核磁共振及其应用

  • 格式:doc
  • 大小:283.50 KB
  • 文档页数:8

下载文档原格式

  / 8
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

核磁共振及其应用

发布范围:公开2010-02-03 16:26

核磁共振现象是由美国科学家柏塞尔

(E.M.Purcell)和瑞士科学家布洛赫(E.Blo

ch)于1945年12月和1946年1月分别独立

发现的。他们共享了1952年诺贝尔物理学

奖。

核磁共振(nuclear magnetic resonan

ce)是原子核的磁矩在恒定磁场和高频磁场同时作用,且满足一定条件时所发生的共振吸收现象,是一种利用原子核在磁场中的能量变化来获得关于核信息的技术。50多年来,由核磁共振转化为探索物质微观结构和性质的高新技术已取得了惊人的进展。目前,核磁共振已在物理学、化学、材料科学、生命科学等领域得到广泛应用。

如同电子具有自旋角动量和自旋磁矩一样,核也具有自旋角动量和自旋磁矩。核自旋即是原子核内所有核子的自旋角动量与轨道角动量的矢量和,其大小,其中I为核自旋量子数。在外磁场方向(设磁场沿z方向)的投影为,称为核自旋磁量子数,I一定时,有(2I +1)个取值。

自旋不为零的原子核有磁矩,它与核自旋的关系为,式中为质子的质量,称为核的朗德因子,它取决于核的内部结构与特性,且是一个无量纲的量。于是,旋磁比。

核磁子在外磁场(沿z轴)方向的投影

,

其中

称作核磁子。通常将取最大值I时的称为核的磁矩,记作

(1)

这磁矩在空间的可能取向如图2所示,它位于核磁矩在外磁场(沿z轴)中旋进的锥面上。磁矩与磁场的相互作用能为

(2)

由于同一I下有(2I +1)个值,因而原来得一个核能级附加上相互作用能,将会有(2

I +1)个能量值,称为为子能级。相邻两个子能级的能量差(因其值相差为1)为

(3)

例如,氢核的基态核能级,在恒定磁场中的分裂情况如图3所示。

已知核磁矩在外磁场的作用下旋进,可以求得其旋进角速度为,若再在垂直于的方向加一个频率在射频范围的交变磁场B (如图4所示),当其频率与核磁矩旋进频

率一致时,便产生共振吸收;当射频场被撤去后,磁

场又把这部分能量以辐射形式释放出来,这就是共振

发射。这共振吸收和共振发射的过程称为核磁共振。

由于相邻两个能级对应的核自旋磁量子数的

改变量,因而只有在相邻两个能级间的跃

迁才是允许的。于是,交变磁场的频率所对应的能

量应等于相邻子能级的能量差,由(3)式可得

,所以发生核磁共振的条件应是

,(4)

利用量子力学的理论不仅能够算出共振频率,而且能够算出对于不同频率的净吸收能量,从而确定吸收曲线的形状。净吸收能量取决于两个能级之间的跃迁概率和处于每个能级的粒子数目,详细的计算方法这里不再讨论。在核磁共振中经常要考虑氢核即质子的共振。例如,质子在外磁场中,由磁矩平行于的态跃迁到反平行于的态,,于

是共振频率,当。这一频率落在微波范围,波长约7m。

实现核磁共振,既可以保持磁场不变而调节入射电磁波的频率,也可以使用固定频率的电磁波照射,而调节样品所受的外磁场。图5是调磁场核磁共振示意图,其装置由四部分组成:

永磁铁,用来产生强大的外磁场,标准仪器产生的场强为1.4 T。

扫描线圈,用于使外磁场作微小振荡,从而使我们能在示波器上看到尖锐的共振峰。

射频振荡器,它用于产生固定频率的电磁辐射,通常频率,这个辐射的磁场起的作用。

探测器,用于探测从振荡器中吸收的能量。

图6是调频率核磁共振示意图,样品(如水)装在小瓶中置于磁体两极之间,瓶外绕以线圈,由射频振荡器向它输入射频电流。这电流就向样品发射同频率的电磁波,其频率大致与外磁场对应的频率相等。为了精确地测定共振频率,就用一个调频振荡器使射频电磁波的频率在共振频率附近连续变化。当电磁波频率正好等于共振频率时,射频振荡器的输出就出现一个吸收峰,它可以从示波器上看出,同时由频率计数器读出此共振频率。

核磁共振已在众多领域中有了广泛的应

用。从技术手段上讲,核磁共振的应用主要有

两个方面:核磁共振波谱应用和核磁共振成象

的应用。

所谓核磁共振波谱,实际上是吸收率(纵

坐标)对化学位移(横坐标)的关系曲线。因

为实际过程中,作用在核磁矩(主要研究的常常是质子的磁矩)上的磁场,除了外磁场外,还受到核外周围电子产生的磁场的影响。于是,在同样的外部条件下,位于不同分子中的核,或虽在同一分子中但位于不同化学集团的核,其共振频率都与由(4)式计算出的理论值有不同程度的微小偏移。由于这种偏移与核所处的化学环境有关,因而称之为化学位移。若是扫场法,则表现为共振时的磁场不同。如图7所示即为乙醇中三个核在化学结构中的环境不同,引起不同的共振曲线,出现各自分离的共振吸收峰。当然,这种由于化学环境不同而引起的核磁共振频率的偏移量是很微小的。对H核而言,这种偏移量仅为百万分之十。但正是因为有这一微小差异,即可由核磁共振谱得到分子结构的某些信息,如核外电子云的分布等。

核磁共振成像是从核磁共振谱进一步发展起来的先进技术。目前已又多种核磁共振成像方法,如质子密度成像、投影重建成像、弛豫时间成像、化学位移成像等等,它们各具特色。下面简要介绍两种方法:

(1) 点成像法

已知发生核磁共振的频率条件为。现在一个均匀磁场上叠加一个与空间位置有关的梯度磁场。这样,空间各点的磁场不同,因而共振频率也有所不同,于是共振频率与样品的空间分布有关,这就是核磁共振成像的最初考虑。如果在x,y,z三个方向上分别加以梯度磁场,则可得到相应于三维空间点(位置坐标为x,y,z)的共振频率;再经过傅里叶变换、计算机处理等技术手段,就可以把频域的信息转换为样品空间分布的信息。当以图形的形式表示这种信息时,就得到样品的核磁共振成像。

(2) 弛豫时间成像法