流水车间调度及其优化算法
- 格式:docx
- 大小:36.44 KB
- 文档页数:1
分布式装配阻塞流水车间调度问题求解算法研究分布式装配阻塞流水车间调度问题是指通过合理的算法,对分布式装配车间中的多个工作站进行调度,以优化整个工作流程,提高生产效率和产品质量。
随着制造业的发展,车间生产过程中可能出现许多问题,如工作站的阻塞、任务延迟等,这些问题对生产效率造成了很大的影响。
因此,如何解决分布式装配阻塞流水车间调度问题成为了制造业中的重要问题。
在分布式装配车间中,通常包含多个工作站,每个工作站负责不同的任务。
这些任务可能需要按照一定的先后顺序进行,而且不同的工作站之间也存在一定的依赖关系。
如果没有合理调度,工作站之间的阻塞和延迟将会导致整个生产流程的延误。
目前,已经有很多不同的算法被提出来用于解决分布式装配阻塞流水车间调度问题。
其中,常用的算法包括遗传算法、模拟退火算法、蚁群算法等。
这些算法通过优化工作站之间的任务分配和调度顺序,来达到最优的生产效果。
在遗传算法中,通过模拟生物进化过程,将问题转化为一个求解最优解的优化问题。
该算法通过对种群的基因序列进行交叉和变异操作,生成新的个体,并根据适应度函数评估每个个体的适应度,从而选择出最优的个体作为当前种群的父代,进而形成新的种群。
通过迭代的过程,逐渐逼近最优解。
模拟退火算法则模拟了材料退火的过程,通过随机搜索的方式,以接受不太好的解,并在温度逐渐降低的过程中,逐渐收敛到最优解。
在求解分布式装配阻塞流水车间调度问题中,通过模拟退火算法可以在局部最优解中跳出来,以期望找到更优的全局最优解。
蚁群算法则是通过模拟蚂蚁找到食物的行为,在分布式装配车间调度问题中,可以将每个工作站看作是食物,通过模拟蚂蚁在搜索过程中释放信息素的过程,来寻找最优解。
除了以上三种算法,还有其他一些算法,如禁忌搜索算法、粒子群算法等,这些算法各有优劣,可以根据具体问题的特点选择最适合的算法。
在实际应用中,如何选择合适的算法以及算法参数的设置,会对分布式装配阻塞流水车间调度问题的求解产生重要影响。
车间调度算法是指为了优化车间生产调度而设计的算法。
下面介绍几种常见的车间调度算法:先来先服务(First-Come, First-Served,FCFS)算法:
工作按照到达顺序排队执行,先到先服务。
缺点是没有考虑工作的执行时间和紧急程度,可能导致长作业时间和低效率。
最短作业优先(Shortest Job Next,SJN)算法:
按照工作的执行时间进行排序,选择执行时间最短的工作优先执行。
可以最大程度地减少平均等待时间和周转时间,但可能导致长作业等待时间过长。
最高优先级优先(Highest Priority First,HPF)算法:
给每个工作分配一个优先级,优先级高的工作优先执行。
可以根据工作的紧急程度进行调度,但可能导致低优先级工作长时间等待。
轮转法(Round Robin,RR)算法:
将时间划分为时间片,每个工作在一个时间片内执行一定的时间,然后切换到下一个工作。
公平地分配处理器时间,避免长作业占用时间过长,但可能导致响应时间较长。
最早截止时间优先(Earliest Deadline First,EDF)算法:
按照工作的截止时间进行排序,选择最早截止时间的工作优先执行。
可以确保紧急工作及时完成,但需要准确估计截止时间。
启发式算法:
基于经验和启发规则进行调度决策,如遗传算法、模拟退火算法等。
可以根据具体问题的特点和需求进行调度,但可能不保证获得最优解。
不同的车间调度算法适用于不同的生产环境和问题需求。
选择适合的算法需要考虑生产特点、工作性质、优先级和调度目标等因素,并综合考虑平均等待时间、周转时间、资源利用率、紧急程度等指标。
1、问题描述:n个作业{1,2,…,n}要在由2台机器M1和M2组成的流水线上完成加工。
每个作业加工的顺序都是先在M1上加工,然后在M2上加工。
M1和M2加工作业i所需的时间分别为ai和bi。
流水作业调度问题要求确定这n个作业的最优加工顺序,使得从第一个作业在机器M1上开始加工,到最后一个作业在机器M2上加工完成所需的时间最少。
2、问题分析直观上,一个最优调度应使机器M1没有空闲时间,且机器M2的空闲时间最少。
在一般情况下,机器M2上会有机器空闲和作业积压2种情况。
设全部作业的集合为N={1,2,…,n}。
S是N的作业子集。
在一般情况下,机器M1开始加工S中作业时,机器M2还在加工其他作业,要等时间t后才可利用。
将这种情况下完成S中作业所需的最短时间记为T(S,t)。
流水作业调度问题的最优值为T(N,0)。
设π是所给n个流水作业的一个最优调度,它所需的加工时间为aπ(1)+T’。
其中T’是在机器M2的等待时间为bπ(1)时,安排作业π(2),…,π(n)所需的时间。
记S=N-{π(1)},则有T’=T(S,bπ(1))。
证明:事实上,由T的定义知T’>=T(S,bπ(1))。
若T’>T(S,bπ(1)),设π’是作业集S在机器M2的等待时间为bπ(1)情况下的一个最优调度。
则π(1),π'(2),…,π'(n)是N的一个调度,且该调度所需的时间为aπ(1)+T(S,bπ(1))<aπ(1)+T’。
这与π是N的最优调度矛盾。
故T’<=T(S,bπ(1))。
从而T’=T(S,bπ(1))。
这就证明了流水作业调度问题具有最优子结构的性质。
由流水作业调度问题的最优子结构性质可知:从公式(1)可以看出,该问题类似一个排列问题,求N个作业的最优调度问题,利用其子结构性质,对集合中的每一个作业进行试调度,在所有的试调度中,取其中加工时间最短的作业做为选择方案。
将问题规模缩小。
车间工艺优化改革方案针对我公司现有生产状态,随着我们上新的管理系统、对生产的管控将越来越精细,为全速提升产能、计划对生产基地现有的生产分工序分阶段地进行工艺改革,改变以往无序的生产作业流向,最大限度地提升现有的生产潜力。
车间生产优化改革思路:主要分为安全生产、质量管控、电装流水生产和机组总装工艺优化四部分。
一、安全生产实施思路:1、安全的重要性安全是生产的前提,因此安全生产标志告示在车间作业区最醒目的位置。
让每一个进入生产基地的人员都在第一时间开始把人生安全放在第一位。
对于生产车间的警示建议分为安全标语、安全生产规范、安全工作检查流程、人员安全作业图示这这几方面。
2、标示标语对车间内设备使用区域如(铜牌机、行吊、焊机、负载柜等等)对应挂设安全生产标语、作业图案、危险警示标示等安全标示。
3、执行做法在进入车间大门的左侧墙壁上通过告示栏目形式展示生产工作服正确着装、安全鞋、帽的正确佩带图示、布置安全生产法规等国家性标准。
在图示的旁边布置布置安全生产流程图示及对应负责人以及车间安全月板报等。
(参见车间布局图)安全生产口号:(仅供参考)2.1生产类:安全是幸福的保障,治理隐患保障安全;宁可千日慎重,不可一时大意;消除一切安全隐患,保障生产工作安全;安全是一种责任,为己为家为他人;企业效益最重要,安全生产第一条;事事落到实处,安全有备无患。
安全生产生产蒸蒸日上,文明建设建设欣欣向荣;高高兴兴上班来,平平安安回家去。
2.2消防类:遇有火情不要慌,就近出口找方向;消防知识掌握好,减灾增效双提高;消防安全抓不好,隐患事故少不了;消防安全抓不住,隐患事故堵不住;消防工作时时抓,工厂安全年年佳;消防安全记心上,平安幸福有保障;发展需要千日功,火烧就要一日穷。
二、质量管控(建议执行部门:品控部、PMC部)1、质量的重要性在质量管理的发展过程中,我司的质量管理思路要转变,从产品质量有“检验”到“预防”,由“堵”到“疏”,再到生产的“全面质量管理”,在生产过程中的精细化要求与质量水平要求越来越高。
关于流水车间调度问题的综述关于流水车间调度问题的综述.曲媛-杨晓伟z摘要:流水车间调度问题,也被称为同序作业调度问题,是许多实际流水线生产调度问题的简化模型.它无论是在离散制造工业还是在流程工业中都具有广泛的应用.因此,对其进行研究具有重要的理论意义和工程价值.本文介绍了流水车间调度问题的研究现状和几种解决方法.关键词:流水车间;遗传算法;启发式算法引言自从Johnson1954年发表第一篇关于流水车间调度问题的文章以来.流水车间调度问题引起了许多学者的关注.流水车间调度问题一般可以描述为n个工件要在m台机器上加工.每个工件需要经过m道工序,每道工序要求不同的机器.n个工件在m台机器上的加工顺序相同.工件i在机器j上的加工时间是给定的,设为t(I.j).问题的目标是求n个工件在每台机器上最优的加工顺序,使最大流程时间达到最小.对该问题常常作如下假设.(1)每个工件在机器上的加工顺序是1,2.…,m;(2)每台机器同时只能加工一个工件;(3)一个工件不能同时在不同的机器上加工;(4)工序不能预定:(5)工序的准备时间与顺序无关,且包含在加工时间中;(6)工件在每台机器上的加工顺序相同,且是确定的.基本算法1.一种基于扩展采样空间的混合式遗传算法将邻域搜索与遗传算法相结合求解流水车间调度问题,提出了一种邻域结构.使之更适合求解流水车间问题;设计了一种基于扩展采样空间的混合式遗传并通过计算机模拟验证其有效性.其中,邻域搜索使用定义(由给定的染色体通过随机移动一个基因到一个随机的位置.得到的是染色体的集合)所描述的邻域.采样空间为父代P(t),改进的父代s(t),交叉的后代C(t),变异的后代M(t).交叉和变异的父代是种群的父代P(t),而不是改进的父代S(to具体的混合式算法框架BEGINt=0初始化P(t)WHILE不满足终止条件Do①下降搜索.应用多点最速下降法改进P(t),得到改进的父代S(t);24中小企业科技2007.07②用P(t)进行单点交叉生成C(t);③用P(t)进行移动变异生成M(t);④采样从P(t),S(t),C(t),M(t)中选出最好的不重复的下一代染色体:t=t+1END2.改进的DNA进化算法改进的DNA进化算法中引入了交换操作(交换操作就是在DNA单链中随意产生一个位置.然后将位置前的DNA链与位置后的DNA链相交换.组成一条新的链)以更好地搜索解空间,并采用黄金分割率控制变异个体的数目.同时为了进一步提高搜索性能.采用一种新颖的启发式规则.具体算法如下:对于每个工件都有3个时间指数:t为工件j在所有机器上的加工时间之和;t1i为工件j在第一台机器上的加工时间; t为工件j在最后一台机器上的加工时间;tj为工件j的加权加工时间.B,C是[0,1]之间的数.当随机生成一个A,再在[0,1一A]之间随机产生一个B便能确定tj的大小.然后每个工件按照Tj的降序排列.这样就会产生一个可行解.生成不同的A,就会得到不同的可行解.将启发式算法得到的可行解作为DNA进化算法的初始群体.具体算法如下:①计算每个工件tmi的及tlI;@)For(I=1,2.7.n)(n表示要产生的可行解的个数);A=random(0,1);B=random(0,1一A):tⅡ=At~j+Btlj+(1一A—B)tmj;End③根据每个工件计算出的t.进行降序排列.得到对应的工件排序,即可行解.通过仿真可以验证.加入启发式算法能够快速地接近最优解.提高算法的收敛速度.产生初始种群.3.一种基于遗传算法的求解方法一种基于遗传算法的求解方法.在由染色体转换成可行调度的过程中引入工件插入方法.同时设计了一种新的交叉算子(这里设计了一种新的交叉算子.从种群中按交叉概率随机选取两个个体作为父体.对于每个个体随机寻找两个不同的基因位置.选择这两个位置及其之间的基因作为交叉部分.两个交叉部分的长度可以不同.首先将两个交叉部分进行交换.然后按照父体中原来基因排列的顺序补齐交叉部分没有包含的基因.经过交叉之后产生的子代个体一部分基因保留了在一个父辈个体中的绝对位置,另部分基因则保留了在另一个父辈中的相对位置.该操作具有较好的遗传特性,同时也能够产生足够的搜索空间.计算表明该算子优于PMX交叉算子.)通过大量的数值计算表明.该算法优化质量大大优于传统的遗传算法和NEH启发式算法.4.一个无等待流水车间调度启发式算法采用一个经典的全局任务插入算法构造初始解,应用局部搜索方法对其进行改进.通过4000个不同规模实例将提出算法与目前求解该问题最好的几个算法从性能和计算时间方面进行全面比较.实验结果表明:提出算法的性能是目前最好的,多项式复杂度的计算时间适合实际生产需求.此启发式算法包括两个阶段:初始序列的产生阶段和改进阶段.(1】在初始序列的产生阶段.采用任务插入的方法,它类似于NEH[3]算法.(2)在初始序列的改进阶段,定义V=(X,Y)为序列s中的一对位置,其中:,Y∈{l,2….刀),≠Y.V的移动将S中第X个任务插入到第y个位置,位置对集合:Z={(J,)J,Y∈{l,2,…),Y壁{,—l}},其中包括(n一1)(n一1)个位置对.算法描述如下:①令k=1,计算所有任务ji(I=1,2…,n)的F2值.选择最小值对应的任务放入S中,将其余n一1个任务放入R 中;(K=K+1;③从R中任意取出一个任务j,将其插入到S的K个不同位置.产生K个不同的序列.计算这K个序列的F1值,选择最小值对应的序列作为一个候选序列,将任务j从R中移除;④如果R≠,返回第3步,否则转到第5步;⑤在产生的(n—K+I)个候选序列中,计算各自的F值.选择最小值对应的序列替换S.将序列S以外的所有任务存放到集合R中;⑥如果K=n,结束,S即为最终初始序列;否则回到第2步继续;⑦生成序列S的位置对集合并进行插入操作,产生(n一1)个新的任务序列,计算所有新产生序列的F1值,将最小值对应序列记为S;⑧如果F,(S)=F,(S),则S=S.返回第7步重新开始;否则转入第9步;⑨序列S即为最终任务序列.5.混合禁忌搜索算法(HTS)(1)混合禁忌搜索HTs算法的主要思路为:通过一个有效的启发式算法为TS算法提供一个较好初始解,并可加快TS 算法的收敛速度;采用禁忌搜索算法改进初始解以搜索到更好的近优解.初始解生成算法:①任意产生一个初始序列Q.;②利用双插入启发式算法[5](DIH)对序列Q进行改进获取一个序列S.DIH基于全局插入操作和局部插入操作的思想来产生局部种子序列并对当前调度进行改进.该算法具有较高效率的搜索能力.得到一个较好的近优解;③将序列S进行一次全局成对交换,得到初始序列P.(2)HTS算法描述:基于已得到的序列P作为初始解T0和以上禁忌搜索算法,关键参数的设置,下面给出HTS算法:①调用初始解生产算法产生初始解P并赋予To;②将初始解T作为当前解利用成对交换(Swap)产生的邻域结构得到多个邻域解;③将所有邻域解对应的目标函数值从小到大排序,然后选取前e个邻域解作为候选解;④从第1个候选解开始,如果满足藐视准则,则将此邻域解作为当前的序列T,;否则在候选解中选非禁忌的最佳状态序列作为当前序列T,;⑤保存每个当前序列T,及其目标函数值,并找出其中最优的目标函数值及对应的序列W,;⑥若满足终止条件,则比较最后得到的当前序列T,与序列w,所对应的目标函数值大小,选取目标函数值小的序列作为算法最终所得到的近优解,算法停止;若不满足终止条件则To=T,,则转向2.6.混合规划针对不确定条件下流水车间调度问题(Flowshopschedul—ing),研究了含有随机参数和灰色参数的混合机会约束规划模型的建立及求解方法.提出了灰色模拟的概念和方法,为含有灰色参数的机会约束规划提供了求解途径.通过理论推导及仿真实例,结合遗传算法,验证了基于随机模拟和灰色模拟的混合机会约束规划的调度模型及求解方法的有效性.结束语从目前来看,还没有一个求解流水车间问题最优解的简明算法.整数规划和分枝定界技术是寻求最优解的常用方法.然而对于一些大规模甚至中规模的问题,这两种方法仍然不是很有效.以遗传算法,模拟退火,禁忌搜索以及人工神经网络为代表的智能化优化技术迅速发展来解决流水车间调度问题,受到人们的普遍关注.其中,遗传算法以其优良的计算性能和显着的应用效果而特别引人注目,所以很多启发式混合方法都是在此基础上发展起来的.刁参考文献1梁黎明,汪国强.求解流水车间调度问题的一种混合式遗传算法[I].华南理工大学,2001;(t1):85~882俊林.薛云灿,邵惠鹤.求解混合流水车间调度问题的一种遗传算法[I].计算机工程与应用.2003;(35):186~1873牛群,顾幸生.基于启发式规则的新型进化算法在流水车间调度中的应用[I].华东理工大学,2006;(12):1472~1477(作者简介:1.华南理工大学数学科学学院硕士研究生.2.华南理工大学数学科学学院副教授,博士.)2007.07中小企业科技25。
置换流水车间调度问题的几种智能算法置换流水车间调度问题是一个重要的生产调度问题,它在工业生产中具有广泛的应用。
对于这个问题,传统的调度方法在处理大规模问题时面临困难,效率较低。
而智能算法则能够有效地解决这一问题。
本文将介绍几种智能算法,并探讨它们在置换流水车间调度问题中的应用。
首先,我们来介绍遗传算法。
遗传算法是一种模拟自然进化思想的优化算法。
它通过模拟生物的进化规律来寻找最优解。
在置换流水车间调度问题中,遗传算法能够通过基因编码、交叉和变异等操作产生新的调度方案,并通过适应度函数评估其优劣性。
经过多次迭代,遗传算法能够逐渐收敛于最优解。
其次,我们来介绍模拟退火算法。
模拟退火算法是一种基于物理退火过程的优化算法。
它通过“温度”来控制搜索过程,从而避免陷入局部最优解。
在置换流水车间调度问题中,模拟退火算法能够通过不断的随机搜索和接受较差解的概率,寻找到全局最优解。
相比于遗传算法,模拟退火算法更注重对解空间的全面搜索。
另外,我们也可以考虑使用禁忌搜索算法。
禁忌搜索算法是一种基于记忆的优化算法。
它通过禁忌表来记录已经搜索过的解,避免重复搜索,并通过引入“禁忌期限”来避免局部最优解。
在置换流水车间调度问题中,禁忌搜索算法能够通过禁忌表和邻域搜索的方式,快速找到较好的解,并通过调整禁忌期限来避免陷入局部最优解。
最后,我们还可以考虑使用粒子群优化算法。
粒子群优化算法是一种模拟鸟群觅食行为的优化算法。
它通过模拟鸟群中每个个体的位置和速度,以及个体间的信息交流,来寻找最优解。
在置换流水车间调度问题中,粒子群优化算法能够通过多个个体的协作和信息共享,逐渐收敛于最优解。
综上所述,置换流水车间调度问题是一个复杂的优化问题,传统的调度方法效率较低。
而智能算法能够通过模拟自然进化、物理退火、记忆和信息交流等思想,有效地解决这一问题。
在实际应用中,我们可以根据具体情况选择适合的智能算法,并结合问题的特点进行相应的调整,从而取得更好的调度效果。
改进迭代贪婪算法求解可重入流水车间调度问题可重入流水车间调度问题(reentrant flow shop scheduling problem)是指在多工序流水车间中,存在可重入现象的调度问题。
在车间中,每个作业需要按照一定的工序顺序加工,而每个工序都有不同的机器可以完成。
不同于一般流水车间问题,可重入流水车间问题允许同一作业在同一工序上重复进行,增加了调度的复杂性和难度。
迭代贪婪算法是一种常用于解决可重入流水车间调度问题的启发式算法。
它的基本思想是通过多次迭代,每次选择当前局部最优的决策来逐步优化最终调度结果。
然而,传统的迭代贪婪算法存在着一些不足之处,例如容易陷入局部最优解、收敛速度较慢等。
因此,本文将针对这些不足之处进行改进,以求更好地解决可重入流水车间调度问题。
一、改进之处在改进迭代贪婪算法求解可重入流水车间调度问题时,我们可以从以下几个方面进行改进:1. 变异操作策略的引入:传统的迭代贪婪算法只考虑选择当前局部最优解进行迭代更新,但这种策略存在着局限性。
我们可以引入变异操作策略,即在每次迭代中,按照一定概率引入一定程度的随机性,以避免陷入局部最优解。
通过引入变异操作,可以增强算法的全局搜索能力,提高算法的质量和效率。
2. 邻域搜索的扩展:邻域搜索是迭代贪婪算法中的关键步骤。
传统的迭代贪婪算法仅仅根据局部最优解进行邻域搜索,但这种策略可能无法充分探索搜索空间。
我们可以考虑扩展邻域搜索的范围,在搜索过程中引入一定程度的随机性,以增加解空间的探索度。
通过扩展邻域搜索的范围,可以更全面地搜索潜在解,提高算法的全局搜索能力。
3. 优化目标函数的定义:目标函数的定义直接关系到算法求解可重入流水车间调度问题的效果。
传统的迭代贪婪算法通常采用简单的目标函数,例如最小化总加工时间或最大化作业的完工时间。
然而,这样的目标函数并不能充分考虑到车间效率与资源利用率等因素。
我们可以重新定义目标函数,结合车间实际情况和约束条件,以综合考虑多个指标,从而求得更合理、更优的调度结果。
算法设计与分析——流⽔作业调度(动态规划)⼀、问题描述N个作业{1,2,………,n}要在由两台机器M1和M2组成的流⽔线上完成加⼯。
每个作业加⼯的顺序都是先在M1上加⼯,然后在M2上加⼯。
M1和M2加⼯作业i所需的时间分别为ai和bi,1≤i≤n。
流⽔作业⾼度问题要求确定这n个作业的最优加⼯顺序,使得从第⼀个作业在机器M1上开始加⼯,到最后⼀个作业在机器M2上加⼯完成所需的时间最少。
⼆、算法思路直观上,⼀个最优调度应使机器M1没有空闲时间,且机器M2的空闲时间最少。
在⼀般情况下,机器M2上会有机器空闲和作业积压2种情况。
最优调度应该是:1. 使M1上的加⼯是⽆间断的。
即M1上的加⼯时间是所有ai之和,但M2上不⼀定是bi之和。
2. 使作业在两台机器上的加⼯次序是完全相同的。
则得结论:仅需考虑在两台机上加⼯次序完全相同的调度。
设全部作业的集合为N={1,2,…,n}。
S是N的作业⼦集。
在⼀般情况下,机器M1开始加⼯S中作业时,机器M2还在加⼯其他作业,要等时间t后才可利⽤。
将这种情况下完成S中作业所需的最短时间记为T(S,t)。
流⽔作业调度问题的最优值为T(N,0)。
这个T(S,t)该如何理解?举个例⼦就好搞了(⽤ipad pencil写的...没贴类纸膜,太滑,凑合看吧)1、最优⼦结构T(N,0)=min{ai + T(N-{i}, bi)}, i∈N。
ai:选⼀个作业i先加⼯,在M1的加⼯时间。
T(N-{i},bi}:剩下的作业要等bi时间后才能在M2上加⼯。
注意这⾥函数的定义,因为⼀开始⼯作i是随机取的,M1加⼯完了ai之后,要开始加⼯bi了,这⾥M1是空闲的可以开始加⼯剩下的N-i个作业了,但此时M2开始加⼯bi,所以要等bi时间之后才能重新利⽤,对应到上⾯函数T(s,t)的定义的话,这⾥就应该表⽰成T(N-{i},bi), 所以最优解可表⽰为T(N,0)=min{ai + T(N-{i}, bi)}, i∈N,即我们要枚举所有的⼯作i,使这个式⼦取到最⼩值。
流水车间调度及其优化算法
摘要:流水车间调度是流水车间安排重叠活动以满足任务完成期限的一种工序安排问题。
为了提高生产效率,本文简要介绍了常用的优化算法,包括分支定界算法,回溯算法,提升算法,遗传算法等应用于流水车间调度优化的算法,并简要分析了各算法的优缺点。
关键词:流水车间优化;分支定界算法;回溯算法;提升算法;遗传算法
Abstract:Work-shop scheduling is a process arrangement problem which arranges overlapping activities to meet the completion deadline of tasks. In order to improve production efficiency, this paper briefly introduces some optimization algorithms which are often used in workshop scheduling optimization, including branch and bound algorithm, backtrack algorithm, heuristic algorithm, genetic algorithm and so on, and briefly analyzed the advantages and disadvantages of each algorithm.
Key Words:Workshop scheduling optimization; Branch and bound algorithm; Backtrack algorithm; Heuristic algorithm; Genetic algorithm。