k+3)≥0,解之得-4≤k<0.①设g(x)=0的两个根为x1,x2(x1<x2),则B=[x1,x2].由BA,得即②由①与②,解得-4≤k≤-.8.不等式2x2-x-1>0的解集是()A.(-,1)B.(1,+∞)C.(-∞,1)∪(2,+∞)D.(-∞,-)∪(1,+∞)【答案】D【解析】由2x2-x-1>0得(2x+1)(x-1)>0,解得x>1或x<-,∴2x2-x-1>0的解集为(-∞,- )∪(1,+∞).故选D.9.“0<a<1”是“ax2+2ax+1>0的解集是实数集R”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】当a=0时,1>0,显然成立;当a≠0时,故ax2+2ax+1>0的解集是实数集R等价于0≤a<1.因此,“0<a<1”是“ax2+2ax+1>0的解集是实数集R”的充分而不必要条件.10.已知,若,则实数的取值范围为( )A.B.C.D.【答案】B【解析】,等价于即若,则,解得.【考点】解不等式.11.已知不等式x2-2x-3<0的解集为A,不等式x2+x-6<0的解集是B,不等式x2+ax+b<0的解集是A∩B,那么a+b等于 .【答案】-3【解析】由x2-2x-3<0解得;由x2+x-6<0解得,则,于是是方程的二根,即,所以.【考点】一元二次不等式的解法、集合的运算、根与系数的关系12.(本小题12分)已知全集U=R,非空集合<,<. (1)当时,求;(2)命题,命题,若q是p的必要条件,求实数的取值范围.【答案】(1){x︱ };(2)或【解析】(1)首先接触集合A,B,然后求出,最后计算即可;(2)若,则,可得,解之即可.试题解析:(1)A={x︱ },当时,B={x︱ },所以={x︱ }。
一元二次不等式解法专题一.一元二次不等式与相应的二次函数及一元二次方程的关系判别式Δ=b 2-4ac Δ>0 Δ=0 Δ<0二次函数y =ax 2+bx +c (a >0)的图象一元二次方程ax 2+bx +c =0 (a >0)的根有两相异实根x 1,x 2(x 1<x 2) 有两相等实根x 1=x 2=-b2a没有实数根ax 2+bx +c >0 (a >0)的解集{x |x >x 2或x <x 1} ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≠-b 2aRax 2+bx +c <0 (a >0)的解集 {x |x 1<x <x 2}Φ Φ二.穿针引线法例 1 解下列不等式:(1)x x ≥-2414 (2)0822≥+--x x (3)0)3)(2(>-+x x例2 若ax 2+bx -1<0的解集为{x|-1<x <2},则a =________,b =_____.例3(穿针引线法) 解不等式:(x-1)2(x+1)(x-2)(x+4)<0例4 不等式xx ->+111的解集为( ) A .{x|x >0}B .{x|x≥1}C.{x|x >1} D .{x|x >1或x =0}解不等式化为+->,通分得>,即>,1x 000111122----xx x x x∵x 2>0,∴x-1>0,即x >1.选C . 例5 与不等式023≥--xx 同解得不等式是( ) A .(x -3)(2-x)≥0B.0<x -2≤1C .≥230--xx D .(x -3)(2-x)≤0 练习1:1.不等式x 2-3x +2<0的解集为( ). A .(-∞,-2)∪(-1,+∞) B .(-2,-1) C .(-∞,1)∪(2,+∞) D .(1,2)答案 D2.(2011·XX)不等式2x 2-x -1>0的解集是( ). A.⎝ ⎛⎭⎪⎫-12,1B .(1,+∞) C .(-∞,1)∪(2,+∞) D.⎝⎛⎭⎪⎫-∞,-12∪(1,+∞) 故原不等式的解集为⎝⎛⎭⎪⎫-∞,-12∪(1,+∞). 答案 D3.不等式9x 2+6x +1≤0的解集是( ).A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≠-13B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-13C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |-13≤x ≤13D .R答案 B4.若不等式ax 2+bx -2<0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |-2<x <14,则ab =( ).A .-28B .-26C .28D .26 答案 C5.函数f (x )=2x 2+x -3+log 3(3+2x -x 2)的定义域为________.解析 依题意知⎩⎨⎧2x 2+x -3≥0,3+2x -x 2>0,解得⎩⎨⎧x ≤-32或x ≥1,-1<x <3.∴1≤x <3.故函数f (x )的定义域为[1,3).答案 [1,3)6.已知函数f (x )=⎩⎨⎧x 2+2x ,x ≥0,-x 2+2x ,x <0,解不等式f (x )>3.[审题视点] 对x 分x ≥0、x <0进行讨论从而把f (x )>3变成两个不等式组. 解 由题意知⎩⎨⎧x ≥0,x 2+2x >3或⎩⎨⎧x <0,-x 2+2x >3,解得:x >1.故原不等式的解集为{x |x >1}.例不等式<的解为<或>,则的值为7 1{x|x 1x 2}a axx -1A aB aC aD a .<.>.=.=-12121212分析可以先将不等式整理为<,转化为 0()a x x -+-111[(a -1)x +1](x -1)<0,根据其解集为{x|x <1或x >2}可知-<,即<,且-=,∴=.a 10a 12a 1112a - 选C .例解不等式≥.8 237232x x x -+-解 先将原不等式转化为3723202x x x -+--≥即≥,所以≤.由于++=++>,---+-+++-2123212314782222x x x x x x x x 002x x 12(x )022∴不等式进一步转化为同解不等式x 2+2x -3<0,即(x +3)(x -1)<0,解之得-3<x <1.解集为{x|-3<x <1}. 说明:解不等式就是逐步转化,将陌生问题化归为熟悉问题. 练习21.(x+4)(x+5)2(2-x)3<0.2.解下列不等式(1);22123+-≤-x x 127314)2(22<+-+-x x x x3.解下列不等式1x 5x 2)2(;3x 1x 1+>+-≤-)(4.解下列不等式()()12log 6log 1log )2(;08254)1(21212121≥-++≥+⋅-+x x x x5解不等式1)123(log 2122<-+-x x x .。
课时作业17 一元二次不等式的应用时间:45分钟 满分:100分课堂训练1.不等式(1-|x |)(1+x )>0的解集为( ) A .{x |x <1} B .{x |x <-1} C .{x |-1<x <1} D .{x |x <-1或-1<x <1} 【答案】 D【解析】 原不等式可化为⎩⎪⎨⎪⎧x ≥0且x ≠11-x 1+x >0,或⎩⎪⎨⎪⎧x <0且x ≠-11+x 1+x >0.即0≤x <1或x <0且x ≠-1.∴x <1且x ≠-1,故选D. 2.如果方程x 2+(m -1)x +m 2-2=0的两个实根一个小于-1,另一个大于1,那么实数m 的取值范围是( )A .(-2,2)B .(-2,0)C .(-2,1)D .(0,1)【答案】 D【解析】 令f (x )=x 2+(m -1)x +m 2-2,则⎩⎪⎨⎪⎧f 1<0f -1<0,∴⎩⎪⎨⎪⎧m 2+m -2<0m 2-m <0,∴0<m <1.3.已知关于x 的不等式x 2-ax +2a >0在R 上恒成立,则实数a 的取值范围是________.【答案】 (0,8)【解析】 不等式x 2-ax +2a >0在R 上恒成立,即Δ=(-a )2-8a <0,∴0<a <8,即a 的取值范围是(0,8).4.解不等式:(1)(x +2)(x +1)(x -1)(x -2)≤0. (2)3x -5x 2+2x -3≤2. 【分析】 (1)本题考查高次不等式的解法.应用等价转化的方法显得较繁琐,可利用数轴标根法来解.(2)考查分式不等式的解法.给出的不等式并非分式不等式的标准形式,要通过移项、通分的办法将其化为标准形式再解.【解析】 (1)设y =(x +2)(x +1)(x -1)(x -2),则y =0的根分别是-2,-1,1,2,将其分别标在数轴上,其画出示意图如下:∴不等式的解集是{x |-2≤x ≤-1或1≤x ≤2}. (2)原不等式等价变形为3x -5x 2+2x -3-2≤0,即-2x 2-x +1x 2+2x -3≤0,即2x 2+x -1x 2+2x -3≥0, 即⎩⎪⎨⎪⎧2x 2+x -1x 2+2x -3≥0,x 2+2x -3≠0,即等价变形为⎩⎪⎨⎪⎧2x -1x +1x +3x -1≥0,x ≠-3且x ≠1.画出示意图如下:可得原不等式的解集为{x |x <-3或-1≤x ≤12或x >1}.课后作业一、选择题(每小题5分,共40分)1.不等式x -3x +2<0的解集为( )A .{x |-2<x <3}B .{x |x <-2}C .{x |x <-2或x >3}D .{x |x >3}【答案】 A【解析】 不等式x -3x +2<0可转化为(x +2)(x -3)<0,解得-2<x <3.2.不等式(x 2-4x -5)(x 2+4)<0的解集为( ) A .{x |0<x <5} B .{x |-1<x <5} C .{x |-1<x <0} D .{x |x <-1或x >5}【答案】 B【解析】 原不等式等价于x 2-4x -5<0. 3.不等式x +ax 2+4x +3≥0的解集为{x |-3<x <-1或x ≥2},则a的值为( )A .2B .-2D .-12【答案】 B【解析】 原不等式可化为x +ax +1x +3≥0,等价于⎩⎪⎨⎪⎧x +a x +1x +3≥0x +1x +3≠0,由题意得对应方程的根为-3,-1,2,∴a =-2.4.不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是( )A .-4≤a ≤4B .-4<a <4C .a ≥4或a ≤-4D .a <-4或a >4【答案】 D【解析】 不等式x 2+ax +4<0的解集不是空集,只需Δ=a 2-16>0,∴a <-4或a >4,故选D.5.不等式x +5x -12≥2的解集是( )A .[-3,12]B .[-12,3]C .[12,1)∪(1,3]D .[-12,1)∪(1,3]【答案】 D【解析】 ∵(x -1)2>0, 由x +5x -12≥2可得:x +5≥2(x -1)2,且x ≠1.∴2x 2-5x -3≤0且x ≠1,∴-12≤x ≤3且x ≠1.∴不等式的解集是[-12,1)∪(1,3].6.不等式x +2x -1>-2的解集是( )A .(-1,1)B .(-1,0)∪(1,+∞)C .(0,1)D .(-1,1)∪(1,+∞)【答案】 B 【解析】不等式移项通分,得x x -1+2--2x -1x -1>0,整理得x x +1x -1>0,不等式等价于⎩⎪⎨⎪⎧x -1>0,x x +1>0(1),或⎩⎪⎨⎪⎧x -1<0,x x +1<0(2),解(1)得,x >1;解(2)得,-1<x <0. 所以不等式的解集为(-1,0)∪(1,+∞).7.若不等式x 2+ax +1≥0对一切x ∈(0,12]恒成立,则a 的最小值为( )A .0B .-2C .-52D .-3【答案】 C【解析】 x 2+ax +1≥0对一切x ∈(0,12]恒成立,等价于a ≥-x -1x 时对一切x ∈(0,12]恒成立.设f (x )=-x -1x.∵f (x )在(0,12]上单调递增,∴f (x )max =f (12)=-52.∴a ≥-52.∴a 的最小值为-52,故选C.8.定义运算:a *b =a ·(2-b ),若不等式(x -m )*(x +m )<1对任意实数x 都成立,则( )A .-1<m <0B .0<m <2C .-32<m <12D .-12<m <32【答案】 B【解析】 因为a *b =a ·(2-b ),所以(x -m )*(x +m )=(x -m )·(2-x -m )=-(x -m )[x -(2-m )],所以(x -m )*(x +m )<1可化为x 2-2x -m 2+2m +1>0,令x 2-2x -m 2+2m +1=0,所以Δ=4+4(m 2-2m -1)=4(m 2-2m )<0,即0<m <2,故选B.二、填空题(每小题10分,共20分)9.不等式x -2x 2-1<0的解集为________.【答案】 {x |x <-1或1<x <2}【解析】 因为不等式x -2x 2-1<0等价于(x +1)(x -1)·(x -2)<0,所以该不等式的解集是{x |x <-1或1<x <2}.10.函数f (x )=kx 2-6kx +k +8的定义域为R ,则实数k的取值范围为________.【答案】 [0,1]【解析】 kx 2-6kx +(k +8)≥0恒成立,当k =0时,满足.当k ≠0时,⎩⎪⎨⎪⎧k >0,Δ=-6k2-4k k +8≤0⇒0<k ≤1.∴0≤k ≤1.三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)11.若不等式x 2-8x +20mx 2+2m +1x +9m +4>0对任意实数x 恒成立,求m 的取值范围.【解析】 ∵x 2-8x +20=(x -4)2+4>0∴要使不等式x 2-8x +20mx 2+2m +1x +9m +4>0对任意实数x 恒成立,只要mx 2+2(m +1)x +9m +4>0对于任意实数x 恒成立.①当m =0时,2x +4>0,x >-2,此时原不等式对于x >-2的实数x 成立,∴m =0不符合题意.②当m ≠0时,要使不等式对任意实数x 恒成立,须⎩⎪⎨⎪⎧m >0Δ<0解得:m >14.∴m 的取值范围是{m |m >14}.12.实数m 取何范围的值时,方程x 2+(m -3)x +m =0的两根满足:(1)都是正数;(2)都在(0,2)内.【解析】 (1)设方程的两根为x 1,x 2,则由题意可得⎩⎪⎨⎪⎧Δ=m 2-10m +9≥0x 1+x 2=3-m >0x 1·x 2=m >0,解得m 的取值范围是(0,1].(2)设f (x )=x 2+(m -3)x +m ,由题意得⎩⎪⎨⎪⎧Δ=m 2-10m +9≥0f 0=m >00<3-m 2<2f 2=3m -2>0,解得m 的取值范围是(23,1]。