基因沉默
- 格式:doc
- 大小:152.50 KB
- 文档页数:11
基因沉默的原理及其应用1. 基因沉默概述基因沉默是指通过特定的机制,使得基因表达降低或完全抑制的现象。
它是维持细胞内基因表达稳定性的重要机制之一。
基因沉默的方式主要包括DNA甲基化、组蛋白修饰、RNA干扰等。
基因沉默在生物学研究、基因治疗以及农业生产等方面具有广泛的应用前景。
2. 基因沉默的原理2.1 DNA甲基化DNA甲基化是一种通过在DNA分子上添加甲基基团来改变基因表达的方式。
在DNA甲基化过程中,甲基转移酶将甲基基团转移到DNA分子上,从而使得DNA的结构发生改变,导致基因的表达发生变化。
DNA甲基化通常会导致基因的沉默,而去甲基化则可以解除基因的沉默。
2.2 组蛋白修饰组蛋白修饰是一种通过改变染色质的结构和构象来调控基因表达的方式。
组蛋白是染色质的主要组成部分之一,它可以通过添加或去除特定的化学修饰基团来改变染色质的结构。
这些修饰可以影响DNA与组蛋白之间的相互作用,从而影响基因的转录和表达水平。
2.3 RNA干扰RNA干扰是一种通过引入外源性的RNA分子来抑制特定基因表达的方式。
在RNA干扰过程中,外源性的RNA分子与目标基因的mRNA序列互补配对,形成RNA复合体,并通过RNA酶的作用将目标基因的mRNA降解或抑制其翻译过程。
这种方式可以有效地沉默目标基因,从而改变基因表达的水平。
3. 基因沉默的应用3.1 基因功能研究基因沉默技术为研究基因的功能提供了重要的工具。
通过使用RNA干扰技术,可以特异性地沉默目标基因,然后观察沉默后的细胞或生物体的表型变化,从而揭示该基因在生物体中的功能和作用机制。
3.2 基因治疗基因沉默技术在基因治疗方面具有潜在的应用价值。
通过选择性地沉默致病基因,可以抑制其表达,从而达到治疗疾病的目的。
例如,通过沉默癌细胞的关键基因,可以达到抑制肿瘤生长的效果。
3.3 农业生产基因沉默技术在农业生产中也有广泛的应用前景。
通过沉默特定基因,可以改变农作物的性状,使其具有更好的抗病性、耐逆性以及产量的提高。
基因沉默的原理及应用一、基因沉默的原理基因沉默是指通过RNA干扰(RNA interference,简称RNAi)技术,特异性地抑制特定基因的表达。
基因沉默在生物学研究中具有重要的应用价值,其原理主要包括以下几个方面:1. siRNA的合成与靶向短干扰RNA(short interfering RNA,简称siRNA)是基因沉默的关键分子。
在细胞内,siRNA会与RNA诱导靶向耗竭(RNA-induced silencing complex,简称RISC)结合,形成RNA-蛋白复合体,然后通过匹配特定序列,将复合体定位到目标mRNA上,最终导致mRNA降解、剪接或抑制翻译。
2. miRNA的生成和功能微小RNA(microRNA,简称miRNA)是一类长度约为21-23个核苷酸的非编码RNA分子。
miRNA产生于细胞内,通过与RNA诱导靶向耗竭结合,实现对mRNA的调控。
miRNA主要通过与mRNA的3’非翻译区域互补配对,诱导mRNA的降解或抑制翻译,从而实现目标基因的沉默。
3. RISC的功能和调控RISC是RNA干扰过程中的一个重要复合体,其主要成员包括siRNA或miRNA,以及相关的蛋白质。
RISC在基因沉默中起到关键的作用,通过与靶向RNA结合,实现对mRNA的调控。
RISC中的蛋白质能够辅助siRNA或miRNA与靶向RNA的杂交,并促进靶向RNA的降解或抑制翻译。
二、基因沉默的应用基因沉默技术已经在许多领域展现出广阔的应用前景,一些典型的应用包括:1. 研究基因功能基因沉默可以通过抑制特定基因的表达,来研究该基因在生物体中的功能。
通过沉默特定基因后,研究人员可以观察到沉默基因对生物体的影响,从而揭示出特定基因在生物体发育、代谢、免疫等方面的作用,为相关研究提供有力的证据。
2. 治疗基因相关疾病基因沉默技术在治疗基因相关疾病方面具有巨大的潜力。
通过针对病因基因进行沉默,可以有效地抑制病因表达,从而达到治疗目的。
基因沉默⽅法汇总从遗传学中⼼法则看,基因表达沉默⽆⾮从两个⽔平研究,先将具体⽅法总结如下1基因组DNA⽔平1.1 构建基因重组打靶载体基因功能研究中出现最早最成熟的技术就是基因敲除. 他是根据同源重组的原理, 利⽤分⼦⽣物学技术增强和减弱甚⾄灭活某特定靶基因表达⽔平, 然后观察实验动物整体功能状态的变化, 推测靶基因的功能[1]. 基因敲除技术可在整体动物⽔平研究基因功能, 但是完全基因敲除使⼩⿏所有细胞基因组上都存在基因的缺失或突变, 有些重要的靶基因敲除或导⼊会严重影响动物胚胎的发育, 导致胚胎早期死亡或严重的发育缺陷, 使得突变⽆法传代, 不利于在⼩⿏各个发育阶段进⾏该基因功能的分析. 条件基因敲除技术(conditional gene knock out)的建⽴为此难题找到了解决的办法. 1994年, Gu et al [2]应⽤Cre/loxP重组酶系统实现了外源基因的时间特异性表达, 在此基础上条件基因敲除技术得以形成. 条件基因敲除技术是在基因敲除基础上结合Cre/loxP系统⽽形成的, 他可以做到在特定时间, 组织, 细胞中将靶基因敲除, 从⽽可以真实的反映特定组织或细胞中靶基因被敲除或修饰后的结果, 避免在发育早期所有细胞和组织中完全敲除⽬的基因后可能产⽣的胚胎早期死亡或严重的发育障碍[3-5]. 基因敲除的优点是基因灭活效果确切可靠, 缺点是技术复杂, 费时费⼒.1.2 反义寡核苷酸技术反义寡核苷酸技术是指采⽤⼀类经⼈⼯合成或构建的反义表达载体表达的寡核苷酸⽚段, 长度多为15-30个核苷酸, 导⼊细胞或者个体体内, 根据碱基互补原理, 通过与靶DNA或者mRNA结合形成双链杂交体激活核酸酶H, 裂解靶mRNA阻断蛋⽩质的翻译, 或者与DNA结合成三链结构或与单链DNA结合成双链结构以阻⽌靶基因的复制或转录, 以及与mRNA AP位点结合⼲扰其剪接、加⼯和运输, 在mRNA⽔平上发挥作⽤, 从⽽⼲扰其表达, 阻⽌其翻译成蛋⽩质[6]. 具体的作⽤机制⽬前尚未完全清楚. 反义寡核苷酸因为是针对特定的靶mRNA(DNA)的序列设计合成, 因此具有极⾼的特异性, 并且容易设计和体外⼤量合成. 另外反义寡核苷酸不含病毒序列, 不会产⽣免疫反应, 也不会整合⼊宿主染⾊体内, 这都为其作为药物应⽤于临床提供了可能. 1998年, 第1个反义药物Vitravene(Fomivirsen)被美国FDA批准通过, ⽤以治疗由巨细胞病毒(cytomegalovirus)引起的艾滋患者的视⽹膜炎[7]. ⽬前反义寡核苷酸技术在动物体内外的应⽤已经⾮常普遍[8-9]. 今后要注意的是, 如何对反义寡核苷酸进⾏更加有效的化学修饰以提⾼其稳定性, 延长其半衰期, 增加其作⽤时间和如何定点作⽤于特定部位, 使靶组织最⼤效率地吸收反义核酸, 提⾼其作⽤效果, 减轻毒副作⽤[10].1.3 甲基化寡核苷酸技术表观遗传学(epigenetics)是与遗传学(genetics)相对应的概念. 遗传学是指基于基因序列改变所致基因表达⽔平变化, 包括基因突变、基因杂合丢失和微卫星不稳定性等;⽽表观遗传学则是指基于⾮基因序列改变所致基因表达⽔平变化, 包括DNA甲基化、组蛋⽩脱⼄酰化和染⾊质构象变化等; 表观基因组学(epigenomics)则是在基因组⽔平上对表观遗传学改变的研究, 以抑癌基因为代表的CpG岛甲基化所致基因转录失活已经成为肿瘤表观基因组学研究的重点内容[23-25]. 所谓DNA甲基化是指在DNA甲基化转移酶的作⽤下, 基因组5'端CpG⼆核苷酸的胞嘧啶第5位碳原⼦上共价结合⼀个甲基基团. 由于DNA甲基化与⼈类发育和肿瘤疾病的密切关系, 特别是CpG岛甲基化所致抑癌基因转录失活, DNA甲基化已经成为表观遗传学和表观基因组学的重要研究内容, 研究DNA甲基化与肿瘤的关系成为当前分⼦⽣物学的热点之⼀. ⽬前的研究已经表明: 肿瘤细胞和组织中存在异常的DNA甲基化状态, 表现为基因组整体甲基化⽔平降低, 导致遗传不稳定性增加;组织特异性基因的启动⼦区域出现从头甲基化从⽽导致基因被关闭; 原癌基因多为低甲基化或不充分甲基化, 低甲基化使原癌基因活化, 导致重新开放或异常表达, 形成突变热点, 增加染⾊体的不稳定性; 抑癌基因多为过度甲基化, 过度甲基化导致表达失活[26-27]. 这些因素综合起来导致基因表达异常, 引起细胞恶变, 最终导致肿瘤的发⽣[28-30].在哺乳动物中, 甲基化仅影响DNA链上鸟嘌呤前的胞嘧啶(CpG). 通常细胞中CpG⼆核苷酸的甲基化分布并不是均⼀的, ⼤约50%的基因在启动⼦区域有CpG⼆核苷酸的富集现象, ⼀般该区域的长度从0.5-2 kb不等. 该区域与基因的转录有密切的关系, 通常处于⾮甲基化状态. 处于⾮甲基化状态的启动⼦, 环绕的染⾊质呈现为开放的构象, 允许转录因⼦和其他的激活物靠近. 此外, 转录因⼦的占据也使其他的转录抑制因⼦和染⾊质重塑蛋⽩等难以接近启动⼦, 最终表现为启动基因表达[31-33]. 相反, CpG岛⾼甲基化的启动⼦则呈现为关闭的构象, 不但使转录因⼦⽆法靠近, ⽽且还有助于甲基胞嘧啶结合蛋⽩﹑转录辅阻遏蛋⽩﹑DNA甲基转移酶等对转录有抑制作⽤的蛋⽩结合于启动⼦区, 启动⼦失去功能, 结果基因转录灭活⽽沉默[34-35]. 很多资料表明, 基因启动⼦异常⾼甲基化可以导致其转录灭活[36-39]. Zhu et al [40]通过甲基化寡核苷酸诱导ERβ基因启动⼦区和外显⼦区CpG岛特异性甲基化发现, 在前列腺癌细胞中, 是ERβ基因启动⼦区(⽽不是外显⼦区)CpG岛的⾼甲基化导致了ERβ基因转录失活. 去甲基化试剂作⽤前列腺癌细胞后, ERβ mRNA恢复表达.甲基化寡核苷酸技术是利⽤针对靶基因合成的甲基化寡核苷酸⽚段(methylated oligonucleotides,MON)与基因的其中⼀条链互补结合形成半甲基化DNA. 半甲基化DNA表现为复制叉样结构, 为DNA甲基化转移酶1(DNA methyltransferase-1, DNMT1)的优先底物, DNMT1使第1链迅速甲基化. MON与结合点分离, 甲基化的第⼀链与未甲基化的互补链退⽕形成第2个半甲基化DNA底物, 同样表现为复制叉样结构, 为DNMT1作⽤的优先底物. 结果两条链均发⽣甲基化, 随后, 同样的道理, 甲基化扩布到邻近的CpG⼆核苷酸中, 最后整个基因的靶位点(如启动⼦)发⽣完全甲基化[41]. 如上所述, 基因启动⼦甲基化可以导致其转录失活, 因此通过甲基化寡核苷酸技术, 我们就可以对所要研究的⽬的基因进⾏特异的灭活[42-43]. 此外, 尚有资料表明,CpG岛甲基化表型(CIMP)能够改变染⾊体的构象, 产⽣微卫星不稳定性(MSI)现象, 引起靶基因突变失活[44-49]. 这种有趣的现象使遗传学和表观遗传学之间建⽴起了桥梁, 为研究两者之间的联系提供了思路[50]. 基因CpG岛的这种甲基化修饰具有可遗传性, 能够对发育、⽣理、环境、病理等不同的信号作出反映, 使遗传信息的表达按⼀定程序发⽣变化, 参与完成细胞的时空调控和适应调控, 在胚胎发育障碍等先天性疾病以及恶性肿瘤发病机制中起⾄关重要的作⽤.甲基化寡核苷酸技术的实施路线包括: (1)MON的设计与合成: MON是包含20余个碱基的⼀⼩段寡核苷酸⽚段, 与⽬的基因启动⼦区对应位置的碱基序列完全相同, 不同的是MON⽚段中的5'端CpG⼆核苷酸中的胞嘧啶环5位碳原⼦发⽣甲基化(m5CpG). ⽽GenBank数据库中原始的⽬的基因启动⼦区的CpG⼆核苷酸并未发⽣甲基化修饰(CpG). MON⽚段设计时应注意⾄少包含3个CpG⼆核苷酸, 理论上MON⽚段中所含的m5CpG越多越好, 这样才能达到更好的甲基化诱导效果. 为了防⽌在细胞中被酶降解, 寡核苷酸⽚段还需进⾏硫代磷酸化等修饰, 此外还可以标记荧光来⽰踪,同时还需要设计⾮甲基化寡核苷酸⽚段(unmethylatedoligonucleotides, UMON)作为对照. UMON碱基序列与MON完全相同, 不过没有进⾏CpG ⼆核苷酸甲基化修饰. MON的合成与引物合成⼀样, 可由DNA⾃动合成仪来完成, 价格⽐较低廉. MON的作⽤: 针对体外细胞的应⽤, 通常采⽤的是脂质体介导的基因转染, 体内实验的资料⽬前不多. ⽬前把MON导⼊体内外的基因转染⽅法主要有两⼤类: ⼀类为病毒介导法, 即利⽤去掉了致病基因的病毒序列作为载体, 将外源靶基因导⼊靶细胞内, 常⽤的有逆转录病毒、疱疹和腺病毒等改建的病毒载体; 另⼀类为⾮病毒介导法, 包括物理法(显微注射、⽓溶胶、基因枪和缝线等)、化学法(磷酸钙沉淀法、脂质体法和葡聚糖法等)和⽣物学法(细胞融合法和受体法等). (3)效果评价: 提取基因组DNA和总RNA以及蛋⽩质, 采⽤甲基化特异性PCR(MSP)、亚硫酸氢盐测序(BSP)、RT-PCR、Western blot等⼿段进⾏相关的分析. 其中, MSP法可以了解是否发⽣了特异性的甲基化诱导,BSP可以对那些发⽣了甲基化的CpG进⾏精确定位[51-53]. RT-PCR、Western blot则可以从不同分⼦⽔平判断基因灭活的效果及其他相关分析.⽬前甲基化寡核苷酸技术的应⽤多集中在肿瘤细胞系[60-61], 这实际上就是把他作为⼀种基因沉默的⼯具应⽤到过度表达的肿瘤相关基因的研究中, 借此观察这些靶基因的功能. 甲基化寡核苷酸技术在此所起的作⽤可以⽤前述的其他基因沉默⼯具代替. 然⽽, 甲基化寡核苷酸技术尚具有基因敲除等技术所不能代替的优点. 例如, 针对肿瘤细胞中抑癌基因启动⼦发⽣甲基化⽽失活, 我们就可以将正常的组织细胞或动物模型作为研究对象, 采⽤甲基化寡核苷酸技术来诱导其发⽣甲基化⽽失活, 模拟肿瘤细胞和组织中该基因的甲基化⾏为, 从⽽⽣动地再现肿瘤细胞和组织中抑癌基因甲基化灭活的过程, 达到相关研究的⽬的. 这主要是基于甲基化寡核苷酸技术的作⽤机制和肿瘤细胞中的抑癌基因的基因型. 实际上肿瘤相关基因启动⼦⾼甲基化导致转录沉默, 甚⾄发⽣MSI突变⽅⾯的⽂献数不胜数[44-49]. 因此, 甲基化寡核苷酸技术的应⽤⼤有前景, ⽽这正是其他基因沉默⼯具所不能⽐拟的. ⽬前甲基化寡核苷酸技术应⽤于体内实验的资料不多, 毒副作⽤的研究很少, 和反义寡核苷酸技术以及⼲扰RNA技术等其他基因治疗⼿段存在的问题⼀样. 如何⾼效、靶向、安全地把这种神奇的甲基化寡核苷酸⽚段应⽤到个体体内是⽬前存在的问题之⼀,这有赖于靶向载体研究的进展.1.4 锌指核酸酶技术 锌指核糖核酸酶(ZFN)由⼀个 DNA 识别域和⼀个⾮特异性核酸内切酶构成。
基因沉默名词解释基因沉默,指的是抑制或抑制正常的基因功能。
基因沉默可以在多种水平上发生,从分子层次到细胞层次,从细胞层次到组织层次,再到整个机体组织水平。
基因沉默可分为三类,即转录抑制、调节抑制和调节转录抑制(TGS)。
转录抑制是指基因转录过程中的抑制,它是由转移因子介导的,通常是由抑制基因的非编码RNA、DNA复合物或其他蛋白质抑制有效的HTR导致的。
当转录因子在基因上聚集时,它们可以抑制此基因上的有效拷贝数量及其表达,从而降低或抑制基因的功能。
调节抑制是指在基因转录后的调控过程中,由抑制蛋白质通过影响mRNA或蛋白质的稳定性来抑制基因表达。
调节抑制可以在不同水平上发挥作用,例如在细胞中可以抑制mRNA和蛋白质的形成,在组织水平上可以抑制蛋白质的稳定性和细胞分化,从而抑制基因表达。
这种抑制机制可以使基因表达更加精细,可以更好地调节基因功能,从而调节机体的新陈代谢。
调节转录抑制也叫TGS,它是一种可以在基因组织水平上实现基因沉默的技术,它可以实现非编码RNA涉及的基因表达调控。
在基因水平上,TGS可以改变mRNA和蛋白质的形成方式和稳定性,从而抑制基因表达,在组织水平上,TGS可以影响细胞分化,从而抑制机体的器官及组织的新陈代谢。
此外,TGS还可以通过调控细胞的基因表达,影响细胞的生长、分化和功能,从而抑制疾病发病。
基因沉默在生物的发育过程中具有重要作用,它可以控制基因的表达,从而调节细胞的发育和机体的新陈代谢。
目前,基因沉默技术被用于各种疾病治疗,如癌症、心脏疾病和神经系统损伤等,这些技术可以改变基因表达水平,从而抑制疾病发病。
未来,基因沉默技术可能在生物医学领域展开广泛的应用,例如可以用于器官的再生、药物的研发等。
同时,基因沉默技术在生物安全性、社会安全性和科学道德上也可能引起讨论,因此,在基因沉默技术的应用时,还需要综合考虑法律、人文、社会等因素。
基因沉默是一种重要的基因调控技术,它可以影响基因表达、影响细胞发育和机体新陈代谢,还可以用于疾病治疗,因此,基因沉默技术将在未来发挥更多重要的作用。
引起基因沉默的原因研究表明,引起基因沉默的原因很多,转基因的拷贝数和构型、在植物上的整合位点、转基因的转录水平等都与沉默有关,外界环境如过高的温度、过强的光照也会增加基因沉默发生的几率和产生时间,此外,外源基因的表达还受植物发育因子(如亲本年龄)的影响。
因此,植物转基因沉默的作用机制可能不是单一的,而是各种机制共同作用的结果,是植物本身的防御系统和外界环境因素协同作用的产物。
转基因沉默可以发生在染色体DNA水平、转录水平和转录后水平三种不同的层次上。
1.染色体DNA水平的转基因沉默发生在染色体DNA水平的转基因沉默叫做位置效应(positioneffect)。
当导入的外源基因随机地插入到宿主基因组时,如果被导入到转录活跃区,就有可能进行高水平的转录,如果外源基因插入转录不活跃区,则只能进行低水平的转录或不能转录。
按照染色质高级结构组织的环状结构模型,核基质结合区(matrixattachmentregions,MARs)作为边界元件与核基质结合,使两个MAR之间的基因片段被界定成一个独立的染色质环(1oop),并作为隔离子(insulator)阻挡邻近染色质区的顺式调控元件对环内基因的影响,使位于染色体环内的基因可作为一独立的表达调控单位而存在。
MAR可能使转基因在受体基因组整合后形成独立的环状结构,从而提高转基因的表达水平并减少转基因在不同株系表达差异2.转录水平的基因沉默发生在转录水平上的转基因沉默叫做转录失活。
反向重复的基因或转基因可以进行异位配对,配对的DNA作为信号,使DNA异染色质化或从头甲基化,这样转录过程就会受到抑制。
此外,DNA-RNA协同(association)也是造成转录水平基因沉默的原因之一。
(1)转移基因及其启动子甲基化甲基化是活细胞中最常见的一种DNA其价修饰形式,它通常发生在DNA的GC和CN G序列的C碱基上,C甲基化的频率在哺乳动物及高等植物中部比较高。
甲基化修饰在基因表达、植物细胞分化以及系统发育中起着重要的调节作用。
基因沉默技术:治疗遗传性疾病的新希望在医学的广阔天空中,基因沉默技术如同一颗新星,其光芒正在逐渐照亮治疗遗传性疾病的未来。
这项技术,被科学家们形象地比喻为“分子剪刀”,能够精确地剪除或修复导致疾病的基因序列,从而为患者带来新的希望。
首先,让我们来了解什么是基因沉默技术。
简单来说,它是一种通过特定的分子机制,使特定基因的表达受到抑制或完全停止的技术。
这就像是给有问题的基因按下了“静音键”,阻止它继续制造有害的蛋白。
那么,这项技术为何能成为治疗遗传性疾病的新希望呢?让我们来看几个例子。
首先,对于一些由单一基因突变引起的疾病,如囊性纤维化、镰状细胞贫血等,基因沉默技术可以直接针对这些突变基因进行干预,从根本上解决问题。
其次,对于一些复杂的多基因疾病,如癌症、心脏病等,虽然不能直接治愈,但基因沉默技术可以作为一种辅助治疗手段,帮助减轻症状或延缓病程。
当然,任何新技术的出现都会伴随着挑战和争议。
基因沉默技术的安全问题是人们关注的焦点之一。
毕竟,我们是在对生命的基本单位——基因进行操作,稍有不慎就可能引发严重的后果。
此外,如何确保技术的准确性和有效性,也是科学家们需要不断探索的问题。
尽管如此,我仍然对基因沉默技术抱有乐观的态度。
我相信,随着科学研究的深入和技术的进步,这些问题最终将得到解决。
而且,与其他治疗方法相比,基因沉默技术具有不可比拟的优势。
它不仅可以针对病因进行治疗,还可以实现个性化医疗,根据每个患者的具体情况制定治疗方案。
在我看来,基因沉默技术就像是一把双刃剑。
一方面,它为我们提供了治疗遗传性疾病的新途径;另一方面,它也带来了新的挑战和风险。
我们需要谨慎而明智地使用这项技术,确保它真正造福于人类。
最后,我想用一个比喻来结束这篇文章:基因沉默技术就像是一艘航船,正驶向未知的海域。
虽然前方可能充满了风浪和暗礁,但只要我们坚定信念、勇往直前,就一定能够到达理想的彼岸。
在这个过程中,科学家、医生和患者都需要携手合作,共同面对挑战、分享成果。
基因沉默技术的原理及应用1. 引言基因沉默技术是一种用于研究基因功能和调控机制的重要方法。
它能够通过抑制特定基因的表达来观察其对细胞和生物体的影响,为我们揭示基因在生物体内的功能和相互作用提供了有效的手段。
本文将介绍基因沉默技术的原理以及其在基础研究和应用方面的相关实验技术。
2. 基因沉默技术的原理基因沉默技术主要通过RNA干扰(RNA interference,RNAi)和基因编辑技术实现。
以下将分别介绍这两种技术的原理。
2.1 RNA干扰(RNAi)RNA干扰是一种通过介导RNA分子与特定的mRNA相互作用来沉默目标基因表达的方式。
其基本原理是通过引入双链RNA(dsRNA)或小干扰RNA(siRNA)分子,利用细胞内的RNA诱导酶(RNA-induced silencing complex,RISC)将这些RNA分子切割成小片段,并通过与靶标mRNA互补序列的结合,诱导腺苷酸转化酶(adenosine deaminase,APOBEC)催化酶将目标mRNA降解,进而抑制基因的表达。
RNA干扰技术已经得到广泛应用,主要包括以下几个方面: - 基因功能研究:通过沉默特定基因,观察其对细胞生长、分化和功能的影响,从而揭示基因功能和调控机制。
- 药物筛选:利用RNA干扰技术可以高通量筛选候选药物,加速新药研发过程。
- 疾病治疗:RNA干扰技术可用于治疗基因突变引起的疾病,例如肿瘤和遗传性疾病等。
2.2 基因编辑技术基因编辑技术可以通过改变基因组DNA的序列来实现对特定基因的沉默。
CRISPR-Cas9技术是目前最常用的基因编辑技术之一。
其基本原理是利用Cas9蛋白和RNA分子形成复合物,通过与目标基因的DNA序列互补结合,引导Cas9蛋白在目标位点上产生双链切割。
随后,细胞内自身的修复机制(如非同源末端联合修复)介导修复切割部位,导致目标基因的功能缺失或沉默。
基因编辑技术在基础研究和临床应用上具有广阔的前景,如下所示: - 基因功能验证:通过编辑特定基因,验证其对生物体生理和病理过程的影响,从而鉴定相关疾病发病机制。
沉默基因的原理及应用研究引言沉默基因是指在基因组中存在的一类特殊基因,其表达被抑制或降低,从而影响相关功能的正常发挥。
近年来,沉默基因的研究引起了广泛的关注,其原理和应用也逐渐得到了深入的探索。
本文将介绍沉默基因的原理以及其在生物科学研究和应用领域中的一些重要进展。
原理沉默基因的原理主要涉及RNA干扰(RNA interference)机制,即通过RNA分子的介入干扰基因表达的过程。
其一般过程包括以下几个关键步骤:1.siRNA产生: siRNA(小干扰RNA)是沉默基因的关键分子,在RNA干扰机制中发挥重要作用。
siRNA由一条双链RNA分子在细胞内产生,并被酶切成20-25个核苷酸的小片段。
2.RISC复合体形成: siRNA进入细胞质后,与RISC(RNA导向的RNA内切复合体)相结合,形成RISC复合体。
RISC复合体是发挥RNA干扰作用的关键复合物。
3.靶基因沉默: RISC复合体通过与靶基因mRNA相互作用,引发RNA降解或抑制翻译等过程,从而导致靶基因的表达受到抑制或降低。
应用研究沉默基因的发现为生物科学研究和应用领域带来了许多新的机会和挑战。
以下是一些目前常见的沉默基因应用研究领域和实际应用场景:1. 基因功能研究沉默基因技术为研究基因功能提供了一种有力的工具。
通过沉默基因的靶向抑制或降低,研究人员可以快速验证和分析基因对生物体发育、生长、代谢等过程的影响。
这种方法广泛应用于模式生物和植物等领域,可以帮助科学家们更好地理解基因的功能和相互作用。
2. 遗传病治疗沉默基因技术在遗传病治疗中也有广泛的应用前景。
许多遗传病都是由于某个基因表达异常或突变引起的,通过沉默具有病理性的基因,可以有效地减轻或治愈疾病症状。
例如,研究人员利用沉默基因技术成功治疗了一些遗传性失聪病例,为相关疾病的治疗提供了新的思路和方法。
3. 农作物改良沉默基因技术在农业领域中被广泛应用于农作物的改良和优化。
通过抑制特定基因的表达,可以提高作物的抗病性、耐逆性、产量等性状。
基因沉默名词解释基因沉默是指在细胞中通过各种内外因素的调控,使某些基因在特定条件下不表达或抑制表达的现象。
基因沉默是维持基因组的稳定性和正常发育的重要机制之一,它在细胞分化、胚胎发育、免疫应答等生理过程中发挥着重要作用。
基因沉默主要通过两种机制实现:转录后基因沉默(TGS)和转录前基因沉默(TSS)。
转录后基因沉默是指在基因转录为mRNA后,通过特定机制使得mRNA无法转译为蛋白质。
这种机制主要包括DNA甲基化、组蛋白修饰和非编码RNA等。
转录前基因沉默是指通过转录抑制机制,使得DNA无法转录为mRNA。
这种机制主要包括DNA甲基化、RNA干扰和RNA编辑等。
基因沉默在许多生物过程中发挥着重要作用。
在细胞分化过程中,基因沉默能够控制细胞特异性基因的表达,在胚胎发育过程中起到调控基因表达的作用,保证胚胎正常发育。
在免疫应答中,基因沉默能够调控免疫相关基因的表达,影响免疫细胞的功能和免疫应答的结果。
在疾病发生中,基因沉默也起到重要作用,例如,某些癌细胞中的肿瘤抑制基因被沉默,从而导致细胞的无限增殖和癌症的发生。
基因沉默不仅在自然界中普遍存在,还在科学研究和基因治疗中有重要应用。
通过基因沉默技术可以针对特定基因进行研究和调控。
例如,通过RNA干扰技术可以选择性地降低或抑制某个基因的表达,从而研究该基因的功能和作用机制。
此外,基因沉默技术还可以用于基因治疗,通过抑制或恢复特定基因的表达,来治疗一些遗传性疾病和其他疾病。
总之,基因沉默是一种重要的基因调控机制,能够在细胞分化、胚胎发育、免疫应答和疾病发生中起到重要作用。
研究基因沉默的机制和应用基因沉默技术在科学研究和医学上具有重要意义。
基因沉默原理基因沉默是指在细胞内通过特定的机制抑制基因的表达,从而影响蛋白质的合成和功能。
基因沉默是一种重要的遗传调控方式,对生物体的发育、生长、代谢和适应环境等方面起着重要作用。
基因沉默的机制主要包括转录后基因沉默(TGS)和转录前基因沉默(TGS)。
转录后基因沉默是指在基因转录后,利用RNA介导的DNA甲基化或染色质重构等方式抑制基因的表达。
而转录前基因沉默则是指通过RNA干扰(RNAi)等机制,在基因转录前抑制基因的表达。
基因沉默的实现主要依赖于RNA介导的机制。
在RNA介导的DNA甲基化中,RNA会与DNA结合形成双链RNA-DNA杂交,从而招募DNA甲基转移酶和其他辅助蛋白,最终导致DNA甲基化,使得基因表达受到抑制。
而在RNAi中,双链RNA会被酶切成短的siRNA或miRNA,这些小RNA分子会与靶基因的mRNA结合,从而导致mRNA的降解或翻译抑制,最终实现基因的沉默。
基因沉默在生物体内起着重要的调控作用。
首先,基因沉默可以帮助细胞对外界环境进行快速响应。
当生物体受到外界环境的刺激时,通过基因沉默可以迅速调整基因表达,从而适应新的环境。
其次,基因沉默还参与了生物体的发育和分化过程。
在胚胎发育中,基因沉默可以调控特定基因的表达,从而确保胚胎的正常发育。
另外,基因沉默还参与了生物体的免疫应答和抗病过程。
通过基因沉默,生物体可以抑制病原体的基因表达,从而增强自身的抵抗能力。
基因沉默的研究不仅对于理解生物体的遗传调控机制具有重要意义,同时也为疾病的治疗和基因工程技术的发展提供了重要的理论基础。
在疾病治疗方面,通过调控基因的沉默可以靶向性地抑制病原体的基因表达,从而实现疾病的治疗。
在基因工程技术方面,基因沉默可以帮助科学家对特定基因进行精准编辑和调控,从而创造出更加强大和适应性更强的生物体。
总的来说,基因沉默作为一种重要的遗传调控方式,对于生物体的发育、生长、代谢和适应环境等方面起着重要作用。
基因沉默研究进展基因沉默研究进展摘要:基因沉默(gene silencing)是指生物体中特定基因由于种种原因不表达或者表达减少的现象。
基因沉默是基因表达调控的一种重要方式 ,是生物体在基因调控水平上的一种自我保护机制 ,在外源 DNA 侵入、病毒侵染和DNA 转座、重排中有普遍性。
对基因沉默进行深入研究,可帮助人们进一步揭示生物体基因遗传表达调控的本质,在基因工程中克服基因沉默现象,从而使外源基因能更好的按照人们的需要进行有效表达;利用基因沉默在基因治疗中有效抑制有害基因的表达 ,达到治疗疾病的目的 ,所以研究基因沉默具有极其重要的理论和实践意义[1]。
关键词:基因沉默,转录水平基因沉默,转录后水平基因沉默,病毒介导的基因沉默.基因沉默(gene silencing)是指生物体中特定基因由于种种原因不表达。
一方面,基因沉默是遗传修饰生物(genetically modified organisms )实用化和商品化的巨大障碍 ,另一方面 ,基因沉默是植物抗病毒的一个本能反应,为用抗病毒基因植物工程育种提供了具有较大潜在实用价值的策略—RNA介导的病毒抗性(RNA-mediated virus resistance ,RMVR)[2~4]。
基因沉默现象首先在转基因植物中发现,接着在线虫、真菌、水螅、果蝇以及哺乳动物中陆续发现。
基因沉默主要发生在两种情况,一种是转录水平上的基因沉默(transcriptional gene silencing, TGS),另一种是转录后基因沉默(post- transcriptional gene silencing, PTGS)。
RNA干扰(RNA interference, RNAi)是近几年发展起来的转录后基因阻断技术,RNAi在2002年被Science评为全球十大科技突破之一,作为一种在细胞水平的基因敲除工具,RNAi 正在功能基因组学领域掀起一场革命[5]。
基因沉默的原理
1.基因沉默的概念
基因沉默是指在转基因生物中,某些基因的表达水平降低到
几乎检测不到的程度,而另一些基因的表达水平则明显升高。
转
基因生物的某些性状与正常生物体完全相同,而另一些性状却显
著降低。
通过转基因技术,可以获得具有高表达或低表达的转基
因生物,但转基因生物不能正常繁殖后代。
目前,人们对此已有
较深入的了解。
基因沉默现象是指生物体在正常生理情况下,某
些基因或蛋白质在 mRNA水平上不表达甚至丧失表达水平的现象。
如一个细胞内有一种名为“沉默因子”的酶,它能够使 mRNA发
生降解。
当某种病毒感染细胞时,病毒基因组被破坏,同时病毒
中“沉默因子”大量减少,使 mRNA降解受阻,最后使细胞内原
有的正常基因及蛋白质不能正常表达。
2.基因沉默对人类健康的影响
1.一些与生殖有关的疾病,如男性不育、女性不孕等与基因
沉默有关。
2.基因沉默能促进癌症患者化疗及放疗后的康复。
3.基因沉默可使已被杀死的肿瘤细胞重新生长。
—— 1 —1 —。
RNA干扰基因沉默基因沉默(gene silencing)是指生物体中特定基因由于种种原因不表达。
一方面,基因沉默是遗传修饰生物(genetically modified organisms)实用化和商品化的巨大障碍,另一方面,基因沉默是植物抗病毒的一个本能反应,为用抗病毒基因植物工程育种提供了具有较大潜在实用价值的策略——RNA介导的病毒抗性(RNA-mediated virus resistance,RMVR)。
转基因植物和转基因动物中往往会遇到这样的情况,外源基因存在于生物体内,并未丢失或损伤,但该基因不表达或表达量极低,这种现象称为基因沉默。
转基因沉默分为转录水平的沉默(TGS)和转录后水平的沉默(PTGS)。
TGS是指转基因在细胞核内RNA合成受到了阻止导致基因沉默,PTGS是指RNAi——基因沉默指南基因沉寂(Gene Silencing) 也可以被称为“基因沉默”。
基因沉寂是真核生物细胞基因表达调节的一种重要手段。
在染色体水平,基因沉寂实际上是形成以染色质(Heterochromatin)的过程,被沉寂的基因区段呈高浓缩状态。
基因沉寂需要经历不同的反应过程才能实现,包括组蛋白N端结构域的赖氨酸残基的去乙酰基化加工、甲基化修饰(由甲基转移酶催化,修饰可以是一价、二价和三价甲基化修饰,后者又被称为'过度’甲基化修饰(Hypermethylation) ) 、以及和甲基化修饰的组蛋白结合的蛋白质(MBP)形成“异染色质”,在上述过程中,除了部分组蛋白的N端尾部结构域需要去乙酰化、甲基化修饰之外,有时也许要在其他的组蛋白N端尾部结构域的赖氨酸或精氨酸残基上相应地进行乙酰化修饰,尽管各种修饰的最终结果会导致相应区段的基因“沉寂”失去转录活性。
这个“原则”就是目前尚没有真正完全清楚的“组蛋白密码”(Histone Code)。
能够与甲基化组蛋白结合的蛋白质有sir1/2/3/4,这是一组被称为"Silencing Informative Repressor"的蛋白,其中,Sir2就是上文中的“去乙酰化”酶,而Sir1/3/4则负责与甲基化修饰的组蛋白结合"沉寂”相应的染色质为异染色质。
此外,基因沉寂也和DNA的甲基化修饰有关,比如在真核生物基因组中的许多基因的5‘端分布有长约1KB( 千碱基对)的“CpG"岛序列(CpG island),其中的“C"芳香环5位可被甲基化修饰,之后,与甲基化修饰的DNA结合蛋白形成“沉寂"区段,使其下游基因不能表达;另外,非编码的RNA分子(non-coding RNA)也参与“基因沉默”过程。
这一类型常见于含有重复DNA序列的染色质区,如着丝粒部位的基因沉寂就需要非编码RNA 分子的参与。
简言之,基因沉寂或者基因沉默是涉及组蛋白甲基化、去乙酰化、乙酰化,DNA的甲基化修饰,甲基化修饰组蛋白结合蛋白Sir2/3/4,甲基化DNA结合蛋白,非编码RNA等等在内的一系列复杂组分发生在染色体DNA水平上的转基因沉默叫做位置沉默;发生在RNA转录水平上的转基因沉默叫做转录沉默;基因沉默因素:位置效应、DNA甲基化、重复序列诱发基因沉默、共抑基因沉默现象首先在转基因植物中发现,接着和线虫、真菌、昆虫、原生动物以及才鼠中陆续发现。
大量的研究表明,环境因子、发育因子、DNA 修饰、组蛋白乙酰化程度、基因拷贝数、位置效应、生物的保护性限制修饰以及基因的过度转录等都与基因沉默有关。
RISC的多次反复使用也能扩增RNAi的基因沉默效应基因沉默发生在两种水平上,一种是由于DNA甲基化、异染色质化以及位置效应等引起的转录水平上的基因沉默(tran-scriptional gene silencing,TGS),另一种是转录后基因沉默(post-transcriptional gene silen-cing,PTGS),即在基因转录后的水平上通过对靶标RNA进行特异性降解而使基因失活。
在这两种水平上引起的基因沉默都与基因的同源性有关,称为同源依赖性的基因沉默(homology-dependent gene silencing,HDGS)。
PTGS在多种生物中有共性,对PTGS的激活和与其相关的RNA降解调控过程有了初步的认识。
也发现植物病毒在转基因植物和非转基因植物中都能和转基因一样诱发转录后基因沉默。
令人吃惊的是,转基因植物的共抑制现象(转基因与同源的内源基因一起失活)、转基因植物的病毒抗性和非转基因植物对病毒正常自然侵染的抗性、真菌的quelling现象(真菌中的共抑制)、各种动物的RNA干扰(RNA interference,RNAi)以及转座因子的转座失活等这些表面看来完全不相关的现象中竟然存在着非常相似的基因沉默机制,即PTGS。
这种基因沉默可能是生物体的本能的反应,因为无论是转基因、转座因子还是病毒,对植物而言都是诱发突变的外来侵入的核酸,植物为保护自己,在长期的生物进化中,形成了基因沉默这种限制外源核酸入侵的防卫保护机制。
在线虫Caenorhabditis elegans中,RNAi敏感性缺失突变体中转座子的转座活性增强,表明转座子的转座失活是被一种类似PTGS的过程调控的,这一过程与RNAi作用有关,是通过细胞内双链RNA互作引起同源特异性的RNA降解。
PTGS中的RNA在细胞质中的特异性降解并不需要RNA结合到核糖体上,这与通常的RNA降解代谢调控需要与翻译相关连不同。
Bass对RNAi激发的RNA特异性降解机制进了体外研究,发现通过添加外源的双链RNA或靶标mRNA可以激活PTGS,这与早期在植物中发现的双链RNA介导PTGS一致。
通过对发生PTGS的转基因植物进行嫁接实验和分析植物病毒病的恢复现象观察到,PTGS是一种系统性的过程,称为系统获得性沉默(systemic acquired silencing,SAS)。
PTGS的系统传播性在真菌和线虫中也得到了证明。
进一步研究发现,转基因或病毒侵染介导的PTGS植物中普遍存在着大量的序列特异性正义和反义的大约25个核苷酸的小分子RNA,而正常的非转基因植物和没有发生PTGS的植物中则没有。
这些小分子RNA作为信号分子,在植物中与特定的运输蛋白特异结合,防止被核酸酶的降解,通过胞间连丝和韧皮部筛管运送到植物体的各个部位,使PTGS具有系统持久性。
这一运转过程与植物病毒在植物体内的运输有着十分相近的机制。
这些-25nt RNA的积累需要转基因的转录或病毒的复制,与其它双链RNA等多种异常RNA相比,-25nt RNA对于PTGS的激发、靶标RNA的特异性降解以及PTGS的系统性维持更为重要。
早在20世纪70年代初人们就发现,病毒或类病毒侵入植物后,RNA依赖性的RNA聚合酶(RNA-dependent RNA polymerase,RdRP)的活性明显提高。
RdRP是生物体内普遍存在的一种RNA聚合酶,在体外能以单链RNA或单链DNA甚至以双链RNA为模板,合成与模板互补RNA,合成的cRNA可长达100个核苷酸。
1993年,Lindbo等认为在PTGS植物中的RdRP与PTGS同源依赖性的RNA特异性降解有关。
最近Mour-rain等[8]从缺失转基因介导的PTGS拟南芥突变体中分离的sgs2(suppressor of gene silencing)和sde1(silencing defective)两个基因与番茄中的RdRP基因十分相似,支持了Lindbo的观点。
粗糙脉孢菌Neurospora crassa的qde-2(quilling-defective gene)和线虫C.elegans的rde-1(RNA interference-deficient gene)与蕃茄的RdRP基因也具有很高的同源性。
RdRP基因剔除实验证明,RdRP对RNAi和PTGS尤为重要。
这些研究结果表明,从比较低等的生物藻类、真菌到高等的植物再到动物线虫、锥虫、果蝇等中可能存在着一个由共同祖先进化来的相似的抵抗外来DNA侵入自身基因组的本能防卫机制。
RNAi引发的PTGS作为生物体中一种不完全的原始的生物免疫系统,在植物抗病毒中研究得比较详细。
研究发现,植物病毒的RNA可以直接作为PTGS的激发子,并且可能通过病毒来源的基因引发转基因植物对病毒的终生系统抗性,这和PTGS的从病毒侵染点传播到整个植株以及线虫中PTGS 的系统性一起证明了PTGS具有系统传播性。
缺少高效PTGS的植物突变体虽然在表型上几乎没有变化。
拟南芥PTGS突变体sgs2和sgs3对黄瓜花叶病毒(cucumber mosaic virus,CMV)的敏感性提高了,而突变体sde1对烟草花叶病毒(tobacco mosaic virus,TMV)和烟草脆裂病毒(tobacco rattle virus,TRV)的敏感性无变化。
Baulcombe研究组认为RdRP(SDE1或SGS2)对于引发产生PTGS的双链RNA是必需的,有些RNA 病毒在复制中用自身的RdRP合成双链RNA直接进入PTGS网络,而不需要寄主的RdRP去激活PTGS,这些病毒如TMV、TRV能在PTGS突变体中和野生型中一样致病,而另一些病毒如CMV需要寄主的RdRP来激活PTGS,所以PTGS突变体对这些病毒的敏感性要比野生型的高。
另一方面,还可能与有些病毒产生的抑制PTGS的蛋白质有关,如CMV和番茄不孕病毒(tomato aspermy virus,TAV)的2b蛋白以及马铃薯Y病毒(potato Y virus,PVY)的蚜传辅助因(helpercomponent/protease,HC-Pro)等。
由此可见,不同的RNA病毒是通过不同的位点进入并引发PTGS网络的。
由于拟芥南PTGS突变体是通过转基因介导的PTGS筛选的,突变体对不同病毒敏感性的变化,也可能表明转基因和病毒侵染引发植物PTGS的机制是有差别的。
在突变体sde1中,与PTGS有关的-25nt转基因特异性的RNA 的积累明显减少,而病毒特异性的-25nt RNA的量不变,这也表明转基因和侵染病毒是通过不同途径引发PTGS的。
从大量的研究结果中我们可以推测,生物体内有一套RNA监视系统,可以通过多种异常RNA来激发。
如果外来核酸是DNA(包括转基因、重组基因、DNA病毒、扩增子等),靶标RNA需要在细胞核中完全成转录后运转到细胞质中,而侵入细胞质的病毒RNA可以直接提供靶标RNA。
各种不同的靶标RNA(包括与外源基因同源的内源基因和外来的DNA产生的RNA以及病毒的RNA)由寄主的RdRP或病毒自身的RdRP通过多种不同的途径反靶标RNA转变成为双链RNA,从而通过RNAi引发的PTGS。