离散数学(2.2命题函数与谓词)
- 格式:ppt
- 大小:184.00 KB
- 文档页数:20
§2.2 谓词公式及其解释习题2.21. 指出下列谓词公式的指导变元、量词辖域、约束变元和自由变元。
(1)))()((y x Q x P x ,→∀(2))()(y x yQ y x xP ,,∃→∀ (3))())()((z y x xR z y Q y x P y x ,,,,∃∨∧∃∀解 (1)x ∀中的x 是指导变元;量词x ∀的辖域是),()(y x Q x P →;x 是约束变元,y 是自由变元。
(2)x ∀中的x ,y ∃中的y 都是指导变元;x ∀的辖域是)(y x P ,,y ∃的辖域是)(y x Q ,;)(y x P ,中的x 是x ∀的约束变元,y 是自由变元;)(y x Q ,中的x 是自由变元,y 是y ∃的约束变元。
(3)x ∀中的x ,y ∃中的y 以及x ∃中的x 都是指导变元;x ∀的辖域是))()((z y Q y x P y ,,∧∃,y ∃的辖域是)()(z y Q y x P ,,∧,x ∃的辖域是)(z y x R ,,;)(y x P ,中的x ,y 都是约束变元;)(z y Q ,中的y 是约束变元;z 是自由变元,)(z y x R ,,中的x 为约束变元,y ,z 是自由变元。
2. 设个体域}21{,=D ,请给出两种不同的解释1I 和2I ,使得下面谓词公式在1I 下都是真命题,而在2I 下都是假命题。
(1)))()((x Q x P x →∀ (2)))()((x Q x P x ∧∃解(1)解释1I :个体域}21{,=D ,0:)(,0:)(>>x x Q x x P 。
(2)解释2I :个体域}21{,=D ,2:)(,0:)(>>x x Q x x P 。
3. 对下面的谓词公式,分别给出一个使其为真和为假的解释。
(1))))()(()((y x R y Q y x P x ,∧∃→∀(2))),()()((y x R y Q x P y x →∧∀∀解 (1)成真解释:个体域D ={1,2,3},0:)(<x x P ,2:)(>y y Q ,3:),(>+y x y x R 。
离散数学作业册第一章命题逻辑1.1 命题与逻辑联结词1.判断下列语句是否是命题,不是划“×”,是划“√”,且指出它的真值.(1)所有的素数都是奇数. ( ) 其真值( )(2)明天有离散数学课吗? ( ) 其真值( )(3)326+>. ( ) 其真值( )(4)实践出真知. ( ) 其真值( )(5)这朵花真好看呀! ( ) 其真值( )(6)5x=. ( ) 其真值( )(7)太阳系外有宇宙人. ( ) 其真值( )2.将下列命题符号化.(1)如果天下雨,那么我不去图书馆.(2)若地球上没有水和空气,则人类无法生存.(3)我们不能既划船又跑步.(4)大雁北回,春天来了.3.将下列复合命题分解成若干个原子命题,并找出适当的联结词.(1)天下雨,那么我不去图书馆.(2)若地球上没有水和空气,则人类无法生存.1.2 命题公式1. 判断下列各式是否是命题公式,不是的划“×”,是的划“√”.(1)(Q→R∧S). ( )(2)((R→(Q→R)→(P→Q)). ( )(3) (P∨QR)→S. ( )(4)((?P→Q)→(Q→P)). ( )2.写出五个常用命题联结词的真值表.1.3 真值表与等价公式1.指出下列命题的成真赋值与成假赋值.(1)?(P∨?Q).(2)?P→(Q→P).2.构造真值表,判断下列公式的类型.(1)(P∧Q)∧?(P∨Q).(2) P→(P∧┑Q))∨R.3.用等值演算法验证下列各等价式.(1) ((P→Q)∧(Q→R))→(P→R)?T.(2)P→(Q∧R)?(P→Q)∧(P→R).(3)?(P∨Q)∨(?P∧Q)??P.1.4 蕴涵式及其他联结词1.试证明下列各式为重言式.(1)(P→Q)∧(Q→R)?(P→R).(2) (P→Q)→Q?P∨Q.(3)?(P↓Q)??P↑?Q.2.将下列公式化成与之等价且仅含{┑,∨}中联结词的公式.(1) (P∨Q)∧┑P(2) (P→(Q∨┑R))∧(┑P∧Q)3.证明{?,∧}是最小全功能联结词组.4.设A、B、C为任意的三个命题公式,试问下面的结论是否正确?(1)若A∧C?B∧C,则A?B.(2)若?A??B,则A?B.(3)若A→C?B→C,则A?B.1.6 对偶与范式1.试给出下列命题公式的对偶式.(1)T∨(P∧Q).(2)?(P∧Q)∧(?P∨Q).2.试求下列各公式的主析取范式和主合取范式.(1) (P→(Q∧R))∧(┑P→(┑Q→R)).(2)(?(P→Q)∧Q)∨R.(3)(P→(Q∨R))∧(?P∨(Q?R)).3.试用将公式化为主范式的方法,证明下列各等价式.(1) (┑P∨Q)∧(P→R)?P→(Q∧R)(2) ┑(P?Q)?(P∧┑Q)∨(┑P∧Q)1.7 推理理论1.试用推理规则,论证下列各式.(1) ┑(P∧┑Q),┑Q∨R,┑R?┑P(2) P∨Q,Q→R,P→S,┑S?R∧(P∨Q)(3) ┑P∨Q,┑Q∨R,R→S?P→S(4) P∨Q,P→R,Q→S?R∨S第二章谓词逻辑2.1 词的概念与表示1.用谓词表达写出下列命题.(1)高斯是数学家,但不是文学家.(2)小王既是运动员也是大学生.(3)张宁和李强都是三好学生.(4)若是x奇数,则2x不是奇数.2.2 命题函数与量词1.用谓词表达式写出下列命题.(1)每个计算机系的学生都学离散数学.(2)直线A平行于直线B当且仅当直线A不相交于直线B.(3)不存在既是奇数又是偶数的自然数.(4)没有运动员不是强壮的.(5)有些有理数是实数但不是整数.(6)所有学生都钦佩某些教师.2.3 谓词公式与变元的约束1.利用谓词公式翻译下列命题. (1)没有一个奇数是偶数.(2)一个整数是奇数,如果它的平方是奇数.2. 设个体域为自然数集N ,令P(x):x 是素数;E(x):x 是偶数;O(x):x 是奇数;D(x ,y):x 整除y .将下列各式译成汉语.(1)?x(E(x)∧D(x ,6)).(2)?x(O(x)→?y(P(x)→?D(x ,y))).3.指出下列表达示中的自由变元和约束变元,并指明量词的辖域.(1)()()(,)()()x F x Q x y xP x R x ?∧→?∨.(2)?x(P(x ,y)∨Q(z))∧?y(R(x ,y)→ ?zQ(z)).4.设个体域为A ={a ,b ,c},消去公式?xP(x)∧?xQ(x)中的量词.2.4 谓词演算的等价式与蕴含式1.试证下列等价式或蕴涵式,其中A(x),B(x)表示含x自由变量的公式,A,B 表示不含变量x(不论是自由的还是约束的)的公式.(1)(?x A(x)→B)?(?x(A(x)→B)).(2)(?x A(x)→B)??x(A(x)→B).2.试将下列公式化成等价的前束范式.(1)?x((┑?yP(x,y))→(?zQ(z)→R(x))).(2)?x(F(x)→G(x))→(?xF(x)→?xG(x)).2.5 谓词演算的推理理论1.证明下列推理.(1)所有有理数都是实数,某些有理数是整数。
离散数学知识点总结离散数学是数学中的一个分支,研究离散对象及其关系的数学理论。
它与连续数学形成鲜明的对比,连续数学主要研究连续对象和其性质。
离散数学在计算机科学、信息科学、电子工程等领域具有重要的应用价值。
下面将对离散数学的主要知识点进行总结。
1.命题逻辑:命题逻辑研究由命题符号组成的复合命题及其逻辑关系。
其中命题是一个陈述性的语句,可以是真或假。
命题逻辑包括命题的逻辑运算、真值表、命题的等价、充分必要条件等。
2.谓词逻辑:谓词逻辑是对命题逻辑的扩充,引入了量词、谓词和项。
它的研究对象是命题函数,可以表示个体之间的关系。
谓词逻辑包括谓词的运算、量词的运算、公理化和推理规则等。
3.集合论:集合论是研究集合及其操作的数学分支。
集合是一种由确定的对象组成的整体。
集合论包括集合的基本运算(交、并、差、补)、集合的关系(包含、相等、子集、真子集)以及集合的运算律和推导定理等。
5.组合数学:组合数学是研究物体的组合与排列问题的数学分支。
它包括排列、组合、分配、生成函数等内容,经常应用于计数和概率问题中。
6.图论:图论是用来描述物体间其中一种关系的图形结构的数学理论。
它研究的对象是由顶点和边构成的图,包括无向图、有向图、带权图等。
图论研究的内容包括图的性质、连通性、路径、回路、树、图的着色等。
7.代数系统:代数系统是一种由一组元素及其相应的运算规则构成的数学结构。
常见的代数系统有群、环、域、格等,它们分别研究了集合上的不同运算规律和结构。
8.布尔代数:布尔代数是一种应用于逻辑和计算机的代数系统。
它以真和假为基础,通过逻辑运算(与、或、非)构成了布尔代数。
布尔代数在计算机硬件设计和逻辑推理中广泛应用。
9.图的同构与图的着色:图的同构是指两个图在结构上相同,也就是说,它们具有相同的顶点和边的连接关系。
图的同构判断是一个NP难问题,需要借助于图的着色等方法来判断。
图的着色是给图的顶点分配颜色,使得相邻顶点的颜色不同。
离散数学是一门研究离散对象及其性质的数学分支,它在计算机科学、信息技术以及工程领域具有重要的应用价值。
在离散数学中,谓词公式和命题公式是两个重要的概念,它们在逻辑推理和证明中起着至关重要的作用。
本文将对谓词公式和命题公式进行详细的比较与分析。
1. 谓词公式谓词公式是一种含有变量的复合命题,它通常用来描述对象之间的关系或者属性。
谓词公式由谓词符号和变量组成,例如P(x)、Q(x, y)等。
在谓词公式中,变量可以取代具体的对象,从而得到一个具体的命题。
谓词公式一般可以表示为∀x(∃yP(x, y)),其中∀表示全称量词,∃表示存在量词,P(x, y)表示谓词公式。
谓词公式的真假取决于变量的取值范围和具体的谓词定义。
谓词公式的真假可以通过逻辑运算和推理来确定,通常需要使用证明方法或者真值表等工具来进行验证。
2. 命题公式命题公式是一个不含变量的简单命题,它通常用来表示一个完整的陈述或者断言。
命题公式可以是一个简单的原子命题,也可以是多个原子命题通过逻辑连接词组合而成的复合命题。
“今天下雨”、“2加2等于4”等都可以看作是命题公式。
命题公式的真假只取决于公式本身的内容,它只有两种取值:真和假。
命题公式可以通过真值表的方法来验证其真假,并且可以使用逻辑等价和逻辑推理来进行推导和证明。
3. 谓词公式和命题公式的区别从上面的比较可以看出,谓词公式和命题公式在以下几个方面有着明显的区别:3.1 变量的使用谓词公式使用变量来表示对象之间的关系,而命题公式不含有变量,它是一个固定的陈述或者断言。
谓词公式可以根据变量的取值范围得到不同的命题,而命题公式的真假只取决于公式本身的内容。
3.2 真假的判断谓词公式的真假取决于变量的取值范围和具体的谓词定义,需要使用证明方法或者真值表来进行验证;而命题公式的真假只取决于公式本身的内容,可以通过真值表的方法来验证其真假,并且可以使用逻辑等价和逻辑推理来进行推导和证明。
3.3 表达的含义谓词公式通常用来描述对象之间的关系或者属性,它具有一定的泛化和普适性;而命题公式通常用来表示一个完整的陈述或者断言,它具有明确的含义和指向性。
第一章命题逻辑1.1 命题及其表示方法1.2 联结词1.3 命题公式与翻译1.4 真值表与等价公式1.5 重言式与蕴含式1.6 其它联结词1.7 对偶与范式1.8 推理理论1.1 命题及其表示方法命题:具有确定真值的陈述句命题的类型(原子命题和复合命题)命题的表示(一个命题标识符(比如P)表示确定的命题)重点:如何判断语句是否为命题。
1.2 联结词否定⌝合取∧析取∨条件→双条件↔重点:五种联结词的含义、真值表1.3 命题公式与翻译命题公式符号化:所谓命题的符号化就是把一个用文字叙述的句子相应地写成由命题标识符、联结词和括号表示的合式公式。
命题符号化的重要性命题符号化是很重要的,一定要掌握好,在命题推理中最先遇到的就是符号化一个问题,解决不好,等于说推理的首要前提没有了。
重点:命题的符号化符号化应该注意下列事项:①确定给定句子是否为命题。
②句子中连词是否为命题联结词。
③要正确地表示原子命题和适当选择命题联结词。
1.4 真值表与等价公式真值表的构造方法(1) 找出公式中所含的全体命题变元P1, P2, …, Pn, (若无下角标就按字典顺序排列), 列出2n个赋值. 赋值从00…0开始, 然后按二进制加法依次写出各赋值, 直到11…1为止.(2) 按从低到高的顺序写出公式的各个层次.(3) 对应各个赋值计算出各层次的真值, 直到最后计算出公式的真值.等价关系的含义等价式的判别方法•真值表法•等价演算法基本等价式(必须掌握)(1)对合律(双重否定):⌝⌝P⇔P(2)幂等律:P∧P⇔P,P∨P⇔P(3)结合律:(P∧Q)∧R⇔P∧(Q∧R),(P∨Q)∨R⇔P∨(Q∨R)(4)交换律:P∧Q⇔Q∧P,P∨Q⇔Q∨P(5)分配律:P∧(Q∨R)⇔(P∧Q)∨(P∧R),P∨(Q∧R)⇔(P∨Q)∧(P∨R)(6)德·摩根律:⌝ (P∧Q) ⌝⇔P∨⌝Q,⌝ (P∨Q) ⌝⇔P∧⌝Q(7)吸收律:P∧(P∨Q)⇔P,P∨(P∧Q)⇔P(8)同一律:P∧T⇔P,P∨F⇔P(9)零律:P∧F⇔F,P∨T⇔T(10)否定律:P∧⌝P⇔F,P∨⌝P⇔T(11) 条件式转化律:P→Q⌝⇔P∨Q,P→Q⌝⇔Q→⌝P(12) 双条件式转化律:P↔Q ⇔(P→Q)∧(Q→P) ⇔(P∧Q)∨(⌝P∧⌝Q)⌝ (P↔Q) ⇔P⌝↔Q ⌝⇔P↔Q(13) 输出律(CP规则):P→(Q→R) ⇔(P∧Q)→R重点:等价式的证明、基本等价式1.5 重言式与蕴含式重言式或永真公式定义1-5.1 给定一命题公式,若无论对分量作怎样的指派,其对应的真值永为真,则称该命题公式为重言式或永真公式。
离散数学谓词
谓词是离散数学中的一个重要概念,它是用来描述一个命题中的主语和谓语之间的关系的。
在离散数学中,谓词可以分为两类:命题谓词和函数谓词。
命题谓词是指一个命题中的主语和谓语之间的关系,它可以是真或假。
例如,“x是偶数”就是一个命题谓词,当x为偶数时,该命题为真,否则为假。
函数谓词是指一个函数中的参数和返回值之间的关系,它可以是任意类型的。
例如,“f(x)=x+1”就是一个函数谓词,当x为任意数时,该函数返回值为x+1。
在离散数学中,谓词可以用来描述集合、关系、函数等概念。
例如,我们可以用谓词来描述一个集合中的元素是否满足某个条件,或者用谓词来描述两个元素之间的关系是否成立。
谓词在离散数学中有着广泛的应用,它可以用来描述逻辑、集合论、图论等领域中的概念。
例如,在逻辑中,我们可以用谓词来描述命题的真假性;在集合论中,我们可以用谓词来描述集合中元素的性质;在图论中,我们可以用谓词来描述图中节点之间的关系。
谓词是离散数学中一个非常重要的概念,它可以用来描述各种各样的数学概念和问题。
在学习离散数学时,我们需要深入理解谓词的概念和应用,才能更好地掌握离散数学的知识。