舵机测试实验报告
- 格式:doc
- 大小:1.43 MB
- 文档页数:4
舵机系泊实验
一.试验要求
1.舵角指示器校对.以舵角机械舵角指示器的示角为基准。
校对电动舵角指示器,误差不大于±1º,但是舵角处在零度位置时各舵角指示器应无误差。
舵角电气限位应在左35º
±1º或右35º±1º时停止转动。
机械限位角度一般应大于电气限位1º-1.5º舵角最大不得超过37º左(右)舵到右(左)舵35º-30º所需时间不大于28秒。
二.试验方法
1.舵角指示器校对,以舵机上的机械舵角指示器的示角为基准。
校对驾驶室,舵机舱的电
动指示器的正确性,校验时自0º分别向两舷操舵,每转5º校对一次舵角指示器,根据舵机上机械舵角指示器的角度,检验驾驶室和舵机房的电动舵角指示器的角度指示值误差是否在规定范围内,校对时应来回各校对一次,并做好记录。
2.检验电气限位开关动作的正确性,操舵至规定限位舵角时。
舵机应停止转动,检验时,
左.右限位舵角应各试验1-2次
3.报警试验低油位将油箱内的油位放至低油时应能发出声光报警,另一种方法是将浮子
开关拆下(或短接触点)失电报警其方法是断开配电板电源开关或控制箱电源开关,此时应发出声光报警, 电机过载其方法是通过控制箱内的有关触点.用模拟办法进行,应发出声光报警.。
舵机转速转向控制实验报告一、实验目的本实验旨在通过掌握舵机的转速、转向控制,加深对舵机工作原理的理解,掌握相关控制技术的应用。
二、实验器材舵机、快速电子开关、直流电源、万用表、工具箱。
三、实验原理舵机是一种常用的控制元件,广泛应用于无人机、航空、机器人等领域。
它通过输入电信号,控制电机的速度和方向来实现转动。
舵机可以分为定速舵机和变速舵机两种,而其中变速舵机更能满足各种场合的需要。
本实验所用的舵机为变速舵机。
它可以按照输入的电信号的占空比来控制舵机的速度和方向,一般的电调模块会利用江苏快3现场开奖的PWM信号控制舵机。
PWM信号由一个矩形波脉冲序列组成,其占空比代表高电平出现的百分比,当占空比较大时,矩形波的高电平时间就较长,此时舵机就会运动速度较快,反之当占空比较小时,矩形波的高电平出现时间就较短,此时舵机就会运动速度较缓慢。
四、实验步骤1. 收集舵机转速和转向控制的相关知识并阅读相关文献。
2. 准备实验器材,将变速舵机按照说明书接好。
3. 打开直流电源,将它设为合适的电压值。
4. 使用万用表检测电源的正负极,连接快速电子开关,并将舵机的三个引脚分别连接到电源、地和电调信号端口。
5. 打开快速电子开关,连接到江苏快3现场开奖的PWM信号源。
6. 按照实验说明书的要求,将闪烁次数的总数改变为不同的数值,比较不同闪烁次数对舵机的速度、转向控制的影响,并记录下相关数据。
7. 将记录下来的数据加以整理,并得到结论。
五、实验结果及分析本实验分别测试了舵机不同的闪烁次数对其速度和转向控制的影响。
从实验结果和所得到的数据可以看出,随着闪烁次数的增加,舵机的速度越来越快,但同时其转向控制更加困难,需要更加准确的控制方法来调整。
根据结果可以得出结论,舵机的运行速度和转向控制均由其输入电信号的占空比控制,但随着输入信号占空比的变化,两者之间的关系会发生变化。
当进行舵机的控制操作时,需要根据具体情况来出发占空比大小,才能得到满意的控制效果。
电动舵机结构原理及检测项目分析摘要:电动舵机是集自动控制、电力电子技术、精密制造等多种专业于一体的综合性机电产品。
各种类型的舵机根据各自舵回路放大器输出的信号,分别操纵被控舵面工作,从而达到飞行角运动或轨迹运动的自动稳定和控制。
作为无人机航空电子系统的重要组成部分,某型电动舵机可接收来自机载飞行控制计算机的输出控制信号,带动无人机左、右副翼舵面、升降舵面、方向舵面按控制要求进行偏转工作,实现对无人机的飞行控制。
关键词:电动舵机、结构、工作原理、性能测试一、电动舵机系统的结构组成电动伺服舵机系统本身是一个闭环角位置随动系统,它操纵舵面偏转的执行机构是电动机。
一般由控制器、驱动器、伺服电机、减速传动机构和反馈电位器等五大部分组成。
通常情况下,电动舵机系统的组成如图所示。
它是一个典型的位置反馈系统。
电动舵机系统组成框图二、电动舵机系统的工作原理一架无人机共有三个相同的电动舵机,分别为升降、副翼、方向舵机,它们根据飞控系统各回路输出的信号分别去控制无人机的三个舵面,从而达到自动控制无人机的目的。
电动舵机是根据飞行控制计算机的指令产生一个输出,这个输出控制舵面的操纵量,用来操纵控制舵面的偏转。
电动舵机系统的工作原理是,根据飞控系统控制电路的输出大小和极性的舵控制信号,操纵无人机的舵面转动。
当实际舵偏角δ与要求的角度存在误差时,在控制器的作用下产生误差电压信号,该误差经过驱动器进行功率放大后,驱动伺服电机转动。
伺服电机的力矩通过减速传动机构放大,带动舵面,使舵面向要求的角度偏转。
误差为正时,加在伺服电机上的直流平均电压为正,舵面向正方向转动;误差为负时,加在伺服电机上的直流平均电压为负,舵面向负方向转动。
当舵面偏转到要求的角度时,误差信号为零,加在伺服电机上的直流平均电压为零,舵面失去驱动力矩停止转动。
舵面转动的角度δ,通过反馈电位器形成舵反馈信号,提供给控制器,形成系统的闭环控制。
直流伺服电机通常具有较高的额定转速和较小的额定转矩,要达到电动舵机要求的角速度和输出力矩,就必须配备较大减速比的传动装置。
舵机测试实验报告舵机测试实验报告张冲一、实验目的为了较好的设计旋翼无人机的舵机控制系统,必须首先确定舵机的旋转精度,舵机精度的高低直接影响控制的精度。
如果舵机的精度达到1°,那么我们现有的控制方式将能很好的实现舵机的控制,从而保证旋翼无人机控制系统的精度。
如果达不到1°,那么我们需要根据舵机的实际精度来改进控制方式,使其尽可能的满足旋翼无人机的控制要求。
所以我们设计了这个舵机测试实验来验证S3156型舵机精度能否达到1°。
二、实验原理如图1,舵机的控制信号是脉冲宽度调制(Pulse Wide Modulator,PWM)信号,利用占空比的变化改变舵机的位置。
图1 PWM控制信号(左图) 实测得PWM信号(右图) 受到舵机测试仪给出的PWM控制信号之后,与舵机相连的指针将发生偏转,偏转变化量将通过转台刻度读出。
如果舵机输出位置精度达到1 ,则满足设计要求。
图2舵机精度测试平台1、把舵机固定在转台中央,使得舵机的转子与转台的圆心重合。
2、把舵机输入端连接到舵机测试仪的输出端,把舵机测试仪接上电源3、把测试仪的输出端连上示波器,系统连接完成如下图3。
4、打开示波器电源,手动微调一下舵机测试仪,使其偏转角度尽可能的小,用游标转盘精确的量出偏转的角度并记录下来;从示波器上读出PWM 波的周期以及高电平部分持续时间,并记录下来。
先从0°一直测到30°,然后再从0°测到-30°。
图3 系统连线实拍图四、实验器材示波器,S3156高精度舵机,舵机测试仪,转台,电源,导线。
舵机具体的选择标准如下:1、质量在10g 以内的微型数字舵机,尽量减少RUA V 总重2、速度0.160s (即舵机偏转60需要0.1s )左右 3、输出力矩0.23Servo M kg cm >?其中,PWM 波周期是恒值ms .516T =,电源输出电压V 5U =。
升降舵时域响应辨识实验实验报告2015年5月9日星期六升降舵时域响应辨识实验实验报告一、一、实验目的实验目的1) 熟悉舵机的指标与要求;2) 熟悉舵系统响应测试原理;3) 掌握舵系统响应测试原理及方法。
二、二、实验任务实验任务1) 利用阶跃响应方法进行传递函数模型的辨识;2) 将实验数据与模型数据的阶跃响应数据对比分析。
三、三、实验设备器材实验设备器材1) 弹载控制器;2) 舵系统;3) 测试计算机。
四、四、实验原理实验原理通过测试计算机和弹载控制器给舵系统(如升降舵)施加一阶跃信号,采集升降舵的反馈信号,得到阶跃响应曲线。
对数据进行归一化处理后,重新绘制单位阶跃响应曲线,从图中可以读取出峰值时间t p 和最大超调量M p 。
升降舵系统为二阶欠阻尼系统,根据如下方程可以求出二阶模型参数,即 1−=1− =−ln (2−1) 由此可以求取升降舵的传递函数。
五、五、实验内容及数据处理实验内容及数据处理i. 获取实验数据1) 检查测试计算机、弹载控制器和舵系统的连接状态;2) 在测试计算机上启动测试实验软件包,选择舵系统时域响应选项卡;3) 置弹载控制器为舵系统实验模式,上电,待系统工作稳定;4) 在测试计算机上,选择舵为升降舵,并发送舵机归零信号;5)设置阶跃指令信号幅值为+10V,并启动舵机,10s后停止舵机;6)保持实验数据,绘制阶跃响应曲线。
ii. 模型辨识对阶跃响应数据进行归一化处理,其方法为:求取阶跃响应数据的稳态值与阶跃信号幅值之比K,将每个时间点上的阶跃响应数据均除以阶跃信号幅值后重新绘制阶跃响应曲线。
在MATLAB 中,输入如下命令:clear;clcA=xlsread('SJD');figure(1)plot(A(:,1)-203.75,A(:,4)) %绘制原始曲线grid ontitle('图1 原始响应曲线')t=A(:,1)-203.75; %将时间初值置零y=A(:,4)/15.3581; %响应数据归一化figure(2)plot(t,y) %绘制单位阶跃响应曲线grid ontitle('图2 单位阶跃响应曲线')[Mp,n]=max(y);tp=t(n); %找出y的最大值及其对应时间hold onplot(tp,Mp,'*') %峰值点显示及其坐标标注text(tp,Mp,'(0.16,1.08)')text(t(570),y(570)+0.05,'1.0018')保存并运行,其运行结果如图1和图2。
舵机测试报告经过这段时间对舵机的测试,我现在将测试舵机的一些成果和心得记录下来。
以下未必是舵机可能出现的所有问题,但已经可以对实验室现有的舵机进行充分利用。
一、舵机的原理控制信号由接受通道进入调制芯片,获得直流偏置电压。
它内部含有一个基准电路,产生周期为20ms,宽度为1.5ms的基准电压,将获得的直流偏置电压与电位器的电压比较,获得电压输出。
最后电压差的正负输出到电机驱动芯片,决定电机的正反转。
当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压为0,电机停止转动。
以180°角度舵机为例,舵机的控制需要制作20ms周期的时基脉冲,用以和舵机内部基准电压作比较,该脉冲的高电平部分一般为0.5ms到2.5ms范围内的角度控制脉冲部分。
以1.5ms为0°标定,即0.5ms为-90°,1.0ms为-45°,1.5ms为0°,2ms为45°,2.5ms 为90°。
但实际舵机大部分并非180°范围,这里使用180°范围是为了方便举例,建议实际使用时角度控制为0°范围正负60°内,即120°范围内使用舵机。
很多舵机的位置等级有1024个,如果舵机的有效角度范围为180°,其控制的角度精度可以达到180°/1024约为0.18°,即要求的脉宽控制精度为2000/1024us约2us。
由于单片机采用定时器中断模拟PWM信号输出,单片机无法达到2us的控制精度,本报告采用两种单片机,控制角度精度为别达到9°和0.9°,稍后会有介绍二、舵机控制PWM脉宽调制值的设定设所选单片机的晶振频率为fosc,AT89S52单片机机的T=12/fosc,定时器中断采用方式2,8位自动重装定时器,定位100us 中断一次,初值等于100/T。
在定时器中断服务程序中使用两个全局变量,一个变量控制高电平时间,一个变量控制低电平时间,两个变量的和为20*1000/100=200,控制PWM脉宽即控制这两个变量的值。
简易教程前言往届全国大学生电子设计竞赛曾多次出现了集光、机、电于一体的简易智能小车题目,此次,笔者在通过多次论证、比较与实验之后,制作出了简易小车的寻迹电路系统。
整个系统基于普通玩具小车的机械结构,利用小车的底盘、前后轮电机及其自动复原装置,能够平稳跟踪路面黑色轨迹运行。
系统分为检测、控制、驱动三个模块。
首先利用光电对接收管和路面信号进行检测,然后经过比较器处理,对软件控制模块进行实时控制,输出相应的信号给驱动芯片驱动电机转动,从而控制整个小车的运动。
智能小车能在画有黑线的白纸“路面”上行驶,这是由于黑线和白纸对光线的反射系数不同,小车可根据接收到的反射光的强弱来判断“道路”---黑线,最终实现简单的循迹运动。
个人水平有限,有错误不足之处,还望各位前辈同学多多包含,指出修正,完善。
谢谢!李学云王维2016年7月27号目录前言 (1)第一部分硬件设计 (1)1.1 车模选择 (1)1.2传感器选择 (1)1.3 控制模块选择 (2)第二部分软件设计及调试 (3)2.1 开发环境 (3)2.2总体框架 (3)2.3 舵机程序设计与调试 (3)2.3.1 程序设计 (3)2.3.2 调试 (3)2.3.3 程序代码 (4)2.4 传感器调试 (5)2.4.1 传感器好坏的检测 (5)2.4.2 单片机能否识别信号并输出信号 (5)2.5 综合调试 (7)附录1 (9)第一篇舵机(舵机及转向控制原理) (9)1.1概述 (9)1.2舵机的组成 (10)1.3舵机工作原理 (11)1.4舵机使用中应注意的事项 (12)1.5如何利用程序实现转向 (12)1.6舵机测试程序 (13)附录2 (14)第二篇光电红外传感器 (14)2.1传感器的原理 (14)2.2红外光电传感器ST188 结构图 (15)2.3传感器的选择 (15)2.4传感器的安装 (16)2.5使用方法 (16)2.7红外传感器输入输出调试程序 (17)一、课题任务及要求用360°连续舵机设计一个自动循迹小车,可以自动行驶并检测到地面黑色轨迹,沿着黑色轨迹行驶.二、小车行驶基本原理小车在白色地板上循黑线行走,由于黑线和白色地板对光线的反射系数不同,可以根据接收到的反射光的强弱来判断“道路”。
舵机测试实验报告-反恐精英 2014.9.23 一、实验目的为了更好地熟悉信号发生器、稳压电源等多种仪器的使用,以及为以后更好地设计“排爆”机器的舵机系统,我们需要对舵机转盘旋转角度与其控制信号周期、占空比之间的关系进行及较为精确的定性定量分析。
二、实验原理舵机的控制信号是PWM信号,利用其占空比的变化可改变舵机的位置。
舵机的控制一般需要一个20ms左右的时基脉冲,该脉冲的高电平部分一般为0.5ms-2.5ms范围内的角度控制脉冲部分,总间隔为2ms。
此外,PWM信号周期对舵机转盘转动角度的可控范围也有一定程度的影响。
三、实验思路1、根据查询的相关资料里的数据,进行验证型实验。
即连接好测量电路后,将控制信号的参数设置为资料中提供数据,测量相对应舵机转盘转动的角度,测量约4~5组实验数据并记录。
2、电路连接保持不变,固定控制信号频率值,调节其占空比,间隔为2.5%,测量相对应舵机转盘转动的角度,记录实验数据。
3、电路连接保持不变,依次固定控制占空比为2.5%、5%、7.5%,调节控制信号频率(即信号周期),间隔为10Hz,测量相对应舵机转盘转动的角度,记录实验数据。
4、拆除电路,将信号发生器输出直接与示波器相连,估计信号发生器实际输出信号的相关参数与其设定标准值之间的误差。
5、将记录好的实验数据进行分析总结,得出结论。
四、舵机转盘旋转角度的测量方法根据实验的硬件条件,我们做出了以下三种测量方案:1、认为圆形孔状转盘上各孔间距相等,根据某一孔的位置变化,粗测出转盘转过的角度。
这种方法比较粗略,可以大致得出转动角度随占空比线性变化的结论。
2、在纸上画出圆形表盘,将舵机的三根电线与12点钟方向对齐,记录舵机扇叶的初始位置,每转过一定角度,用笔垂直于扇叶向下在纸上标注。
用量角器测出纸上各点对应的圆心角。
这种方法误差在于舵机转盘的中心与纸上表盘的中心不一致,导致所测角度与实际值存在较大偏差。
3、将舵机正面朝向纸面,用铁丝从纸的反面对准舵机转盘中心戳一个小孔作为角度测量的圆心,将每次转动后扇叶在纸上的位置记录下来。
舵机测试实验报告
张冲
一、实验目的
为了较好的设计旋翼无人机的舵机控制系统,必须首先确定舵机的旋转精度,舵机精度的高低直接影响控制的精度。
如果舵机的精度达到1°,那么我们现有的控制方式将能很好的实现舵机的控制,从而保证旋翼无人机控制系统的精度。
如果达不到1°,那么我们需要根据舵机的实际精度来改进控制方式,使其尽可能的满足旋翼无人机的控制要求。
所以我们设计了这个舵机测试实验来验证S3156型舵机精度能否达到1°。
二、实验原理
如图1,舵机的控制信号是脉冲宽度调制(Pulse Wide Modulator,PWM)信号,利用占空比的变化改变舵机的位置。
图1 PWM控制信号(左图) 实测得PWM信号(右图) 受到舵机测试仪给出的PWM控制信号之后,与舵机相连的指针将发生偏转,偏转变化
量将通过转台刻度读出。
如果舵机输出位置精度达到1 ,则满足设计要求。
图2舵机精度测试平台
1、把舵机固定在转台中央,使得舵机的转子与转台的圆心重合。
2、把舵机输入端连接到舵机测试仪的输出端,把舵机测试仪接上电源
3、把测试仪的输出端连上示波器,系统连接完成如下图3。
4、打开示波器电源,手动微调一下舵机测试仪,使其偏转角度尽可能的小,用游标转盘精确的量出偏转的角度并记录下来;从示波器上读出PWM 波的周期以及高电平部分持续时间,并记录下来。
先从0°一直测到30°,然后再从0°测到-30°。
图3 系统连线实拍图
四、实验器材
示波器,S3156高精度舵机,舵机测试仪,转台,电源,导线。
舵机具体的选择标准如下:
1、质量在10g 以内的微型数字舵机,尽量减少RUA V 总重
2、速度0.160s (即舵机偏转60
需要0.1s )左右 3、输出力矩0.23Servo M kg cm >∙
其中,PWM 波周期是恒值ms .516T =,电源输出电压V 5U =。
六、数据处理
1、用matlab 对43组输入输出数据进行描点和一阶曲线拟合(如图4):
顺时针旋转30° 逆时针回转30° PWM 波输入时间μt ∆(单位:ms ) 占空比∆ 舵机输出角度θ(单
位:°) PWM 波输入时间μt ∆(单位:ms ) 占空比∆ 舵机输出角度θ(单位:°) 1.53 9.27% 0.3 1.54 9.33% -2.1 1.51 9.15% 1.5 1.56 9.45% -5.7 1.49 9.03% 2.9 1.58 9.58%
-7.6 1.47 8.91% 4.5 1.59 9.64%
-9.4 1.46 8.85% 6.3 1.61 9.76%
-10.8 1.44 8.73% 7.0 1.62 9.82%
-12.5 1.43 8.67% 8.4 1.64 9.94%
-14.0 1.41 8.56% 9.1 1.66 10.06% -15.8 1.40 8.48% 11.1 1.67 10.12% -16.6 1.38 8.36% 12.5 1.69 10.24% -17.9 1.37 8.30% 14.2 1.70 10.30% -19.4 1.35 8.18% 15.7 1.72 10.42% -21.2 1.33 8.06% 17.3 1.74 10.55% -22.5 1.32 8.00% 19.1 1.75 10.61% -23.7 1.30 7.88% 20.7 1.77 10.73% -25.6 1.28 7.76% 22.5 1.78 10.79% -27.0 1.27 7.70% 24.0 1.80 10.91% -28.4 1.25 7.58% 25.9 1.82 11.03% -29.8 1.24 7.52% 27.1 1.83 11.09%
-31.9 1.22 7.39% 28.9 1.85 11.21%
-33.5 1.20 7.27%
30.1 1.19 7.21%
31.9 1.17 7.09%
33.9
图4
由测试结果可知,PWM 波的占空比与舵机的输出角度呈良好的线性关系,拟合的一阶曲线函数为1945.1504126.16+∆-=θ。
2、求42组输入输出的差值的平均值(即在这个测试仪下的舵机精度):
︒=∆++∆=
∆0.6142421θθθ ms t t t 01619.042421=∆+∆=∆ μ
︒=∆∆ms t 01012.0/θμ
七、总结
手动控制舵机测试仪只能时舵机的精度保持在1.6°,达不到1°的理想要求。
但是由
μt ∆与θ∆的比值可知每变动0.01ms 的PWM 波的高电平持续时间舵机能变动1°。
由于这个实验使用的舵机测试仪的精度和手动控制局限性,并不能使PWM 波高电平持续时间的变化精度为0.01ms ,实际控制的时候会采用NI 公司的PWM 信号输出卡,可以高精度的控制PWM 波的占空比,所以在实际控制过程中精度肯定好于1.6°,预估值是1°。
'。