BP神经网络评价
- 格式:pdf
- 大小:421.86 KB
- 文档页数:5
基于BP神经网络的计算机实验室管理评价指标分析摘要:基于bp神经网络的计算机实验室管理评价指标体系与模型,通过bp网络,采用确定的数据,量化评价指标,大大提升了实验室管理水平。
关键词:bp神经网络;计算机实验室管理;评价指标分析中图分类号:tp183 文献标识码:a 文章编号:1674-7712 (2013)04-0088-01一、bp神经网络从本质上讲,bp神经网络算法是以网络误差平方和为目标函数,运用梯度法求目标函数达到最小值的算法。
纠错原则是bp算法最为基本的一个原理,将网络输出的误差进行反向传播,运用梯度下降法,对网络的连接权值进行调整和修改,使其误差最小。
在学习过程中,bp算法可以划分为两个阶段,一是前向计算,一是误差反向传播。
在这里我们主要通过具体的来分析,假设一个两层的 bp 神经网络,其输入为p,输入神经元有r个,隐含层内神经元有s1个,激活函数为f1,输出层内有神经元s2个,对应的激活函数为f2,输出为a,目标矢量为t,那么信息在进行正向传递时,具体的情况如下:二、模型设计其次是模型设计。
bp神经网络的建立,在确定了相关指标体系以后,就需要将确定相关的结点数,如输入结点数、隐含结点数、输出结点数、每一层的结点数等,在起初建立时,需要根据初始网络参数,适当地调整网络结构,通过网络训练,使得整个学习过程更加稳定,与此同时,对于指定的误差进行调整,并且规定最大值,并且利用相关的测试数据来进行bp神经网络的优化处理,确定其达到设计的准确性与规范性,那么一个bp神经网络模型就建立起来了。
第三是模型确立。
对于模型的确立主要体现在三个方面,这里作简单分析,一是输入输出神经元个数确立,通常情况下,实验室管理指标主要有13个二级指标和4个一级指标,其中,这13个指标就是输入神经元的个数,同时将输出的神经元作业评价的结果,由于评价的结果只有一个,那么输出神经元的个数也只有1个。
二是隐含神经元个数确立。
BP神经网络的优缺点介绍人工神经网络(Artificial Neural Network)又称连接机模型,是在现代神经学、生物学、心理学等学科研究的基础上产生的,它反映了生物神经系统处理外界事物的基本过程,是在模拟人脑神经组织的基础上发展起来的计算系统,是由大量处理单元通过广泛互联而构成的网络体系,它具有生物神经系统的基本特征,在一定程度上反映了人脑功能的若干反映,是对生物系统的某种模拟,具有大规模并行、分布式处理、自组织、自学习等优点,被广泛应用于语音分析、图像识别、数字水印、计算机视觉等很多领域,取得了许多突出的成果。
最近由于人工神经网络的快速发展,它已经成为模式识别的强有力的工具。
神经网络的运用展开了新的领域,解决其它模式识别不能解决的问题,其分类功能特别适合于模式识别与分类的应用。
多层前向BP网络是目前应用最多的一种神经网络形式, 它具备神经网络的普遍优点,但它也不是非常完美的, 为了更好的理解应用神经网络进行问题求解, 这里对它的优缺点展开一些讨论。
首先BP神经网络具有以下优点:1) 非线性映射能力:BP神经网络实质上实现了一个从输入到输出的映射功能,数学理论证明三层的神经网络就能够以任意精度逼近任何非线性连续函数。
这使得其特别适合于求解内部机制复杂的问题,即BP神经网络具有较强的非线性映射能力。
2) 自学习和自适应能力:BP神经网络在训练时,能够通过学习自动提取输出、输出数据间的“合理规则”,并自适应的将学习内容记忆于网络的权值中。
即BP神经网络具有高度自学习和自适应的能力。
3) 泛化能力:所谓泛化能力是指在设计模式分类器时,即要考虑网络在保证对所需分类对象进行正确分类,还要关心网络在经过训练后,能否对未见过的模式或有噪声污染的模式,进行正确的分类。
也即BP神经网络具有将学习成果应用于新知识的能力。
4) 容错能力:BP神经网络在其局部的或者部分的神经元受到破坏后对全局的训练结果不会造成很大的影响,也就是说即使系统在受到局部损伤时还是可以正常工作的。
BP神经⽹络综合评价法
BP神经⽹络综合评价法是⼀种交互式的评价⽅法,⼀种既能避免⼈为计取权重的不精确性, ⼜能避免相关系数求解的复杂性,还能对数量较⼤且指标更多的实例进⾏综合评价的⽅法,它可以根据⽤户期望的输出不断修改指标的权值,直到⽤户满意为⽌。
因此,⼀般来说,⼈⼯神经⽹络评价⽅法得到的结果会更符合实际情况。
BP神经⽹络是⼀种典型的多层前向神经⽹络,由输⼊层、隐,层和输出层组成,层与层之间采⽤全部连接⽅式,同层节点之间不存在相互连接,其中输⼊层节点仅在信号输⼊作⽤,输出层节点起线性加权作⽤,隐层节点负责对信息进⾏最主要的数学处理。
不失⼀般性,设输
⼊层有 M 个节点,隐层有L个节点,输出层有P个节点,样本数为N,输⼊向量为,为隐层节点与输⼊层节点的连接权值,则隐层节点的输⼊和输出分别为:
隐层节点的激励函数⼀般选取双曲正切函数或型函数等⾮线性函数,⽽输⼊层节点的激励函数⼀般选取等⽐喻出的线性函数。
⽽输
出层节点与隐层节点的连接权值为,则输⼊层节点的输出为:
采⽤算法对⽹络进⾏训练。
算法是⾮线性最⼩⼆乘⽆约束优化算法,其本质是⾼斯-⽜顿法的改进⽅式,具有⼆阶收敛速度,既具有⾼斯-⽜顿法的局部收敛⽅式,⼜具有梯度下降法的全局收敛特性。
BP神经网络优缺点的讨论BP神经网络是一种常见的人工神经网络,因其具有训练速度快、分类精度高等优点而被广泛应用在各种领域。
然而,BP神经网络也存在着一些缺点。
优点:1. 易于训练:BP神经网络采用误差反向传递算法,可以较快地完成模型的训练过程,同时能够对训练数据进行自适应调整,从而提高分类精度。
2. 适用性广泛:BP神经网络可以用于各种分类、回归等问题,包括图像处理、语音识别、自然语言处理等领域,同时可以适用于多种数据类型,如数值型、文本型等。
3. 鲁棒性强:BP神经网络能够自适应地处理噪声和错误信息,并且能够较好地处理数据中的缺失值。
4. 结构简单易实现:BP神经网络的结构相对简单,易于理解和实现,同时也便于对模型的拓展和改进。
1. 容易陷入局部最优解:BP神经网络的优化目标为最小化误差,但是其参数优化过程可能会出现陷入局部最优解的情况,而无法达到全局最优解。
2. 学习速度较慢:BP神经网络的训练过程需要大量的数据和时间来完成,而且需要通过多次迭代来优化网络参数,因此其学习速度相对较慢。
3. 对初始值敏感:BP神经网络的初始权重和偏置值会影响到模型最终的精度,因此需要进行较为精细的调整,而且有时需要多次随机初始化来选择较好的参数。
4. 难以解释:BP神经网络的内部结构过于复杂,难以解释为什么模型能够取得一定的分类精度,这会使得BP神经网络的应用和推广受到一定的限制。
总之,BP神经网络具有许多优点,如易于训练、适用性广泛、鲁棒性强和结构简单易实现等,但是它也存在着一些缺点,如容易陷入局部最优解、学习速度较慢、对初始值敏感和难以解释等。
这些缺点一方面会导致BP神经网络在某些情境下表现不佳,另一方面也为BP神经网络的拓展和改进提供了一定的思路和方向。
BP 神经网络评价
本模型建立3层的bp 神经网络模型,即输入层、隐含层、输出层各一个。
确定BP 神经网络中的节点数:
根据研究评价体系及相关城市病等级评价的BP 神经网络模型的输入层为10个节点,对应10个评价指标;输出层为5个节点,对应五个城市病的等级识别结果。
在BP 神经网络中,确定隐含层节点数目对神经网络至关重要,它是导致样本训练过程中出现“过拟合”现象的重要原因[4]。
本文采用经验公式法计算隐藏节点数。
21J m =+ (1)
其中,J 为最佳隐含层节点数目,m 为输入层节点数目。
(3)构造网络函数
newff 函数的功能为构建一个BP 神经网络,在本文中的构建形式如下:
(1,2,)net newff PR PR S = (2)
其中,1PR 为输入样本数据,2PR 为输出样本数据,S 为隐含层节点数。
(4)网络训练
根据不同等级城市病的标准,采用等差序列的方法生成25组训练样本,组数满足大于输入节点数的两倍。
确定网络学习速率:BP 算法的收敛速度在很大程度上取决于学习速率,本文采用动量法来调整学习速率,在该权值基础上加上前一次权值调节量的值。
(1)()E
w x m w x w
ξ∂∆+=+∆∂ (3)
式(3)中,m 为动量系数,一般取值(0,0.9)。
动量的作用是缓冲和平滑,改善网络收敛的过程,调节网络收敛速度,从而使模型更稳定
······
输入层
隐含层
输出层
%结果看横排那个数最大对应的位置就是那个级别
将数据录入相应的矩阵中,全选中保存为num表格
训练样本(采用等差序列构造,最好每个等级设置5组以上的训练样本组)
测试样本:。