航空发动机动力装置重点
- 格式:docx
- 大小:16.19 KB
- 文档页数:2
航空发动机原理知识点精讲航空发动机是现代飞机的关键动力装置,它负责提供足够的推力推动飞机向前飞行。
理解航空发动机的工作原理对于飞行员和工程师而言非常重要,因此本文将对航空发动机的一些关键知识点进行精讲。
一、航空发动机的分类航空发动机主要分为喷气式发动机和涡轮螺旋桨发动机两大类。
1. 喷气式发动机喷气式发动机是目前大多数商用飞机所采用的发动机类型。
它的工作原理是将外界空气经过压缩、燃烧和膨胀等过程,最终喷出高速气流产生反作用力推动飞机前进。
喷气式发动机具有推力大、速度快的优点,适用于中长途航班。
2. 涡轮螺旋桨发动机涡轮螺旋桨发动机通常被用于小型飞机或者区域航班。
它的工作原理是通过一个螺旋桨传递发动机产生的推力,推动飞机前进。
涡轮螺旋桨发动机的优点是起飞距离短、速度慢,适用于短途运输和起降场地受限的情况。
二、喷气式发动机的工作原理喷气式发动机的工作原理可归纳为以下几个步骤:1. 压缩过程进气口将外界空气引入,经过多级压气机的作用,使空气被压缩到更高的压力和温度。
压缩过程有助于提高燃油的燃烧效率和推力输出。
2. 燃烧过程经过压缩后的空气进入燃烧室,在加入适量的燃油后与火花器产生火花点燃。
燃烧产生的高温高压气体通过喷嘴扩张,转化为高速的喷气流。
3. 膨胀过程高速喷气流通过涡轮,驱动压气机和辅助设备的转动,将剩余的能量转化为推力。
同时,喷气流的能量损失也引起了发动机后部的推力反作用,推动飞机向前运动。
4. 排气过程喷气流经过喷嘴排出,形成尾焰。
排气过程中,喷气流的速度也起到了降低飞机空气阻力的作用。
三、喷气式发动机的关键参数1. 推力推力是衡量发动机性能的重要参数,它指的是发动机向后喷出的气流产生的反作用力。
推力的大小与喷气流量、速度和压力等因素相关。
2. 空气压缩比空气压缩比是指进入发动机后,经过压缩阶段压力增加的比例。
较高的压缩比能提高发动机效率和推力输出。
3. 燃油效率燃油效率是指发动机在单位时间内将燃油转化为推力的能力。
航空发动机及燃气轮机重大专项摘要:航空发动机及燃气轮机重大专项是中国政府重点支持和推动的项目之一。
本文将介绍该重大专项的背景、目标、重点研究内容以及取得的成果和影响。
1. 背景航空产业作为现代经济的重要组成部分,在国家经济和国防建设中具有重要地位。
航空发动机及燃气轮机是航空器的核心动力装置,对飞行安全和性能具有至关重要的影响。
然而,在过去的几十年中,中国的航空发动机产业一直依赖进口,自主研发和生产能力较弱。
为了解决这一问题,中国政府决定启动航空发动机及燃气轮机重大专项,加强自主研发和生产能力,提高航空发动机的技术水平和国际竞争力。
2. 目标航空发动机及燃气轮机重大专项的主要目标是实现在航空发动机研发和生产领域的自主创新能力,提高航空发动机的技术水平和品质,减少对进口的依赖。
具体目标包括:- 提高航空发动机整机性能水平,满足不同类型航空器的需求;- 突破关键技术,提高航空发动机关键零部件的设计、制造和维修能力;- 增强航空发动机的环境适应能力,满足不同气候和环境条件下的使用需求;- 提升航空发动机的燃油经济性能,降低运营成本;- 加强航空发动机的可靠性和维修性,提高使用寿命和可维护性;- 增强航空发动机的环境友好性,降低排放物的释放。
3. 重点研究内容为了实现上述目标,航空发动机及燃气轮机重大专项将重点研究以下内容:- 先进材料技术:开发和应用高温合金、复合材料等先进材料,提高发动机的温度和压力承载能力。
- 先进设计与制造技术:开展先进的发动机设计与制造研究,提高发动机的整体效能和可靠性。
- 先进涡轮机技术:开展高效、轻量化、高温材料应用的涡轮机研究,提高发动机的经济性能和环境适应能力。
- 先进燃烧技术:开发和应用低排放、高效率的燃烧技术,提高发动机的燃烧效率和环保性能。
- 先进监测与维修技术:研究先进的发动机监测与维修技术,提高发动机的可靠性和寿命。
4. 成果和影响航空发动机及燃气轮机重大专项自启动以来取得了显著的成果。
1. 理想气体的定义是:分子本身只有质量而不占有体积,分子间不存在吸引力的气体。
2. 理想气体的状态方程式:pv = RT ,R 为气体常数3. 热力学第一定律的解析式 dp = du + pdv ,u 为空气内能,pv 为位能4. 热力发动机是一种连续不断地把热能转换为机械能的动力装置。
5.⎧⎧⎨⎪⎩⎪⎪⎧⎧⎪⎪⎪⎪⎧⎫⎪⎪⎪⎧⎨⎪⎪⎪−⎨⎬⎨⎪⎪⎪⎩⎪⎪⎪⎪⎪⎩⎭⎪⎩⎨⎪⎧⎪⎧⎪⎨⎨⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎧⎪⎪⎨⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩⎩⎩固体燃料火箭发动机火箭发动机液体燃料火箭发动机二行程 直列式活塞式吸气式四行程对列式增压式星型发动机冲压式航空发动机冲压式(无压气机) 脉动冲压式涡喷 空气喷气式涡扇 涡轮式(有压气机)涡轴 涡桨 6. 发动机的推力与每秒钟流过发动机的空气质量流量之比,叫做发动机的单位推力。
F s = F / q m7. 产生一牛(或十牛)推力每小时所消耗的燃油量,称为单位燃油消耗率。
sfc= 3600q mf / F8. 单转子涡喷发动机的站位规定及相应气流参数有:0站位:发动机的远前方,那里的气流参数为*0*00,,,,T p V T p o ;1站位:进气道的出口,压气机的进口,气流参数为*1*1111,,,,T p V T p ;2站位:压气机的出口,燃烧室的进口,气流参数为 *2*2222,,,,T p V T p ;3站位:燃烧室的出口,涡轮的进口,气流参数为*3*3333,,,,T p V T p ;4站位:涡轮的出口,喷管的进口,气流参数为*4*4444,,,,T p V T p ;5站位:喷管的出口,气流参数为*5*5555,,,,T p V T p ;---------------------------------------------------------------------9. 进气道对发动机性能的影响主要体现在:一,气流经过进气道的总压恢复系数影响流经发动机的空气流量,还影响循环的热效率;二,进气道本身的工作稳定性和出口气流流场是否均匀,前者会直接影响发动机的正常工作,后者会引起压气机效率下降甚至喘振;三,进气道对有效推力的影响,还包括1.超音速飞行时会有附加阻力2.进气道唇口的存在使外流急剧加速,可能引起气流分离或形成超音速区,使得外阻明显增加。
航空发动机主要部件介绍航空发动机是飞机的核心动力装置,它由许多主要部件组成。
这些部件的设计和功能各不相同,但它们协同工作,确保发动机正常运行,为飞机提供足够的推力。
在本文中,我们将介绍航空发动机的一些重要部件。
1. 压气机:压气机是航空发动机的关键组件之一。
它负责将大气中的空气压缩,以提高空气的密度和压力。
压缩后的空气将被送入燃烧室,与燃料混合并燃烧,产生高温高压的气体流。
2. 燃烧室:燃烧室是将燃料与压缩空气混合并点燃的地方。
在燃烧过程中,燃料释放的能量被转化为高温高压的气体,推动涡轮旋转,进一步增加压缩空气的温度和压力。
3. 涡轮:涡轮是发动机中的关键部件之一,由高温高压气体流推动旋转。
涡轮通常由压气机和涡轮机组成,它们通过一根轴相连。
压气机的旋转使空气被压缩和推送,而涡轮机则从高温高压气体中获得能量,推动压气机的旋转。
4. 推力装置:推力装置是将发动机产生的推力传递给飞机的装置。
在喷气式发动机中,推力装置通常是喷嘴。
高温高压的气体通过喷嘴喷出,产生反作用力,推动飞机向前飞行。
在螺旋桨发动机中,推力装置是螺旋桨,它通过旋转产生推力。
5. 空气滤清器:空气滤清器用于过滤进入发动机的空气,以防止杂质和颗粒物进入发动机内部。
这些杂质和颗粒物可能会损坏发动机的关键部件,影响发动机性能和寿命。
因此,空气滤清器对于发动机的正常运行非常重要。
6. 润滑系统:润滑系统用于减少发动机内部摩擦和磨损,确保发动机各部件的正常运转。
润滑系统通过向关键部件提供润滑油来形成润滑膜,减少摩擦和磨损。
这有助于延长发动机的使用寿命并提高其效率。
7. 点火系统:点火系统用于点燃燃料和空气混合物,开始燃烧过程。
它通常由点火塞和点火线组成。
点火塞通过产生电火花,在燃烧室内点燃燃料和空气混合物。
点火系统的可靠性对于发动机的正常运行至关重要。
8. 冷却系统:冷却系统用于冷却发动机的关键部件,如涡轮和燃烧室。
高温会导致这些部件的损坏,因此冷却系统通过循环冷却液体或空气来控制温度。
航空活塞动力装置(考试知识点)绪论发动机是一种将某种能量转换成机械功的动力装置。
热力发动机是将燃料的热能转换成机械功的动力装置。
航空发动机分为两大类型:航空活塞发动机和航空喷气发动机。
航空活塞发动机具有低速经济性好,工作稳定性好的优点;但也存在着重量功率比大,高空性能速度性能差的缺点。
喷气发动机具有重量轻,推力大,高空性能、速度性能好的优点;但也存在着经济性较差的缺点。
航空活塞发动机应满足下列基本性能要求:1. 发动机重量功率比小2. 发动机燃油消耗率低3. 发动机尺寸要小4. 发动机可靠性要好5. 发动机的使用寿命要长6. 发动机要便于维护第一章 航空动力装置的基础知识第一节 气体、气流的基础知识分子本身只有质量而不占有体积,分子间不存在吸引的气体叫理想气体。
气体的比容的定义是:单位质量的气体所占有的容积,以符号ν表示。
m V =ν 华氏温度与摄氏温度的换算关系为)32(95,3259F -=+=F t t热力学温度与摄氏温度的换算关系为:T=t+273按一定的过程将气流阻滞到速度为零时的气流的参数叫做滞止参数。
对于亚音速气流(M<1),当流过收敛型管道时,随着截面积A 的减小,流速C 升高,同时伴随压力、温度降低;当流过扩散型管道时,截面积A 增大,流速C 减小,同时伴随压力、温度升高。
对于亚音速气流(M>1),当流过收敛型管道时,随着截面积A 的减小,流速C 也减小,同时伴随压力、温度升高;当流过扩散型管道时,截面积A 增大,流速C 升高,同时伴随压力、温度降低。
第二节 燃烧的基础知识航空发动机目前都采用航空汽油和航空煤油作为燃料,用空气作为氧化剂。
余气系数就是混合气中实际空气量与理论空气量的比值,用α表示,即理实L L =α 油气比是混合气中燃料的质量与空气质量的比值,用C 表示,即:空气燃油m m =C1kg燃料完全燃烧后,将燃烧产物冷却到起始温度,所放出的热量,叫做燃料的热值,单位为千焦耳/千克燃料。
航空活塞动力装置知识点整理资料全是所需知道的内容,不分重点绪论发动机定义:发动机是一种将某种能量转化成机械功的动力装置。
(属于热机)航空发动机分为航空活塞发动机和航空喷气发动机航空活塞发动机是由气缸内燃料放出的热能通过曲轴输出扭矩,带动螺旋桨转动,产生推力。
优点:低速经济性好,工作稳定性好。
缺点:重量功率比大,高空性能、速度性能差。
航空喷气发动机是将燃料在燃烧室内连续燃烧释放出的热能转换成气体动能,从发动机高速喷出,产生推进力的动力装置。
优点:重量轻,推力大,高空性能、速度性能好。
缺点:经济性较差。
飞机对航空活塞发动机的基本性能要求:1.发动机重量功率比小2.发动机燃油消耗率低3.发动机尺寸要小4.发动机可靠性要好(空中停车率小于0.01/1000h)5.发动机使用寿命要长6.发动机要便于维护第一章航空动力装置的基础知识热机定义:将热能转化为机械能的机器。
工质:热机工作时,必须以某种物质为媒介,才能将热能转换成机械能,完成这种能量转换的媒介物叫工质。
理想气体:分子本身只有质量而不占有体积,分子间不存在吸引力的气体叫理想气体。
气体的比容的定义:单位质量的气体所占有的容积。
气体比容是描述气体分子疏密程度的物理量。
温度:确定一个系统与其他系统是否处于热平衡的共同特性定义。
气体温度描述了气体的冷热程度,是分子热运动平均移动动能的度量。
气体的压力是垂直作用在壁面单位面积上的力。
百帕(hPa):1hPa=100Pa=1mbar(1bar=10^5Pa)千帕(kPa):1kPa=1000Pa工程大气压(at):1at=1kgf/cm^2=98066.5Pa 工程大气压广泛用在液体压力的测量仪表中,发动机滑油、燃油压力常用此单位。
标准大气压(atm):温度为15摄氏度时,海平面上空气的平均压力,1atm=1.033atPSI:1PSI=11bf/in^2=0.07kgf/cm^2=6894.8Pa;1kgf/cm^2=14.3PSIPSI用于美、英制发动机中毫米(或英寸)汞柱:1标准大气压=760毫米汞柱(29.92英寸汞柱)=1013hPa气体的热力过程:等容过程、等压过程、等温过程和绝热过程(P9图1.5)气体状态方程:pv=RT在绝热条件下:气体压力和比容满足pv^k=常数K是气体绝热指数。
科技重大专项:航空发动机燃气轮机随着航空业的快速发展,航空发动机的研发和制造也日益成为科技领域的焦点。
作为飞机动力装置的核心部件,燃气轮机承载着飞行任务的重任,其性能直接关系到飞机的安全、经济和环境保护。
为了推动我国航空发动机行业的快速发展,不断提升我国在国际市场的竞争力,科技部实施了一系列的科技重大专项计划,其中包括航空发动机燃气轮机相关项目。
1. 政策背景随着国家对航空产业重点领域的支持力度不断增加,航空发动机成为了国家科技创新的重要领域之一。
为了加快我国航空发动机领域的科技创新和产业发展,科技部制定了航空发动机燃气轮机相关项目。
该项目旨在加强我国在航空发动机核心技术领域的自主研发能力,提升航空发动机的性能和可靠性,推动我国航空发动机产业的持续健康发展。
2. 项目目标航空发动机燃气轮机相关项目的主要目标包括:(1)推动航空发动机燃气轮机关键零部件的自主研发。
通过加强燃气轮机关键零部件的自主研制,提升我国航空发动机的自主创新能力和市场竞争力。
(2)提高燃气轮机技术水平。
通过技术攻关和创新,不断提高燃气轮机的热效率、动力性能和可靠性,满足不同型号飞机的需求。
(3)加强航空发动机燃气轮机关键技术的集成应用。
通过深入研究和探索,实现航空发动机关键技术的集成应用,提升整体性能和可靠性。
3. 研究重点为了实现上述目标,航空发动机燃气轮机项目围绕以下重点进行研究:(1)燃气轮机关键零部件材料与制造技术。
包括航空发动机叶片、涡轮盘、轴承等关键零部件的材料研究、成型工艺和检测技术。
(2)燃气轮机动力传动系统和控制技术。
重点研究燃气轮机的动力传输机构、智能控制系统和安全保障技术,提高整机性能和可靠性。
(3)燃气轮机燃烧技术和热力循环系统。
重点研究燃气轮机的燃烧过程优化、热力循环系统集成等关键技术,提高燃气轮机的热效率和环保性能。
4. 科研成果经过多年的科研攻关,航空发动机燃气轮机项目取得了一系列重要科研成果:(1)新型高温合金材料的研发。
航空发动机动力装置重点
发动机燃油和控制系统有三个分系统:
燃油分配包括,燃油泵组件、IDG滑油冷却器、伺服燃油加温器
燃油控制包括,飞机接口、传感器、EEC、HMU
燃油指示包括,燃油流率、耗费的燃油、HPSOV、油滤旁通灯
总压有效条件
从两个ADIRU来的总压和静压信号在极限内,总压信号一致,至少一个总压传感器的空速管传感器与加温是接通的,空速管传感器加温关且飞机是在地面上和TRA小于53
软备用方式确保发动机推力在总压数值无效时不会有大的变化,这时如果外界空气温度变化,发动机推力可能小于正常或者发生发动机超限。
这是因为EEC使用TA T,标准大气压和从标准大气压的空气温度增量的最后有效值估算马赫数。
在正常方式下,空气静温从空气总温和MA计算,软备用方式没有可用的马赫数,EEC使用标准大气温度的空气温度增量的最后有效值。
只有外界空气温度相同,这个估算值才是有效的。
在较大的推力水平时,EEC从软备用改变到应备用能有非指令的大的推力的改变,此时EEC 不会自动的转变备用方式。
硬备用时,EEC使用静压获得假定马赫数,为了保证任何情况下飞机都有充足的推力,EEC假定的外界的大气温度具有最大的推力要求。
在高温条件下,大的最大推力额定值超限是有可能的,能够造成排气温度超限。
发动机空气系统控制
涡轮间隙控制和压气机气流控制。
TCC是指调解在HPT和LPT的叶片和外壳的间隙,通常发动机空气系统减小转子与涡轮机匣的间隙,这有助于减少燃油消耗。
在一些功率下空气也增加在高压涡轮叶片和外壳的间隙,确保HPT叶尖部没擦机匣。
压气机气流控制是指调节LPC和HPC对所有功率的气流,防止发动机失速。
HPTACC的五个工作方式
无空气作动筒完全缩入,HPC的4和9级或们都关闭,这是发动
机停车时的作动筒位置且是失效保险位置。
如果EEC或HMU有故障,EEC指令HPTACC活门在此位置。
此时HPT 叶尖间隙最大低流量第9级作动筒至8%伸长,第9级活门让低流量的第9级空气流至HPT护罩机匣,第4级蝶形活门全关,少量地冷却护罩支架高流量第9级作动筒至37%伸长,第9级活门让全开,第4级蝶形活门全关,较多地冷却护罩支架
混合在38%-99%之间计算作动筒位置,这调定第9级和第4级空气比率至精确地调节HPT 间隙,更多得冷却护罩支架
全第4级作动筒全部伸长,第9级活门全关,第4级全开,提供最小HPT间隙的最大护罩支架冷却
TBV控制流入一级LPT导向器的HPC第9级的空气量,在发动机启动期间和发动机加速期间增加HPC喘振裕度。
EEC使用N2和T25计算N2校正转速。
启动过程中TBV打开。
N2校正转速达到慢车时TBV关闭;在发动机加速过程中,N2校正转速在慢车转速与76%之间TBV打开;当N2校正转速在76%至80%取决于T25时TBV关闭;当N2校正转速大于80%时TBV关闭。