线性系统和非线性系统区别
- 格式:doc
- 大小:22.00 KB
- 文档页数:1
填空题每空1分,共20分1. 线性控制系统最重要的特性是可以应用___叠加__原理,而非线性控制系统则不能;2.反馈控制系统是根据输入量和__反馈量__的偏差进行调节的控制系统;3.在单位斜坡输入信号作用下,0型系统的稳态误差e ss =∞___; 4.当且仅当闭环控制系统特征方程的所有根的实部都是__负数__时,系统是稳定的;5.方框图中环节的基本连接方式有串联连接、并联连接和__反馈 _连接;6.线性定常系统的传递函数,是在_ 初始条件为零___时,系统输出信号的拉氏变换与输入信号的拉氏变换的比; 7.函数te -at的拉氏变换为2)(1a s +;8.线性定常系统在正弦信号输入时,稳态输出与输入的相位移随频率而变化的函数关系称为__相频特性__;9.积分环节的对数幅频特性曲线是一条直线,直线的斜率为__-20__dB /dec;10.二阶系统的阻尼比ξ为 _ 0_ 时,响应曲线为等幅振荡; 11.在单位斜坡输入信号作用下,Ⅱ型系统的稳态误差e ss =__0__; 12.0型系统对数幅频特性低频段渐近线的斜率为___0___dB/dec,高度为20lgKp;13.单位斜坡函数t 的拉氏变换为21s ;14. 根据系统输入量变化的规律,控制系统可分为__恒值__控制系统、___随动___ 控制系统和程序控制系统;15. 对于一个自动控制系统的性能要求可以概括为三个方面:稳定性、__快速性__和准确性;16. 系统的传递函数完全由系统的结构和参数决定,与__输入量、扰动量__的形式无关;17. 决定二阶系统动态性能的两个重要参数是阻尼系数ξ和_无阻尼自然振荡频率w n ;18. 设系统的频率特性Gj ω=R ω+jI ω,则幅频特性|Gj ω|=)()(22w I w R +;19. 分析稳态误差时,将系统分为0型系统、I 型系统、II 型系统…,这是按开环传递函数的__积分__环节数来分类的; 20. 线性系统稳定的充分必要条件是它的特征方程式的所有根均在复平面的___左___部分;21.ω从0变化到+∞时,惯性环节的频率特性极坐标图在____第四____象限,形状为___半___圆;22. 用频域法分析控制系统时,最常用的典型输入信号是_正弦函数_;23.二阶衰减振荡系统的阻尼比ξ的范围为10<<ξ; 24.Gs=1+Ts K的环节称为___惯性__环节;25.系统输出量的实际值与_输出量的希望值__之间的偏差称为误差;26.线性控制系统其输出量与输入量间的关系可以用___线性微分__方程来描述;27. 稳定性 、 快速性 和准确性是对自动控制系统性能的基本要求;28.二阶系统的典型传递函数是2222nn nw s w s w ++ξ;29.设系统的频率特性为)(jI )j (R )j (G ω+ω=ω,则)(R ω称为 实频特性 ;30. 根据控制系统元件的特性,控制系统可分为__线性__ 控制系统、 非线性_控制系统;31. 对于一个自动控制系统的性能要求可以概括为三个方面:稳定性、快速性和_准确性__;32.二阶振荡环节的谐振频率ωr 与阻尼系数ξ的关系为ωr =ωn122-ξ;33.根据自动控制系统是否设有反馈环节来分类,控制系统可分为__开环_控制系统、_闭环__控制系统;34.用频率法研究控制系统时,采用的图示法分为极坐标图示法和__对数坐标_图示法;35.二阶系统的阻尼系数ξ=时,为最佳阻尼系数;这时系统的平稳性与快速性都较理想;1. 传递函数的定义是对于线性定常系统,在初始条件为零的条件下,系统输出量的拉氏变换与输入量的拉氏变换之比;2. 瞬态响应是系统受到外加作用激励后,从初始状态到最终或稳定状态的响应过程;3. 判别系统稳定性的出发点是系统特征方程的根必须为负实根或负实部的复数根,即系统的特征根必须全部在复平面的左半平面是系统稳定的充要条件;4. I 型系统G s Ks s ()()=+2在单位阶跃输入下,稳态误差为 0 ,在单位加速度输入下,稳态误差为 ∞ ;5. 频率响应是系统对正弦输入稳态响应,频率特性包括幅频和相频两种特性;6. 如果系统受扰动后偏离了原工作状态,扰动消失后,系统能自动恢复到原来的工作状态,这样的系统是渐进稳定的系统;7. 传递函数的组成与输入、输出信号无关,仅仅决定于系统本身的结构和参数,并且只适于零初始条件下的线性定常系统;8. 系统的稳态误差与输入信号的形式及系统的结构和参数或系统的开环传递函数有关;9. 如果在系统中只有离散信号而没有连续信号,则称此系统为离散数字控制系统,其输入、输出关系常用差分方程来描述; 10. 反馈控制系统开环对数幅频特性三频段的划分是以ωc 截止频率附近的区段为中频段,该段着重反映系统阶跃响应的稳定性和快速性;而低频段主要表明系统的稳态性能;11. 对于一个自动控制系统的性能要求可以概括为三个方面:稳定性、快速 性和精确或准确性; 单项选择题:1.当系统的输入和输出已知时,求系统结构与参数的问题,称为 A.最优控制 B.系统辩识 C.系统校正 D.自适应控制2.反馈控制系统是指系统中有A.反馈回路B.惯性环节C.积分环节 调节器3. =1s a+,a 为常数;A. Le -atB. Le atC. Le-t -aD. Le-t+at 2e 2t= A. 123()s - B. 1a s a ()+C.223()s + D. 23s5.若Fs=421s +,则Lim f t t →0()= A. 4 B. 2 C. 0 D. ∞ 6.已知ft=e at,a 为实数,则L f t dt t()0⎰=A. as a- B. 1a s a ()+ C.1s s a ()- D. 1a s a ()-t=3202t t ≥<⎧⎨⎩,则Lft=A. 3sB. 12s e s -C. 32s e s -D. 32se s 8.某系统的微分方程为52000 () ()()()x t x t x t x t i +⋅=,它是A.线性系统B.线性定常系统C.非线性系统D.非线性时变系统 9.某环节的传递函数为Gs=e-2s,它是A.比例环节B.延时环节C.惯性环节D.微分环节 10.图示系统的传递函数为A. 11RCs + B. RCs RCs +1C. RCs+1D. RCs RCs+1 11.二阶系统的传递函数为Gs=341002s s ++,其无阻尼固有频率ωn 是A. 10B. 5C.D. 25 12.一阶系统K Ts 1+的单位脉冲响应曲线在t=0处的斜率为 A. K T B. KT C. -K T2D. K T 213.某系统的传递函数Gs=KT s +1,则其单位阶跃响应函数为A. 1T e Kt T -/B. K Te t T -/ C. K1-e -t/TD. 1-e-Kt/T14.图示系统称为 型系统;A. 0B. ⅠC. ⅡD. Ⅲ15.延时环节Gs=e-τs的相频特性∠Gjω等于A. τωB. –τωC.90°D.180°16.对数幅频特性的渐近线如图所示,它对应的传递函数Gs为A. 1+TsB. 11+TsD. 1+Ts2C. 1Ts17.图示对应的环节为A. TsB. 11+TsC. 1+TsD. 1Ts18.设系统的特征方程为Ds=s3+14s2+40s+40τ=0,则此系统稳定的τ值范围为A. τ>0B. 0<τ<14C. τ>14D. τ<019.典型二阶振荡环节的峰值时间与 有关;A.增益B.误差带C.增益和阻尼比D.阻尼比和无阻尼固有频率20.若系统的Bode 图在ω=5处出现转折如图所示,这说明系统中有环节; A. 5s+1 B. 5s+12C. +1D.10212(.)s +21.某系统的传递函数为Gs=()()()()s s s s +-+-72413,其零、极点是 A.零点s=-,s=3;极点s=-7,s=2 B.零点s=7,s=-2;极点s=,s=3C.零点s=-7,s=2;极点s=-1,s=3D.零点s=-7,s=2;极点s=-,s=3 22.一系统的开环传递函数为32235()()()s s s s +++,则系统的开环增益和型次依次为A. 0.4,ⅠB. ,ⅡC. 3,ⅠD. 3,Ⅱ23.已知系统的传递函数Gs=K Te sts 1+-,其幅频特性|Gj ω|应为A. K T e 1+-ωτB. KT e 1+-ωτωC.K T e 2221+-ωτω D.K T 122+ω24.二阶系统的阻尼比ζ,等于A.系统的粘性阻尼系数B.临界阻尼系数与系统粘性阻尼系数之比C.系统粘性阻尼系数与临界阻尼系数之比D.系统粘性阻尼系数的倒数25.设ωc 为幅值穿越交界频率,φωc 为开环频率特性幅值为1时的相位角,则相位裕度为A. 180°-φωcB. φωcC. 180°+φωcD. 90°+φωc 26.单位反馈控制系统的开环传递函数为Gs=45s s ()+,则系统在rt=2t 输入作用下,其稳态误差为A. 104B. 54C. 45D. 0 27.二阶系统的传递函数为Gs=1222s s n n++ζωω,在0<ζ<22时,其无阻尼固有频率ωn 与谐振频率ωr 的关系为A. ωn <ωrB. ωn =ωrC. ωn >ωrD. 两者无关28.串联相位滞后校正通常用于A.提高系统的快速性B.提高系统的稳态精度C.减少系统的阻尼D.减少系统的固有频率29.下列串联校正装置的传递函数中,能在频率ωc =4处提供最大相位超前角的是A. 411s s ++B. s s ++141C. 01106251..s s ++ D. 06251011..s s ++30.从某系统的Bode 图上,已知其剪切频率ωc ≈40,则下列串联校正装置的传递函数中能在基本保持原系统稳定性及频带宽的前提下,通过适当调整增益使稳态误差减至最小的是A. 000410041..s s ++B. 04141.s s ++C. 41101s s ++ D. 41041s s ++. 单项选择题每小题1分,共30分二、填空题每小题2分,共10分1.系统的稳态误差与系统开环传递函数的增益、_______和_______有关;2.一个单位反馈系统的前向传递函数为K s s s3254++,则该闭环系统的特征方程为_______开环增益为_______;3.二阶系统在阶跃信号作用下,其调整时间t s 与阻尼比、_______和_______有关;4.极坐标图Nyquist 图与对数坐标图Bode 图之间对应关系为:极坐标图上的单位圆对应于Bode 图上的_______;极坐标图上的负实轴对应于Bode 图上的_______;5.系统传递函数只与_______有关,与______无关; 填空题每小题2分,共10分1.型次 输入信号+5s 2+4s+K=0,K 43.误差带 无阻尼固有频率分贝线 -180°线5.本身参数和结构 输入1. 线性系统和非线性系统的根本区别在于CA .线性系统有外加输入,非线性系统无外加输入;B .线性系统无外加输入,非线性系统有外加输入;C .线性系统满足迭加原理,非线性系统不满足迭加原理;D .线性系统不满足迭加原理,非线性系统满足迭加原理;2.令线性定常系统传递函数的分母多项式为零,则可得到系统的 BA .代数方程B .特征方程C .差分方程D .状态方程3. 时域分析法研究自动控制系统时最常用的典型输入信号是DA .脉冲函数B .斜坡函数C .抛物线函数D .阶跃函数 4.设控制系统的开环传递函数为Gs=)2s )(1s (s 10++,该系统为BA .0型系统B .I 型系统C .II 型系统D .III 型系统5.二阶振荡环节的相频特性)(ωθ,当∞→ω时,其相位移)(∞θ为 BA .-270°B .-180°C .-90°D .0°6. 根据输入量变化的规律分类,控制系统可分为 AA.恒值控制系统、随动控制系统和程序控制系统B.反馈控制系统、前馈控制系统前馈—反馈复合控制系统C.最优控制系统和模糊控制系统D.连续控制系统和离散控制系统7.采用负反馈连接时,如前向通道的传递函数为Gs,反馈通道的传递函数为Hs,则其等效传递函数为 CA .)s (G 1)s (G + B .)s (H )s (G 11+C .)s (H )s (G 1)s (G +D .)s (H )s (G 1)s (G -8. 一阶系统Gs=1+Ts K 的时间常数T 越大,则系统的输出响应达到稳态值的时间AA .越长B .越短C .不变D .不定9.拉氏变换将时间函数变换成DA .正弦函数B .单位阶跃函数C .单位脉冲函数D .复变函数10.线性定常系统的传递函数,是在零初始条件下DA .系统输出信号与输入信号之比B .系统输入信号与输出信号之比C .系统输入信号的拉氏变换与输出信号的拉氏变换之比D .系统输出信号的拉氏变换与输入信号的拉氏变换之比 11.若某系统的传递函数为Gs=1Ts K+,则其频率特性的实部R ω是A A .22T 1Kω+ B .-22T1Kω+C .T1K ω+D .-T1K ω+12. 微分环节的频率特性相位移θω= AA. 90°B. -90°C. 0°D. -180°13. 积分环节的频率特性相位移θω= BA. 90°B. -90°C. 0°D. -180°14.传递函数反映了系统的动态性能,它与下列哪项因素有关 CA.输入信号B.初始条件C.系统的结构参数D.输入信号和初始条件15. 系统特征方程式的所有根均在根平面的左半部分是系统稳定的 CA.充分条件B.必要条件C.充分必要条件D.以上都不是16. 有一线性系统,其输入分别为u 1t 和u 2t 时,输出分别为y 1t 和y 2t;当输入为a 1u 1t+a 2u 2t 时a 1,a 2为常数,输出应为 BA. a 1y 1t+y 2tB. a 1y 1t+a 2y 2tC. a 1y 1t-a 2y 2tD. y 1t+a 2y 2t17. I 型系统开环对数幅频渐近特性的低频段斜率为 BA. -40dB/decB. -20dB/decC. 0dB/decD. +20dB/dec 18. 设系统的传递函数为Gs=255252++s s ,则系统的阻尼比为CA.25B. 5C. 21D. 119.正弦函数sintω的拉氏变换是BA.ω+s 1B.22s ω+ωC.22s s ω+ D.22s 1ω+20.二阶系统当0<ζ<1时,如果增加ζ,则输出响应的最大超调量%σ将 BA.增加B.减小C.不变D.不定 21.主导极点的特点是DA.距离实轴很远B.距离实轴很近C.距离虚轴很远D.距离虚轴很近 22.余弦函数costω的拉氏变换是CA.ω+s 1B.22s ω+ωC.22s s ω+ D.22s 1ω+23.设积分环节的传递函数为Gs=s1,则其频率特性幅值M ω=CA.ωKB.2K ω C.ω1 D.21ω24. 比例环节的频率特性相位移θω= C° ° ° °25. 奈奎斯特稳定性判据是利用系统的 C 来判据闭环系统稳定性的一个判别准则;A.开环幅值频率特性B.开环相角频率特性C.开环幅相频率特性D.闭环幅相频率特性 26. 系统的传递函数CA.与输入信号有关B.与输出信号有关C.完全由系统的结构和参数决定D.既由系统的结构和参数决定,也与输入信号有关 27. 一阶系统的阶跃响应,DA.当时间常数T 较大时有振荡B.当时间常数T 较小时有振荡C.有振荡D.无振荡28. 二阶振荡环节的对数频率特性相位移θω在 D 之间;°和90° °和-90° °和180° °和-180° 29. 某二阶系统阻尼比为,则系统阶跃响应为 CA. 发散振荡B. 单调衰减C. 衰减振荡D. 等幅振荡 二.设有一个系统如图1所示,k 1=1000N/m, k 2=2000N/m, D=10N/m/s,当系统受到输入信号t t x i sin 5)(= 的作用时,试求系统的稳态输出)(t x o ;15分 解:()()()1015.001.021211+=++=s sk k Ds k k Ds k s X s X i o 然后通过频率特性求出 ()() 14.89sin 025.0+=t t x o三.一个未知传递函数的被控系统,构成单位反馈闭环;经过测试,得知闭环系统的单位阶跃响应如图2所示;10分问:1 系统的开环低频增益K 是多少 5分2 如果用主导极点的概念用低阶系统近似该系统,试写出其近似闭环传递函数;5分 解:100718K K =+,07K =2 ()()8025.07+=s s X s X i o四.已知开环最小相位系统的对数幅频特性如图3所示;10分 1. 写出开环传递函数Gs 的表达式;5分 2. 概略绘制系统的Nyquist 图;5分 1.)100s )(01.0s (s 100)1100s )(101.0s (s K)s (G ++=++=2.五.已知系统结构如图4所示, 试求:15分 1. 绘制系统的信号流图;5分 2. 求传递函数)()(s X s X i o 及)()(s N s X o ;10分六.系统如图5所示,)(1)(t t r =为单位阶跃函数,试求:10分 1. 系统的阻尼比ξ和无阻尼自然频率ωn ;5分2. 动态性能指标:超调量M p 和调节时间%)5(=∆s t ;5分1.)2s (s )2S (S 4n 2nξω+ω=+ 2.%5.16%100eM 21p =⨯=ξ-ξπ-七.如图6所示系统,试确定使系统稳定且在单位斜坡输入下e ss ≤225.时,K的数值;10分由劳斯判据:第一列系数大于零,则系统稳定得54K 0<< 又有:K9e ss =≤可得:K ≥4 ∴ 4≤K <54八.已知单位反馈系统的闭环传递函数32)(+=Φs s ,试求系统的相位裕量γ;10分解:系统的开环传递函数为1s 2)s (W 1)s (W )s (G +=-=112|)j (G |2cc =+ω=ω,解得3c =ω三、设系统的闭环传递函数为Gcs=ωξωωnn ns s 2222++,试求最大超调量σ%=%、峰值时间tp=秒时的闭环传递函数的参数ξ和ωn 的值;解:∵%100%21⨯=--ξξπσe=%∴ξ= ∵t p =πωξn 12-=∴ωn =πξt p 13140210622-=-=...s四、设一系统的闭环传递函数为G c s=ωξωωnn nss 2222++,试求最大超调量σ%=5%、调整时间t s =2秒△=时的闭环传递函数的参数ξ和ωn的值;解:∵%100%21⨯=--ξξπσe =5%∴ξ= ∵t s =ξωn 3=2∴ωn = rad/s五、设单位负反馈系统的开环传递函数为 )6(25)(+=s s s G k 求1系统的阻尼比ζ和无阻尼自然频率ωn ;2系统的峰值时间t p 、超调量σ%、 调整时间t S △=;解:系统闭环传递函数2562525)6(25)6(251)6(25)(2++=++=+++=s s s s s s s s s G B 与标准形式对比,可知 62=n w ξ ,252=n w故 5=n w , 6.0=ξ 又 46.015122=-⨯=-=ξnd w w六、某系统如下图所示,试求其无阻尼自然频率ωn ,阻尼比ζ,超调量σ%,峰值时间p t ,调整时间s t △=;解: 对于上图所示系统,首先应求出其传递函数,化成标准形式,然后可用公式求出各项特征量及瞬态响应指标;与标准形式对比,可知 08.02=n w ξ ,04.02=n w 七、已知单位负反馈系统的开环传递函数如下: 求:1 试确定系统的型次v 和开环增益K ; 2试求输入为t t r 31)(+=时,系统的稳态误差; 解:1将传递函数化成标准形式 可见,v =1,这是一个I 型系统 开环增益K =50;2讨论输入信号,t t r 31)(+=,即A =1,B =3 根据表3—4,误差06.006.00503111=+=+∞+=++=V p ss K B K A e 八、 已知单位负反馈系统的开环传递函数如下: 求:1 试确定系统的型次v 和开环增益K ; 2试求输入为2425)(t t t r ++=时,系统的稳态误差; 解:1将传递函数化成标准形式可见,v =2,这是一个II 型系统 开环增益K =100; 2讨论输入信号,2425)(t t t r ++=,即A =5,B =2, C=4根据表3—4,误差04.004.00010042151=++=+∞+∞+=+++=a V p ssK C K B K A e 九、 已知单位负反馈系统的开环传递函数如下: 求:1 试确定系统的型次v 和开环增益K ; 2试求输入为2252)(t t t r ++=时,系统的稳态误差; 解:1该传递函数已经为标准形式 可见,v =0,这是一个0型系统 开环增益K =20;2讨论输入信号,2252)(t t t r ++=,即A =2,B =5,C=2 根据表3—4,误差∞=∞+∞+=+++=+++=212020520121Ka C K B K A e V p ss十、设系统特征方程为s 4+2s 3+3s 2+4s+5=0试用劳斯-赫尔维茨稳定判据判别该系统的稳定性;解:用劳斯-赫尔维茨稳定判据判别,a 4=1,a 3=2,a 2=3,a 1=4,a 0=5均大于零,且有所以,此系统是不稳定的; 十一、设系统特征方程为试用劳斯-赫尔维茨稳定判据判别该系统的稳定性;解:用劳斯-赫尔维茨稳定判据判别,a 4=1,a 3=6,a 2=12,a 1=10,a 0=3均大于零,且有 所以,此系统是稳定的; 十二、设系统特征方程为试用劳斯-赫尔维茨稳定判据判别该系统的稳定性;解:用劳斯-赫尔维茨稳定判据判别,a 4=1,a 3=5,a 2=2,a 1=4,a 0=3均大于零, 且有所以,此系统是不稳定的; 十三、设系统特征方程为试用劳斯-赫尔维茨稳定判据判别该系统的稳定性;解:1用劳斯-赫尔维茨稳定判据判别,a 3=2,a 2=4,a 1=6,a 0=1均大于零,且有所以,此系统是稳定的;十四、设系统开环传递函数如下,试绘制系统的对数幅频特性曲线;解:该系统开环增益K =30;有一个积分环节,即v =1;低频渐近线通过1,20lg30这点,斜率为-20dB/dec ;有一个惯性环节,对应转折频率为5002.011==w ,斜率增加-20dB/dec;系统对数幅频特性曲线如下所示;20lg30十五、设系统开环传递函数如下,试绘制系统的对数幅频特性曲线;解:该系统开环增益K =100;有一个积分环节,即v =1;低频渐近线通过1,20lg100这点,即通过1,40这点斜率为-20dB/dec ; 有两个惯性环节,对应转折频率为101.011==w ,10001.012==w ,斜率分别增加-20dB/dec系统对数幅频特性曲线如下所示;十六、设系统开环传递函数如下,试绘制系统的对数幅频特性曲线;解:该系统开环增益K =1;无积分、微分环节,即v =0,低频渐近线通过1,20lg1这点,即通过1,0这点斜率为0dB/dec ;有一个一阶微分环节,对应转折频率为101.011==w ,斜率增加20dB/dec;系统对数幅频特性曲线如下所示;dec十七、如下图所示,将方框图化简,并求出其传递函数;解:十八、如下图所示,将方框图化简,并求出其传递函数; 解:十九、如下图所示,将方框图化简,并求出其传递函数;L /dB20 dB / dec 10rad/s一一H 1G 1 G 2H 2 RSCS一 一H 1/G 2 G 1 G 2H 2RS CS一 H 1/G 2 G 1 RS CS G 2 1+ G 2H 2 一H 1/G 2RSCS G 1G 2 1+ G 2H 2 RSCSG 1G 2 1+ G 2H 2+G 1H 1解:三、简答题共16分1.4分已知系统的传递函数为2432s s ++,求系统的脉冲响应表达式;2.4分已知单位反馈系统的开环传递函数为K s s ()71+,试问该系统为几型系统系统的单位阶跃响应稳态值为多少3.4分已知二阶欠阻尼系统的单位阶跃响应如下,如果将阻尼比ζ增大但不超过1,请用文字和图形定性说明其单位阶跃响应的变化;4.4分已知各系统的零点o 、极点x 分布分别如图所示,请问各个系统是否有非主导极点,若有请在图上标出; 四、计算题本大题共6小题,共44分一 一 G 1G 3H 1 RSCSG 2H 1一 H 1 G 3 RSCSG 1G 2 1+ G 2H 1RSCSG 1G 2G 31+ G 2H 1+ G 1G 2H 1一一G 1G 3RSCSG 2H 11.7分用极坐标表示系统14212s s ++的频率特性要求在ω→∞、ω=0、ω=ωn 等点准确表示,其余定性画出;2.7分求如下系统Rs 对Cs 的传递函数,并在图上标出反馈通道、顺馈通道;3.6分已知系统的调节器为问是否可以称其为PID 调节器,请说明理由;4.8分求如图所示机械网络的传递函数,其中X 为输入位移,Y 为输出位移;5.10分已知单位反馈闭环系统的开环传递函数为40110011s s s (.)(.)++,请绘出频率特性对数坐标图Bode 图,并据图评价系统的稳定性、动态性能和静态性能要说明理由;6.6分请写出超前校正装置的传递函数,如果将它用于串联校正,可以改善系统什么性能 三、简答题共16分1.24311132s s s s ++=++-+ gt=e -t -e -3t ,t ≥0 2.Ⅰ型;稳态值等于13.上升时间变大;超调量减少;调节时间减小大体上;4.无非主导极点;非主导极点;非主导极点四、计算题共44分1.ω→∞点ω=0点ωn=点曲线大体对2.C sR s G G GG Gf() ()() =++13.6分G0s=T3+T4+T3T4s+1/sG 0s 由比例部分T 3+T 4、微分部分T 3T 4s 及积分部分1/s 相加而成 4.8分B ( )xy Ky --=0 Gs=Ts Ts +1,T=B/k 5.开环传递函数在复半平面无极点,据图相位裕度为正,幅值裕度分贝数为正,根据乃奎斯特判据,系统稳定;系统为Ⅰ型,具有良好的静态性能;相位裕度约为60度,具有良好的动态性能;s=K Ts Tsαα++≥111,可增加相位裕度,调整频带宽度;设系统的特征方程为DS =S 5+3S 4+4S 3+12S 2-5S-15 试用Routh 表判别系统的稳定性,并说明该系统具有正实部特征根的个数; 解:根据特征方程的系数,列Routh 表如下:S 5 1 4-5 0S 4 3 12 -15 0 S 3由第二行各元素得辅助方程2p=4,p=2FS= 3S 4+12S 2-15=0 取FS 对S 的导数,则得新方程12S3+24S=0得如下的Routh表S5 1 4 -5 0S4 3 12 -15 0S312 24 0 0S2 6 -15 0S154 0S0-15 符号改变一次,系统不稳定该系统具有正实部特征根个数为1;。
1、反馈:输出信号被测量环节引回到输入端参与控制的作用。
2、开环控制系统与闭环控制系统的根本区别:有无反馈。
3、线性及非线性系统的定义及根本区别:当系统的数学模型能用线性微分方程描述时,该系统的称为线性系统。
非线性系统:一个系统,如果其输出不与其输入成正比,则它是非线性的。
根本区别:线性系统遵从叠加原理,而非线性系统不然。
4、传递函数的定义及特点:零初始条件下,系统输出量的拉斯变换与输入量的拉斯变换的比值。
用G〔s〕表示。
特点:1〕、传递函数是否有量纲取决于输入与输出的性质,同性质无量纲。
2〕、传递函数分母中S的阶数必n不小于分子中的S的阶数m,既n=>m ,因为系统具有惯性。
3〕、假设输入已给定,则系统的输出完全取决于其传递函数。
4〕、物理量性质不同的系统,环节和元件可以具有相同类型的传递函数。
5〕、传递函数的分母与分子分别反映系统本身与外界无关的固有特性和系统同外界的关系。
5、开环函数的定义:前向通道传递函数G〔s〕与反馈回路传递函数H(s)之积。
6、时间响应的定义和组成:系统在激励信号作用下,输出随时间的变化关系。
按振动来源分为:零状态响应和零输入响应。
按振动性质:自由响应和强迫响应。
7、瞬态性能指标以及反映系统什么特性:性能指标:上升时间tr、峰值时间tp、最大超调量Mp、调整时间ts、振荡次数N。
这些性能指标主要反映系统对输入的响应的快速性。
8、稳态误差的定义及计算公式:系统进入稳态后的误差。
稳态误差反映稳态响应偏离系统希望值的程度。
衡量控制精度的程度。
稳态误差不仅取决于系统自身结构参数,而且与输入信号有关。
系统误差:输入信号与反馈信号之差。
9、减少输入引起稳态误差的措施:增大干扰作用点之前的回路的放大倍数K1,以及增加这一段回路中积分环节的数目。
10、频率响应的概念:线性定常系统对谐波输入的稳态响应称为频率响应。
11、频率特性的组成:幅频特性和相频特性。
12、稳定性的概念:系统在扰动作用下,输出偏离原平衡状态,待扰动消除后,系统能回到原平衡状态〔无静差系统〕或到达新的平衡状态〔有静差系统〕。
线性系统和⾮线性系统⼀、线性和⾮线性的区别?线形指量与量之间按⽐例、成直线的关系,在空间和时间上代表规则和光滑的运动;飞线性则指不按⽐例、不成直线的关系代表不规则的运动和突变。
⼆、如何判断⼀个系统是线形还是⾮线性系统?如果从系统状态空间表达式来观察,线性系统和⾮线性系统最明显的区别⽅式就是线性系统符合叠加原理,⽽⾮线性系统不然。
换句话说线性系统只有状态变量的⼀次项。
⾼次、三⾓函数以及常数项都没有,只要有任意⼀个⾮线性环节就是⾮线性系统。
三、⾮线性系统有⼀种⽅式是局部转化成线性系统才能控制?⾮线性系统不是不能控制⽽是不能掌控设想⼀下汽车的油门是⾮线性控制,如果踩⼀⼩点速度猛然上升,这种现象在现实中不希望看到,现实中需要缓慢的线性变化,⽽不是突变的⾮线性变化。
线形系统具有规律可循,只要找到系统的⼀部分就可以推算出其他部分,⾮线性系统⽆规律可循,于是将⾮线性系统近似为线性系统也是飞线性系统的⼀种计算⽅式。
四、⾮线性系统和线性系统相⽐具有什么特点?(1)线性系统的稳定性和输出特性,只取决于本⾝的结构和参数。
⽽⾮线性系统的稳定性和输出动态过程。
不仅与本⾝的结构和参数有关,⽽且还与系统的初始条件和输⼊信号⼤⼩有关。
(2)⾮线性系统的平衡运动状态,除平衡点外还可能有周期解。
周期解有稳定和不稳定两类,前者观察不到,后者是实际可观察到的。
因此在某些⾮线性系统中,即使没有外部输⼊作⽤也会产⽣有⼀定振幅和频率的振荡,称为⾃激振荡,相应的相轨线为极限环。
改变系统的参数可以改变⾃激振荡的振幅和频率。
这种特性可⽤于实际⼯程问题,以达到某种技术⽬的。
例如根据温度来影响⾃激振荡,可以构成双位式温度调节器。
(3)线性系统的输⼊为正弦函数时,其输出的稳态过程也是同频率的正弦函数,两者仅在相位和幅值上不同。
但⾮线性系统的输⼊为正弦函数时,其输出则包含有⾼次谐波的⾮正弦周期函数,即输出会产⽣倍频、分频、频率。
.1.线性系统和非线性系统的根本区别在于线性系统满足迭加原理,非线性系统不满足迭加原理。
2.令线性定常系统传递函数的分母多项式为零,则可得到系统的特征方程3. 时域分析法研究自动控制系统时最常用的典型输入信号是阶跃函数4.设控制系统的开环传递函数为G(s)=)2s )(1s (s 10++,该系统为I 型系统5.二阶振荡环节的相频特性)(ωθ,当∞→ω时,其相位移)(∞θ为-180° 6. 根据输入量变化的规律分类,控制系统可分为 恒值控制系统、随动控制系统和程序控制系统7.采用负反馈连接时,如前向通道的传递函数为G(s),反馈通道的传递函数为H(s),则其等效传递函数为 )s (H )s (G 1)s (G +8. 一阶系统G(s)=1+Ts K 的时间常数T 越大,则系统的输出响应达到稳态值的时间(越长) 9.拉氏变换将时间函数变换成复变函数 10.线性定常系统的传递函数,是在零初始条件下系统输出信号的拉氏变换与输入信号的拉氏变换之比 11.若某系统的传递函数为G(s)=1Ts K +,则其频率特性的实部R(ω)是 22T1K ω+12. 微分环节的频率特性相位移θ(ω)= 90° 13. 积分环节的频率特性相位移θ(ω)= -90° 14.传递函数反映了系统的动态性能,它与系统的结构参数有关15. 系统特征方程式的所有根均在根平面的左半部分是系统稳定的充分必要条件 16. 有一线性系统,其输入分别为u 1(t)和u 2(t)时,输出分别为y 1(t)和y 2(t)。
当输入为a 1u 1(t)+a 2u 2(t)时(a 1,a 2为常数),输出应为a 1y 1(t)+a 2y 2(t)17. I 型系统开环对数幅频渐近特性的低频段斜率为-20(dB/dec)18. 设系统的传递函数为G(s)=255252++s s ,则系统的阻尼比为2119.正弦函数sin t ω的拉氏变换是 22s ω+ω20.二阶系统当0<ζ<1时,如果增加ζ,则输出响应的最大超调量%σ将 减小21.主导极点的特点是距离虚轴很近 22.余弦函数cos tω的拉氏变换是22s sω+23.设积分环节的传递函数为G(s)=s1,则其频率特性幅值M(ω)=ω124. 比例环节的频率特性相位移θ(ω)= 0° 25. 奈奎斯特稳定性判据是利用系统的.开环幅相频率特性来判据闭环系统稳定性的一个判别准则。
郑大《自动控制原理》在线测试《自动控制原理》第01章在线测试剩余时间:46:37答题须知:1、本卷满分20分。
2、答完题后,请一定要单击下面的“交卷”按钮交卷,否则无法记录本试卷的成绩。
3、在交卷之前,不要刷新本网页,否则你的答题结果将会被清空。
第一题、单项选择题(每题1分,5道题共5分)1、线性系统和非线性系统的根本区别在于A、线性系统有外加输入,非线性系统无外加输入。
B、线性系统无外加输入,非线性系统有外加输入。
C、线性系统满足迭加原理,非线性系统不满足迭加原理。
D、线性系统不满足迭加原理,非线性系统满足迭加原理。
2、令线性定常系统传递函数的分母多项式为零,则可得到系统的A、代数方程B、特征方程C、差分方程D、状态方程3、根据输入量变化的规律分类,控制系统可分为A、恒值控制系统、随动控制系统和程序控制系统B、反馈控制系统、前馈控制系统前馈—反馈复合控制系统C、最优控制系统和模糊控制系统D、连续控制系统和离散控制系统4、A、B、C、D、5、下列系统中属于开环控制的为A、自动跟踪雷达B、无人驾驶车C、普通车床D、家用空调器第二题、多项选择题(每题2分,5道题共10分)1、下列系统不属于程序控制系统的为A、家用空调器B、传统交通红绿灯控制C、普通车床D、火炮自动跟踪系统2、下列系统不属于随动控制系统的为A、家用空调器B、家用电冰箱C、自动化流水线D、火炮自动跟踪系统3、下列是自动控制系统基本方式的是A、开环控制B、闭环控制C、前馈控制D、复合控制4、下列属于自动控制系统的基本组成环节的是A、被控对象B、被控变量C、控制器D、测量变送5、自动控制系统过渡过程有A、单调过程B、衰减振荡过程C、等幅振荡过程D、发散振荡过程第三题、判断题(每题1分,5道题共5分)1、自动控制系统不稳定的过渡过程是发散振荡过程正确错误2、家用电冰箱属于闭环控制系统正确错误3、火炮自动跟踪系统属于随动控制系统正确错误4、离散控制系统为按照系统给定值信号特点定义的控制系统正确错误5、被控对象是自动控制系统的基本组成环节正确错误《自动控制原理》第02章在线测试剩余时间:46:54答题须知:1、本卷满分20分。
一.选择题1. 线性系统和非线性系统的根本区别在于( C )A .线性系统有外加输入,非线性系统无外加输入。
B .线性系统无外加输入,非线性系统有外加输入。
C .线性系统满足迭加原理,非线性系统不满足迭加原理。
D . 线性系统不满足迭加原理,非线性系统满足迭加原理。
2. 时域分析法研究自动控制系统时最常用的典型输入信号是( D )A .脉冲函数B .斜坡函数C .抛物线函数D .阶跃函数3. 二阶振荡环节的相频特性)(ωθ,当∞→ω时,其相位移)(∞θ为( B )A .-270°B .-180°C .-90°D .0°4. 二阶振荡环节的对数频率特性相位移θ(ω)在( D )之间。
A.0°和90°B.0°和-90°C.0°和180°D.0°和-180°5. 比例环节的频率特性相位移θ(ω)=( C )A.90°B.-90°C.0°D.-180°6. 微分环节的频率特性相位移θ(ω)=( A )A. 90°B. -90°C. 0°D. -180°7. 积分环节的频率特性相位移θ(ω)=( B )A. 90°B. -90°C. 0°D. -180°8. 一阶系统G(s)=1+Ts K 的时间常数T 越大,则系统的输出响应达到稳态值的时间( A )A .越长B .越短C .不变D .不定9. 拉氏变换将时间函数变换成( D )A .正弦函数B .单位阶跃函数C .单位脉冲函数D .复变函数10. 设积分环节的传递函数为G(s)=s1,则其频率特性幅值M(ω)=( C ) A.ωK B.2K ω C.ω1 D.21ω 11. 令线性定常系统传递函数的分母多项式为零,则可得到系统的( B )A .代数方程B .特征方程C .差分方程D .状态方程12. 设系统的传递函数为G(s)=255252++s s ,则系统的阻尼比为 ( C )A.25B. 5C. 21 D. 1 13. 正弦函数sin t ω的拉氏变换是( B ) A.ω+s 1 B.22s ω+ω C.22s s ω+ D. 22s 1ω+ 14. 余弦函数cos t ω的拉氏变换是( C ) A.ω+s 1 B.22s ω+ω C.22s s ω+ D. 22s 1ω+ 15. 线性定常系统的传递函数,是在零初始条件下( D )A .系统输出信号与输入信号之比B .系统输入信号与输出信号之比C .系统输入信号的拉氏变换与输出信号的拉氏变换之比D .系统输出信号的拉氏变换与输入信号的拉氏变换之比16. 设控制系统的开环传递函数为G(s)=)2s )(1s (s 10++,该系统为 ( B )A .0型系统B .I 型系统C .II 型系统D .III 型系统17. 根据输入量变化的规律分类,控制系统可分为( A )A.恒值控制系统、随动控制系统和程序控制系统B.反馈控制系统、前馈控制系统前馈—反馈复合控制系统C.最优控制系统和模糊控制系统D.连续控制系统和离散控制系统18. 采用负反馈连接时,如前向通道的传递函数为G(s),反馈通道的传递函数为H(s),则其等效传递函数为 ( C )A .)s (G 1)s (G + B .)s (H )s (G 11+ C .)s (H )s (G 1)s (G + D .)s (H )s (G 1)s (G - 19. 若某系统的传递函数为G(s)=1Ts K +,则其频率特性的实部R(ω)是 ( A )A .22T1Kω+ B .-22T 1K ω+C .T 1K ω+D .-T 1K ω+ 20. 系统特征方程式的所有根均在根平面的左半部分是系统稳定的( C )A.充分条件B.必要条件C.充分必要条件D.以上都不是21. 传递函数反映了系统的动态性能,它与下列哪项因素有关?( C )A.输入信号B.初始条件C.系统的结构参数D.输入信号和初始条件22. 某二阶系统阻尼比为0.2,则系统阶跃响应为( C )A. 发散振荡B. 单调衰减C. 衰减振荡D. 等幅振荡23. 一阶系统的阶跃响应,( D )24. A.当时间常数T 较大时有振荡 B.当时间常数T 较小时有振荡C.有振荡D.无振荡25. 系统的传递函数( C )A.与输入信号有关B.与输出信号有关C.完全由系统的结构和参数决定D.既由系统的结构和参数决定,也与输入信号有关26. 二阶系统当0<ζ<1时,如果增加ζ,则输出响应的最大超调量%σ将( B )A.增加B.减小C.不变D.不定27. I 型系统开环对数幅频渐近特性的低频段斜率为( B )A. -40(dB/dec)B. -20(dB/dec)C. 0(dB/dec)D. +20(dB/dec)28. 奈奎斯特稳定性判据是利用系统的( C )来判据闭环系统稳定性的一个判别准则。
线性系统与非线性系统线性系统和非线性系统是控制理论中重要的概念,它们对于描述和分析物理系统的行为具有重要意义。
本文将探讨线性系统和非线性系统的定义、特点以及在实际应用中的区别和应用。
一、线性系统线性系统是指具有线性特性的系统,其中输入和输出之间存在线性关系。
线性系统的特点是具有叠加原理和尺度不变性。
叠加原理指的是当输入信号为x1(t)和x2(t)时,对应的输出分别为y1(t)和y2(t),则输入为x1(t)+x2(t)时,对应的输出为y1(t)+y2(t)。
即系统对输入信号的响应是可加性的。
尺度不变性指的是当输入信号为kx(t)时,对应的输出为ky(t),其中k为常数。
即系统对于输入信号的放大或缩小,输出信号也相应地放大或缩小,但形状保持不变。
线性系统的数学模型可以用线性常微分方程表示,常见的线性系统包括线性电路、线性网络等。
线性系统的分析和控制较为简单,可以使用线性代数和转移函数的方法进行建模和求解。
二、非线性系统非线性系统是指输入和输出之间不存在线性关系的系统,其特点是叠加原理和尺度不变性不成立。
非线性系统具有复杂的动态特性,可能存在混沌现象、周期解、稳定解等。
非线性系统的行为难以预测和描述,经常需要借助数值方法和仿真模拟进行研究。
非线性系统广泛应用于生物、经济、环境等领域,例如生物系统的行为建模、经济市场的预测分析、气候模拟等。
非线性系统的研究和控制涉及到多个交叉学科,是当前的热点和挑战之一。
三、线性系统与非线性系统的区别1. 输入输出关系:线性系统的输入和输出之间存在线性关系,而非线性系统的输入和输出之间不存在线性关系。
2. 叠加原理:线性系统满足叠加原理,输入信号的响应是可加性的;而非线性系统不满足叠加原理,输入信号的响应不可加性。
3. 尺度不变性:线性系统满足尺度不变性,输入信号的放大或缩小会相应地改变输出信号的幅度,但形状保持不变;而非线性系统不满足尺度不变性,输入信号的放大或缩小可能改变输出信号的形状。
一、填空题1. 对控制系统的基本要求是系统的稳定性、响应的快速性、响应的准确性。
2. 工程控制论实质上是研究工程技术中广义系统的动力学问题,机械工程控制就是研究系统、输入、输出三者之间的动态关系。
3.线性控制系统最重要的特性是可以应用叠加原理,而非线性控制系统则不能。
4.方框图中环节的基本连接方式有串联连接、并联连接和反馈连接。
5.对自动控制系统按照输出变化规律分为自动调节系统、随动系统、程序控制系统。
6.用频率法研究控制系统时,采用的图示法分为极坐标和对数坐标图示法。
7.传递函数的定义是对于线性定常系统, 零初始的条件下,系统输出量的拉氏变换与系统输入量的拉氏变换之比。
8.采用恒值外推规律的保持器称为零阶保持器,可以近似地用RC网络实现。
9.线性连续系统的动态过程是用线性微分方程来描述的,而线性采样系统的动态过程则是用来描述的。
10.控制工程中常采用的五种典型输入信号是脉冲函数、斜坡函数、阶跃信号、正弦信号和抛物线信号。
11.二阶衰减振荡系统的阻尼比ξ的范围为(0,1)。
12.系统的频率特性求取有三种方法:根据系统响应求取、用试验方法求取和将传递函数中的s换为JW来求取。
13.线性定常系统在正弦信号输入时,稳态输出与输入的相位移随频率而变化的函数关系称为相频特性。
14. 0型系统对数幅频特性低频段渐近线的斜率为0dB/dec。
15.自动控制系统一般有两种基本控制方式正反馈和负反馈。
16.伯德图中,对数幅频特性曲线横坐标以logw 分度,标注以自变量w 。
17.系统的稳态误差主要是由积分环节的个数和开环增益来确定的。
18.开环频率特性的中频段反应了系统动态响应的稳定性和快速性,在一定条件下,穿越频率越大,调节时间就越短,系统响应就越迅速。
19.对于最小相位系统,幅频和相频特性之间存在着唯一的对应关系。
20.按非线性环节的物理性能及非线性特性的形状划分,非线性特性有死区、饱和、间隙和继电器等。
21.对于非线性系统,如输入为正弦函数,其输出为与输入周期相同(相同、不同)的非正弦(正弦、非正弦)函数。
自动控制原理总经典总结自动控制原理》总复控制系统控制系统是由受控对象和控制器组成的系统,用于控制和调节被控量。
根据不同的角度,控制系统可以分为恒值系统和随动系统、线性系统和非线性系统、连续系统和离散系统、定常系统和时变系统等。
线性系统线性系统是指系统的输出与输入之间存在线性关系的系统。
建模时可以采用求传函或脉冲传函的方法,分析时可使用根轨迹法、频率特性法等方法。
非线性系统非线性系统是指系统的输出与输入之间不存在线性关系的系统。
建模时可以采用描述函数法或相平面法,稳定性分析时可以求奇点和极限环,运动时间可以通过振幅和频率计算得出。
控制系统的基本概念控制系统的基本术语包括自动控制、系统、自动控制系统、被控量、输入量、干扰量、受控对象、控制器、反馈、负反馈控制原理等。
掌握这些基本概念可以帮助理解控制系统的基本组成和工作原理。
基本控制方式控制系统的基本方式包括开环控制系统、闭环控制系统和复合控制系统。
开环控制系统没有反馈,闭环控制系统则通过反馈控制来实现对被控量的调节,复合控制系统则是开环控制和闭环控制的组合。
数学模型数学模型是用数学表达式描述控制系统的工作原理和特性的模型。
建模时可以采用物理系统的微分方程描述、拉普拉斯变换及反变换、传递函数及典型环节的传递函数、脉冲响应函数等方法。
图形表示可以采用结构图、信号流图等方法。
基本要求研究自动控制原理需要掌握控制系统的基本概念、基本控制方式、数学模型等知识。
同时,需要了解控制系统的分类和典型输入信号,并能够正确理解数学模型的特点和概念。
掌握这些知识可以帮助理解控制系统的工作原理和实际应用。
2.了解动态微分方程建立的一般方法和小偏差线性化方法。
3.掌握使用拉普拉斯变换解微分方程的方法,并对解的结构、运动模态、特征根的关系、零输入响应、零状态响应等概念有清晰的理解。
4.正确理解传递函数的定义、性质和意义,并熟练掌握系统开环传递函数、闭环传递函数、误差传递函数、典型环节传递函数等概念。
大连民族学院稳定性理论及其应用----非线性系统学习感悟****:***所属院系:数学与信息科学学院所属班级:联合培养141班**:***学号:********稳定性理论及其应用----非线性系统学习感悟对于非线性控制系统的学习我对其基本特性及应用思想进行了解。
非线性系统的数学模型不满足叠加原理或其中包含非线性环节。
包括非本质非线性(能够用小偏差线性化方法进行线性化处理的非线性)和本质非线性(用小偏差线性化方法不能解决的非线性)。
它与线性系统有以下主要区别:1.线性控制系统只能有一个平衡点或无穷多的平衡点。
但非线性系统可以有一个、二个、多个、以至无穷多个平衡点。
非线性系统与线性定常系统明显不同,其稳定性是针对各个平衡点而言的。
通常不能说系统的稳定性如何,而应说那个平衡点是稳定的或不稳定的。
2.在线性系统中,系统的稳定性只与系统的结构和参数有关,而与外作用及初始条件无关。
非线性系统的稳定性除了与系统的结构和参数有关外,还与外作用及初始条件有关。
由于非线性控制系统与线性控制系统有很大的差异,因此,不能直接用线性理论去分析它,否则会导致错误的结论。
对非线性控制系统的分析,还没有一种象线性控制系统那么普遍的分析、设计方法。
除了以上的主要特点外,也具有以下特性,在非线性系统中,除了从平衡状态发散或收敛于平衡状态两种运动形式外,往往即使无外作用存在,系统也可能产生具有一定振幅和频率的稳定的等幅震荡。
输入为正弦函数时,其输出的稳态分量也是同频率的正弦函数,输入和稳态输出之间仅在振幅和相位上有所不同,因此可以用频率响应来描述系统的固有特性。
而非线性系统输出的稳态分量在一般情况下并不具有与输入相同的函数形式。
非线性系统采用非线性微分方程描述,至今尚没有统一的求解方法,其理论也还不完善。
为了更好的描述分析非线性系统,我们根据非线性系统的特点,总结了非线性系统工程上常采用的方法有:1.线性化近似法对于某些非线性特性不严重的系统,或系统仅仅只研究平衡点附近特性时,可以用小偏差线性化方法,将非线性系统近似线性化。